JPH0443606A - Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor - Google Patents

Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor

Info

Publication number
JPH0443606A
JPH0443606A JP2151991A JP15199190A JPH0443606A JP H0443606 A JPH0443606 A JP H0443606A JP 2151991 A JP2151991 A JP 2151991A JP 15199190 A JP15199190 A JP 15199190A JP H0443606 A JPH0443606 A JP H0443606A
Authority
JP
Japan
Prior art keywords
mol
component
varistor
voltage
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2151991A
Other languages
Japanese (ja)
Inventor
Keiichi Noi
野井 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2151991A priority Critical patent/JPH0443606A/en
Publication of JPH0443606A publication Critical patent/JPH0443606A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve characteristics of permittivity, varistor voltage, surge yield strength, etc. by preparing ceramic composition by using the respective specified quantities of component wherein a part of Sr of SrTiO3 is substituted by Ba, component composed of two kinds of different metal oxide, and component wherein MgTiO3 and SiO2 are mixed and baked. CONSTITUTION:Main component is constituted by containing the following; 90.000-99.998 mol% of (Sr1-xBax)aTiO3 (0.001<=x<=0.300, 0.950<=a<1.000), 0.001-5.000 mol% of at least one or more kinds out of Nb2O5, Ta2O5, WO3, etc. and 0.001-5.000 mol% of at least one or more kinds out of Al2O3, Sb2O3, BaO, etc. Admixture is made by baking, at 1200 deg.C or higher, mixture composed of 60.000-32.500 mol% of MgTiO3 and 40.000-67.5 mol% of SiO2. Ceramic composition is prepared by using 100 wt.% of the main component and 0.001-10.000 wt.% of the admixture. Thereby varistor voltage is lowered; stability of characteristics is increased because the uniformity of grain diameter is improved; especially surge yield strength is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気機器、電子機器で発生する異常高電圧、ノ
イズ、静電気などから機器の半導体及び回路を保護する
ためのコンデンサ特性とバリスタ特性を有する電圧依存
性非直線抵抗体磁器組成物およびバリスタの製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a voltage having capacitor characteristics and varistor characteristics to protect semiconductors and circuits of equipment from abnormal high voltage, noise, static electricity, etc. generated in electrical equipment and electronic equipment. The present invention relates to a dependent nonlinear resistor ceramic composition and a method for manufacturing a varistor.

従来の技術 従来、各種の電気機器、電子機器における異常高電圧の
吸収、ノイズの除去、火花消去、静電気対策のために電
圧依存性非直線抵抗特性を有するSiCバリスタや、Z
nO系バリスタなどが使用されている。このようなバリ
スタの電圧−電流特性は近似的に次式のように表すこと
ができる。
Conventional technology Conventionally, SiC varistors and Z
nO type varistors are used. The voltage-current characteristics of such a varistor can be approximately expressed as in the following equation.

α r −(V/C) ここで、■は電流、■は電圧、Cはバリスタ固有の定数
、αは電圧−電流非直線指数である6SiCバリスタの
αは2〜7程度、ZnO系バリスタではαが50にもお
よぶものがある。このようなバリスタは比較的高い電圧
の吸収には優れた性能を有しているが、誘電率が低く、
固有の静電容量が小さいためバリスタ電圧以下の比較的
低い電圧の吸収にはほとんど効果を示さず、また誘電損
失tanδが5〜10%と大きい。
α r − (V/C) Here, ■ is current, ■ is voltage, