JPH038766A - Production of voltage-dependent nonlinear resistor porcelain composition and varistor - Google Patents

Production of voltage-dependent nonlinear resistor porcelain composition and varistor

Info

Publication number
JPH038766A
JPH038766A JP1143728A JP14372889A JPH038766A JP H038766 A JPH038766 A JP H038766A JP 1143728 A JP1143728 A JP 1143728A JP 14372889 A JP14372889 A JP 14372889A JP H038766 A JPH038766 A JP H038766A
Authority
JP
Japan
Prior art keywords
mol
component
varistor
voltage
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1143728A
Other languages
Japanese (ja)
Inventor
Keiichi Noi
野井 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1143728A priority Critical patent/JPH038766A/en
Publication of JPH038766A publication Critical patent/JPH038766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To improve dielectric constant and extent of surge resistance by constructing a composition from composition composed of a principal component, such as SrTiO3, Nb2O5 or Al2O3, and an additive prepared by calcining a mixture of CaTiO3 with SiO2. CONSTITUTION:The subject composition is formed from 100 pts.wt. principal component composed of 90-99.998mol% first component of SraTiO3 (a is 0.95-1), 0.001-5mol% second component and 0.001-5mol% third component and 0.001-10 pts.wt. additive. The above-mentioned second component is composed of one or more of Nb2O5, Ta2O5, WO3, Dy2O3, etc. The aforementioned third component is composed of one or more of Al2O3, Sb2O3, BaO, BeO, PbO, etc. Furthermore, the above-mentioned additive is obtained by calcining a mixture composed of 60-32.5mol% CaTiO3 and 40-67.5mol% SiO2 at >=1200 deg.C temperature.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気機器、電子機器で発生する異常高電圧、ノ
イズ、静電気などから機器の半導体および回路を保護す
るためのコンデンサ特性とバリスタ特性を有する電圧依
存性非直線抵抗体磁器組成ゎおよu/lJ7,70□造
ヵ1ヵ+:m I!a t 6も。7あも・員 従来の
技術 従来、各種の電気機器、電子機器における異常高電圧の
吸収、ノイズの除去、火花消去、静電気対策のために電
圧依存性非直線抵抗特性を有するSiCバリスタや、Z
nO系バリスタなどが使用されている。このようなバリ
スタの電圧−電流特性は近似的に次式のように表すこと
ができる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a voltage having capacitor characteristics and varistor characteristics to protect semiconductors and circuits of equipment from abnormal high voltages, noise, static electricity, etc. generated in electrical equipment and electronic equipment. Dependency Nonlinear Resistor Ceramic Composition ゎ and u/lJ7,70□Building 1ka+:m I! a t 6 too. 7 Amo・Members Conventional technology Conventionally, SiC varistors, which have voltage-dependent nonlinear resistance characteristics, and Z
nO type varistors are used. The voltage-current characteristics of such a varistor can be approximately expressed as in the following equation.

1=(V/C)α ここで、■は電流、■は電圧、Cはバリスタ固有の定数
、αは電圧−電流非直線指数である。
1=(V/C) α Here, ■ is a current, ■ is a voltage, C is a constant specific to the varistor, and α is a voltage-current nonlinear index.

SiCバリスタのαは2〜7程度、ZnO系バリスタで
はαが50にもおよぶものがある。このようなバリスタ
は比較的高い電圧の吸収には優れた性能を有しているが
、誘電率が低(、固有の静電容量が小さいため、バリス
タ電圧以下の比較的低い電圧の吸収にはほとんど効果を
示さず、また誘電損失tanδが5〜10%と大きい。
The α of SiC varistors is about 2 to 7, and the α of some ZnO-based varistors is as high as 50. Such varistors have excellent performance in absorbing relatively high voltages, but due to their low dielectric constant (and small inherent capacitance), they are not suitable for absorbing relatively low voltages below the varistor voltage. It shows almost no effect, and the dielectric loss tan δ is as large as 5 to 10%.

一方、これらの低電圧のノイズなどの除去には見かけの
誘電率が5X104程度で、tanδが1%前後の半導
体コンデンサが利用されている。
On the other hand, semiconductor capacitors with an apparent dielectric constant of about 5×10 4 and a tan δ of about 1% are used to remove these low voltage noises.

しかし、このような半導体コンデンサはサージなどによ
りある限度以上の電圧または電流が印加されると、静電
容量が減少したり、破壊されたりしてコンデンサとして
の機能を果たさなくなったりする。
However, when a voltage or current exceeding a certain limit is applied to such a semiconductor capacitor due to a surge or the like, the capacitance decreases or the semiconductor capacitor is destroyed, and the capacitor no longer functions as a capacitor.

そこで最近になって5rTiChを主成分とし、バリス
タ特性とコンデンサ特性の両方の機能を有するものが開
発され、コンピュータなどの電子機器におけるIC,L
SIなどの半導体素子の保護に利用されている。
Therefore, recently, a product that has 5rTiCh as its main component and has both varistor and capacitor characteristics has been developed, and it has been developed as an IC, L
It is used to protect semiconductor devices such as SI.

発明が解決しようとする課題 上記の5rTi03を主成分とするバリスタとコンデン
サの両方の機能を有する素子は、ZnO系バリスタに比
べ誘電率が約10倍と大きいが、αやサージ耐量が小さ
く、バリスタ電圧を低くすると特性が劣化しやすいとい
った欠点を有していた。
Problems to be Solved by the Invention The above-mentioned 5rTi03-based element that functions as both a varistor and a capacitor has a dielectric constant about 10 times higher than that of a ZnO-based varistor, but its α and surge resistance are small, making it difficult to use as a varistor. It has the disadvantage that the characteristics tend to deteriorate when the voltage is lowered.

そこで本発明では、誘電率が太き(、バリスタ電圧が低
(、αが大きいと共にサージ耐量が大きい電圧依存性非
直線抵抗体磁器組成物およびバリスタの製造方法を提供
することを目的とするものである。
Therefore, it is an object of the present invention to provide a voltage-dependent nonlinear resistor ceramic composition with a large dielectric constant (low varistor voltage), a large α, and a large surge withstand capacity, and a method for manufacturing a varistor. It is.

課題を解決するための手段 上記の問題点を解決するために本発明では、5raTi
○3  (0.950≦a≦1.000)  (以下第
1成分と呼ぶ)を90.000〜99.998mo 1
%、Nb2O5,Ta205.WO3,Dy2O3゜Y
2O3,La2O3,CeO2,Sm2O3,P re
o+Nd2O3のうち少な(とも1種類以上(以下第2
成分と呼ぶ)を0.001〜5.000mo 1%。
Means for Solving the Problems In order to solve the above problems, in the present invention, 5raTi
○3 (0.950≦a≦1.000) (hereinafter referred to as the first component) is 90.000 to 99.998 mo 1
%, Nb2O5, Ta205. WO3, Dy2O3゜Y
2O3, La2O3, CeO2, Sm2O3, Pre
o+Nd2O3 (both one or more types (hereinafter referred to as the second type))
0.001 to 5.000 mo 1%.

A I2O3,Sb2O3,BaO,Bed、PbO。A I2O3, Sb2O3, BaO, Bed, PbO.

B2O3,Cr2O3,Fe2O3,CdO,に20゜
CdO,Co2O3,CaO,Cu2O,L i20゜
LiF、MgO,MnO2,MoO3,Na2O。
B2O3, Cr2O3, Fe2O3, CdO, 20°CdO, Co2O3, CaO, Cu2O, Li20°LiF, MgO, MnO2, MoO3, Na2O.

NaF、Nip、Rh2O3,SeO2,Ag2O。NaF, Nip, Rh2O3, SeO2, Ag2O.

S iCh、S i C,S ro、T I2O3,T
hO2゜T i 02 、 V2O5,B 12O3,
ZnO,Z ro2゜5n02のうち少な(とも1種類
以上(以下第3成分と呼ぶ)を0.001〜5.OOO
mo 1%含有してなる主成分100重量部と、CaT
iO360.000〜32.500mo 1%、Si○
240.000〜67.500mol%からなる混合物
を1200℃で焼成してなる添加物(以下第4成分と呼
ぶ)o、OO1〜10.000重量部とからなる電圧依
存性非直線抵抗体磁器組成物を得ることにより間層を解
決しようとするものである。
S iCh, S i C, S ro, T I2O3, T
hO2゜T i 02 , V2O5, B 12O3,
A small amount of ZnO, Z ro2゜5n02 (both one or more types (hereinafter referred to as the third component) is 0.001 to 5.00
100 parts by weight of the main component containing 1% Mo and CaT
iO360.000~32.500mo 1%, Si○
A voltage-dependent nonlinear resistor ceramic composition consisting of an additive (hereinafter referred to as the fourth component) o, which is obtained by firing a mixture consisting of 240.000 to 67.500 mol% at 1200°C, and 1 to 10.000 parts by weight of OO. It is an attempt to solve the problem by obtaining things.

また、上記組成物を1100℃以上で焼成するバリスタ
の製造方法、あるいは上記組成物を1100℃以上で焼
成した後、還元性雰囲気中で1200℃以上で焼成し、
その後酸化性雰囲気中で900〜1300℃で焼成する
バリスタの製造方法を提案するものである。
Further, a method for producing a varistor comprising firing the above composition at 1100°C or higher, or firing the above composition at 1100°C or higher and then firing at 1200°C or higher in a reducing atmosphere,
The present invention proposes a method for manufacturing a varistor in which the varistor is then fired at 900 to 1300°C in an oxidizing atmosphere.

作用 上記の発明において第1成分は主たる成分であり、第2
成分は主に第1成分の半導体化を促進する金属酸化物で
ある。また、第3成分は誘電率。
Effect In the above invention, the first component is the main component, and the second component is the main component.
The components are mainly metal oxides that promote semiconducting of the first component. Also, the third component is the dielectric constant.

α、サージ耐量の改善に寄与するものであり、第4成分
はバリスタ電圧の低下、誘電率の改善に有効なものであ
る。特に、第4成分は融点が1230〜1250℃と比
較的低いため、融点前後の温度で焼成すると液相となり
、その他の成分の反応を促進すると共に粒子の成長を促
進する。そのため粒界部分に第3成分が偏析しやすくな
り、粒界が高抵抗化され易くなり、バリスタ機能および
コンデンサ機能が改善される。また、粒成長が促進され
るためバリスタ電圧が低くなり、粒径の均一性が向上す
るため特性の安定性がよくなり、特にサージ耐量が改善
されることとなる。
α contributes to improving the surge resistance, and the fourth component is effective in reducing the varistor voltage and improving the dielectric constant. In particular, since the fourth component has a relatively low melting point of 1230 to 1250° C., when fired at a temperature around the melting point, it turns into a liquid phase, which promotes the reactions of the other components and the growth of particles. Therefore, the third component is likely to segregate in the grain boundary portion, making the grain boundary more likely to have a high resistance, thereby improving the varistor function and capacitor function. Furthermore, since grain growth is promoted, the varistor voltage is lowered, and the uniformity of the grain size is improved, resulting in improved stability of characteristics, and in particular, improved surge resistance.

実施例 以下に実施例を挙げて本発明を具体的に説明する。Example The present invention will be specifically described below with reference to Examples.

まず、CaTiO3,S i02を下記の第1表に示す
ように組成比を種々変えて秤量し、ボールミルなどで2
08 r混合する。次に、乾燥した後、下記の第1表に
示すように温度を種々変えて焼成し、再びボールミルな
どで208 r粉砕した後、乾燥し、第4成分とする。
First, CaTiO3 and Si02 were weighed at various composition ratios as shown in Table 1 below, and 2
08 r Mix. Next, after drying, the mixture is fired at various temperatures as shown in Table 1 below, ground again at 208 r with a ball mill, etc., and dried to obtain the fourth component.

次いで、第1成分、第2成分、第3成分、第4成分を下
記の第1表に示した組成比になるように秤量し、ボール
ミルなどで24)(r混合した後、乾燥し、ポリビニル
アルコールなどの有機バインダーを10wt%添加して
造粒した後、1(t/cwt)のプレス圧力で10φX
it(mm)の円板状に成形し、1000℃で10Hr
焼成し脱バインダーする。次に、第1表に示したように
温度を種々変えて2Hr焼成(第1焼成)し、その後還
元性雰囲気、例えばN2:H2=9:1のガス中で温度
を種々変えて4Hr焼成(第2焼成)する。さらにその
後、酸化性雰囲気中で温度を種々変えて4)(r焼成(
第3焼成)する。
Next, the first component, second component, third component, and fourth component were weighed so as to have the composition ratio shown in Table 1 below, mixed in a ball mill, etc. (24), and then dried to form a polyvinyl After adding 10 wt% of organic binder such as alcohol and granulating, 10φX with a press pressure of 1 (t/cwt)
It (mm) was formed into a disc shape and heated at 1000℃ for 10 hours.
Fire to remove binder. Next, as shown in Table 1, 2-hour firing (first firing) is performed at various temperatures, followed by 4-hour firing (1st firing) at various temperatures in a reducing atmosphere, for example, a gas with N2:H2 = 9:1. 2nd firing). Furthermore, after that, 4) (r firing (
3rd firing).

こうして得られた第1図および第2図に示す焼結体1の
両平面に外周を残すようにしてAgなどの導電性ペース
トをスクリーン印刷などにより塗布し、600℃、5m
1nで焼成し、電極2.3を形成する。次に、半田など
によりリード線を取付け、エポキシなどの樹脂を塗装す
る。このようにして得られた素子の特性を下記の第2表
に示す。
A conductive paste such as Ag was applied by screen printing or the like, leaving the outer periphery on both planes of the sintered body 1 shown in FIGS. 1 and 2 obtained in this way.
The electrode 2.3 is formed by firing at 1n. Next, the lead wires are attached using solder or the like, and a resin such as epoxy is applied. The characteristics of the device thus obtained are shown in Table 2 below.

なお、見掛は誘電率はIKHzでの静電容量から計算し
たものであり、αは α=1/Log (V+omA/V+mA)(ただし、
VlmA、V+omAは1mA、10mAの電流を流し
た時に素子の両端にかかる電圧である。)で評価した。
Note that the apparent permittivity is calculated from the capacitance at IKHz, and α is α=1/Log (V+omA/V+mA) (however,
VlmA and V+omA are voltages applied across the element when currents of 1 mA and 10 mA are applied. ) was evaluated.

また、サージ耐量はパルス性の電流を印加した後のVl
mAの変化率が±10%以内である時の最大のパルス性
電流値により評価している。
In addition, the surge withstand capacity is Vl after applying a pulsed current.
The evaluation is based on the maximum pulse current value when the rate of change in mA is within ±10%.

(以  下  余  白  ) また、第1成分の5raTi○3のaの範囲を規定した
のは、aが1.000よりも太き(なると格子欠陥が発
生しにくいため半導体化が促進されず、Vl mAが高
(なりすぎて特性が劣化し、方0.950よりも小さ(
なるとTiが過剰になりすぎてTiO2の結晶が生成し
、組織が不均一になり、特性が劣化するためである。さ
らに、第2成分はO,OO1mol%未満では効果を示
さず、5.OOOmo 1%を超えると粒界に偏析して
粒界の高抵抗化を抑制し、粒界に第2相を形成するため
特性が劣化するものである。また、第3成分はO,OO
1mol%未満では効果を示さず、5.OOOmo 1
%を超えると粒界に偏析して第2相を形成するため特性
が劣化するものである。また、第4成分はCaTiO3
と5i02の2成分系の相図のなかでCaT i○36
0.000〜32.500mo 1%、S io240
.000〜67.500mo 1%の範囲内のものは最
も融点の低い領域の物質であり、その範囲外では融点が
高(なるものである。また、第4成分の添加量は、0.
001重量部未満では効果を示さず、10.000重量
部を超えると粒界の抵抗は高(なるが粒界の幅が厚(な
るため、静電容量が小さくなると共にV+ mAが高(
なり、サージに対して弱(なるものである。また、第4
成分の焼成温度を規定したのは、低融点の第4成分が合
成される温度が1200℃以上であるためである。そし
て、第1焼成の温度を規定したのは、第4成分の融点が
1230〜1250℃であるため、1100℃以上の温
度で焼成すると第4成分が液相に近い状態になって焼結
が促進されるためであり、1100℃未満では第4成分
の液相焼結効果がないためである。また、第2焼成の温
度を規定したのは、1200℃未満では第1焼成後の焼
結体が十分に還元されず、バリスタ特性、コンデンサ特
性共に劣化するためである。さらに、第3焼成の温度を
規定したのは、900℃未満では粒界の高抵抗化が十分
に進まないため、VlmAが低くなりすぎバリスタ特性
が劣化するためであり、1300℃を超えると静電容量
が小さくなりすぎコンデンサ特性が劣化するためである
。また、第1焼成の雰囲気は酸化性雰囲気でも還元性雰
囲気でも同様の効果があることを確認した。
(Margin below) In addition, the range of a for the first component 5raTi○3 was specified because a is thicker than 1.000 (if this is the case, lattice defects will be less likely to occur and semiconductor formation will not be promoted; If Vl mA is too high (too much, the characteristics will deteriorate, or less than 0.950)
This is because Ti becomes too excessive and TiO2 crystals are formed, the structure becomes non-uniform and the properties deteriorate. Furthermore, if the second component is less than 1 mol% of O, OO, it does not show any effect; If OOOmo exceeds 1%, it segregates at the grain boundaries, suppresses the increase in resistance of the grain boundaries, and forms a second phase at the grain boundaries, resulting in deterioration of properties. Also, the third component is O, OO
If it is less than 1 mol%, no effect is shown; 5. OOOmo 1
If it exceeds %, it segregates at grain boundaries and forms a second phase, resulting in deterioration of properties. Moreover, the fourth component is CaTiO3
In the phase diagram of the two-component system of and 5i02, CaT i○36
0.000-32.500mo 1%, Sio240
.. 000 to 67.500 mo 1% is a substance with the lowest melting point, and outside that range the melting point is high. Also, the amount of the fourth component added is 0.00 to 67.500 mo.
If it is less than 0.001 parts by weight, no effect will be shown, and if it exceeds 10.000 parts by weight, the grain boundary resistance will be high (but the width of the grain boundaries will be thick), so the capacitance will be small and V + mA will be high (
It is weak against surges.Also, the fourth
The firing temperature of the components was specified because the temperature at which the fourth component with a low melting point is synthesized is 1200° C. or higher. The temperature of the first firing was specified because the melting point of the fourth component is 1230 to 1250°C, so if fired at a temperature of 1100°C or higher, the fourth component would be in a state close to a liquid phase and sintering would be difficult. This is because the fourth component has no liquid phase sintering effect below 1100°C. Further, the temperature of the second firing is specified because if it is lower than 1200° C., the sintered body after the first firing will not be sufficiently reduced, and both the varistor characteristics and the capacitor characteristics will deteriorate. Furthermore, the temperature for the third firing was specified because if it is less than 900°C, the resistance of the grain boundaries will not increase sufficiently, resulting in VlmA becoming too low and the varistor characteristics will deteriorate.If it exceeds 1300°C, it will become static. This is because the capacitance becomes too small and the capacitor characteristics deteriorate. Furthermore, it was confirmed that the same effect can be obtained whether the atmosphere for the first firing is an oxidizing atmosphere or a reducing atmosphere.

なお、第2成分としては、上記実施例で挙げた成分以外
にSm2O3,Prs 0口、を用いることができ、か
つ2種類以上を組み合せて上記範囲内の添加量で用いて
もよいものである。また、第3成分としては、上記実施
例で挙げた成分以外にBad、PbO,B203 、C
aO,L i20゜L iF、Na2O,NaF、Rh
2O3,SeO2,Ag2O,SiO2,SiC,Sr
O。
In addition, as the second component, in addition to the components listed in the above examples, Sm2O3, Prs 0, etc. may be used, and two or more types may be combined and used in an amount within the above range. . Further, as the third component, in addition to the components mentioned in the above examples, Bad, PbO, B203, C
aO, Li20°L iF, Na2O, NaF, Rh
2O3, SeO2, Ag2O, SiO2, SiC, Sr
O.

TI203 、ThO2,TiO2、ZnOを用いるこ
とができ、かつ第2成分と同様に2種類以上を組合せて
上述した範囲内の添加量で用いてもよいものである。さ
らに、上記実施例ではこれら添加物の組合せについては
一部のみ示しているが、その他の組合せでも同様の効果
が得られることが確認された。
TI203, ThO2, TiO2, and ZnO can be used, and like the second component, two or more types may be combined and used in the amount within the above-mentioned range. Furthermore, although only some of the combinations of these additives are shown in the above examples, it was confirmed that similar effects can be obtained with other combinations.

発明の効果 以上に示したように本発明によれば、粒子径が大きいた
めバリスタ電圧が低く、誘電率εおよびαが太き(、粒
子径のばらつきが小さいことからサージ電流が素子に均
一に流れ、サージ耐量が大きくなるという効果が得られ
る。
Effects of the Invention As shown above, according to the present invention, the varistor voltage is low because the particle size is large, and the dielectric constants ε and α are large (and because the variation in particle size is small, the surge current is distributed uniformly to the element. The effect of increasing current and surge resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による素子を示す上面図、第2図は本発
明による素子を示す断面図である。 1・・・・・・焼結体、2,3・・・・・・電極。
FIG. 1 is a top view showing an element according to the invention, and FIG. 2 is a sectional view showing the element according to the invention. 1... Sintered body, 2, 3... Electrode.

Claims (1)

【特許請求の範囲】 (1)Sr_aTiO_3(0.950≦a≦1.00
0)を90.000〜99.998mol%,Nb_2
O_5,Ta_2O_5,WO_3,Dy_2O_3,
Y_2O_3,La_2O_3,CeO_2,Sm_2
O_3,Pr_6O_1_1,Nd_2O_3のうち少
なくとも1種類以上を0.001〜5.000mol%
,Al_2O_3,Sb_2O_3,BaO,BeO,
PbO,B_2O_3,Cr_2O_3,Fe_2O_
3,CdO,K_2O,CaO,Co_2O_3,Cu
O,Cu_2O,Li_2O,LiF,MgO,MnO
_2,MoO_3,Na_2O,NaF,NiO,Rh
_2O_3,SeO_2,Ag_2O,SiO_2,S
iC,SrO,Tl_2O_3,ThO_2,TiO_
2,V_2O_5,Bi_2O_3,ZnO,ZrO_
2,SnO_2のうち少なくとも1種類以上を0.00
1〜5.000mol%含有してなる主成分100重量
部と、CaTiO_3 60.000〜32.500mol%,SiO_240
.000〜67.500mol%からなる混合物を12
00℃以上で焼成してなる添加物0.001〜10.0
00重量部とからなることを特徴とする電圧依存性非直
線抵抗体磁器組成物。 (2)Sr_aTiO_3(0.950≦a≦1.00
0)を90.000〜99.998mol%,Nb_2
O_5,Ta_2O_5,WO_3,Dy_2O_3,
Y_2O_3,La_2O_3,CeO_2,Sm_2
O_3,Pr_6O_1_1,Nd_2O_3のうち少
なくとも1種類以上を0.001〜5.000mol%
,Al_2O_3,Sb_2O_3,BaO,BeO,
PbO,B_2O_3,Cr_2O_3,Fe_2O_
3,CdO,K_2O,CaO,Co_2O_3,Cu
O,Cu_2O,Li_2O,LiF,MgO,MnO
_2,MoO_3,Na_2O,NaF,NiO,Rh
_2O_3,SeO_2,Ag_2O,SiO_2,S
iC,SrO,Tl_2O_3,ThO_2,TiO_
2,V_2O_5,Bi_2O_3,ZnO,ZrO_
2,SnO_2のうち少なくとも1種類以上を0.00
1〜5.000mol%含有してなる主成分100重量
部と、CaTiO_3 60.000〜32.500mol%,SiO_240
.000〜67.500mol%からなる混合物を12
00℃以上で焼成してなる添加物0.001〜10.0
00重量部とからなる組成物を1100℃以上で焼成し
たことを特徴とするバリスタの製造方法。 (3)Sr_aTiO_3(0.950≦a≦1.00
0)を90.000〜99.998mol%,Nb_2
O_5,Ta_2O_5,WO_3,Dy_2O_3,
Y_2O_3,La_2O_3,CeO_2,Sm_2
O_3,Pr_6O_1_1,Nd_2O_3のうち少
なくとも1種類以上を0.001〜5.000mol%
,Al_2O_3,Sb_2O_3,BaO,BeO,
PbO,B_2O_3,Cr_2O_3,Fe_2O_
3,CdO,K_2O,CaO,Co_2O_3,Cu
O,Cu_2O,Li_2O,LiF,MgO,MnO
_2,MoO_3,Na_2O,NaF,NiO,Rh
_2O_3,SeO_2,Ag_2O,SiO_2,S
iC,SrO,Tl_2O_3,ThO_2,TiO_
2,V_2O_5,Bi_2O_3,ZnO,ZrO_
2,SnO_2のうち少なくとも1種類以上を0.00
1〜5.000mol%含有してなる主成分100重量
部と、CaTiO_3 60.000〜32.500mol%,SiO_240
.000〜67.500mol%からなる混合物を12
00℃以上で焼成してなる添加物0.001〜10.0
00重量部とからなる組成物を1100℃以上で焼成し
た後、還元性雰囲気中で1200℃以上で焼成し、その
後酸化性雰囲気中で900〜1300℃で焼成したこと
を特徴とするバリスタの製造方法。
[Claims] (1) Sr_aTiO_3 (0.950≦a≦1.00
0) from 90.000 to 99.998 mol%, Nb_2
O_5, Ta_2O_5, WO_3, Dy_2O_3,
Y_2O_3, La_2O_3, CeO_2, Sm_2
0.001 to 5.000 mol% of at least one of O_3, Pr_6O_1_1, Nd_2O_3
, Al_2O_3, Sb_2O_3, BaO, BeO,
PbO, B_2O_3, Cr_2O_3, Fe_2O_
3, CdO, K_2O, CaO, Co_2O_3, Cu
O, Cu_2O, Li_2O, LiF, MgO, MnO
_2, MoO_3, Na_2O, NaF, NiO, Rh
_2O_3, SeO_2, Ag_2O, SiO_2, S
iC, SrO, Tl_2O_3, ThO_2, TiO_
2, V_2O_5, Bi_2O_3, ZnO, ZrO_
2.0.00 of at least one type of SnO_2
100 parts by weight of the main component containing 1 to 5.000 mol%, CaTiO_3 60.000 to 32.500 mol%, SiO_240
.. A mixture consisting of 000 to 67.500 mol%
Additives baked at 00°C or higher 0.001 to 10.0
00 parts by weight of a voltage-dependent nonlinear resistor ceramic composition. (2) Sr_aTiO_3 (0.950≦a≦1.00
0) from 90.000 to 99.998 mol%, Nb_2
O_5, Ta_2O_5, WO_3, Dy_2O_3,
Y_2O_3, La_2O_3, CeO_2, Sm_2
0.001 to 5.000 mol% of at least one of O_3, Pr_6O_1_1, Nd_2O_3
, Al_2O_3, Sb_2O_3, BaO, BeO,
PbO, B_2O_3, Cr_2O_3, Fe_2O_
3, CdO, K_2O, CaO, Co_2O_3, Cu
O, Cu_2O, Li_2O, LiF, MgO, MnO
_2, MoO_3, Na_2O, NaF, NiO, Rh
_2O_3, SeO_2, Ag_2O, SiO_2, S
iC, SrO, Tl_2O_3, ThO_2, TiO_
2, V_2O_5, Bi_2O_3, ZnO, ZrO_
2.0.00 of at least one type of SnO_2
100 parts by weight of the main component containing 1 to 5.000 mol%, CaTiO_3 60.000 to 32.500 mol%, SiO_240
.. A mixture consisting of 000 to 67.500 mol%
Additives baked at 00°C or higher 0.001 to 10.0
A method for manufacturing a varistor, characterized in that a composition comprising 0.00 parts by weight is fired at 1100°C or higher. (3) Sr_aTiO_3 (0.950≦a≦1.00
0) from 90.000 to 99.998 mol%, Nb_2
O_5, Ta_2O_5, WO_3, Dy_2O_3,
Y_2O_3, La_2O_3, CeO_2, Sm_2
0.001 to 5.000 mol% of at least one of O_3, Pr_6O_1_1, Nd_2O_3
, Al_2O_3, Sb_2O_3, BaO, BeO,
PbO, B_2O_3, Cr_2O_3, Fe_2O_
3, CdO, K_2O, CaO, Co_2O_3, Cu
O, Cu_2O, Li_2O, LiF, MgO, MnO
_2, MoO_3, Na_2O, NaF, NiO, Rh
_2O_3, SeO_2, Ag_2O, SiO_2, S
iC, SrO, Tl_2O_3, ThO_2, TiO_
2, V_2O_5, Bi_2O_3, ZnO, ZrO_
2.0.00 of at least one type of SnO_2
100 parts by weight of the main component containing 1 to 5.000 mol%, CaTiO_3 60.000 to 32.500 mol%, SiO_240
.. A mixture consisting of 000 to 67.500 mol%
Additives baked at 00°C or higher 0.001 to 10.0
00 parts by weight is fired at 1100°C or higher, then fired at 1200°C or higher in a reducing atmosphere, and then fired at 900 to 1300°C in an oxidizing atmosphere. Method.
JP1143728A 1989-06-06 1989-06-06 Production of voltage-dependent nonlinear resistor porcelain composition and varistor Pending JPH038766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1143728A JPH038766A (en) 1989-06-06 1989-06-06 Production of voltage-dependent nonlinear resistor porcelain composition and varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143728A JPH038766A (en) 1989-06-06 1989-06-06 Production of voltage-dependent nonlinear resistor porcelain composition and varistor

Publications (1)

Publication Number Publication Date
JPH038766A true JPH038766A (en) 1991-01-16

Family

ID=15345622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143728A Pending JPH038766A (en) 1989-06-06 1989-06-06 Production of voltage-dependent nonlinear resistor porcelain composition and varistor

Country Status (1)

Country Link
JP (1) JPH038766A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521130A (en) * 1994-07-27 1996-05-28 Korea Institute Of Science & Technology Dielectric material for high frequencies
CN105777112A (en) * 2016-04-12 2016-07-20 武汉理工大学 Ti-bit donor-acceptor co-doping SrTiO3 base high-dielectric ceramic and preparation method thereof
CN110194664A (en) * 2019-05-15 2019-09-03 杭州电子科技大学 A kind of low dielectric constant microwave dielectric ceramic material and preparation method of garnet structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521130A (en) * 1994-07-27 1996-05-28 Korea Institute Of Science & Technology Dielectric material for high frequencies
CN105777112A (en) * 2016-04-12 2016-07-20 武汉理工大学 Ti-bit donor-acceptor co-doping SrTiO3 base high-dielectric ceramic and preparation method thereof
CN110194664A (en) * 2019-05-15 2019-09-03 杭州电子科技大学 A kind of low dielectric constant microwave dielectric ceramic material and preparation method of garnet structure

Similar Documents

Publication Publication Date Title
JP2789714B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2830322B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH038766A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JP2800268B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2808775B2 (en) Varistor manufacturing method
JP2727693B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH038767A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JP2822612B2 (en) Varistor manufacturing method
JPH038765A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JP2789675B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2830321B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2808777B2 (en) Varistor manufacturing method
JP2789676B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2808778B2 (en) Varistor manufacturing method
JP2789674B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH0443602A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH038764A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JPH03237058A (en) Porcerain composition for voltage dependent nonlinear resistor and production of varistor
JPH0443609A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH0443601A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH0443605A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH0443610A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH01226120A (en) Voltage-dependent non-linear resistor ceramic composition
JPH03261657A (en) Voltage-dependent non-linear resistive porcelain composition and production of varistor
JPH0443606A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor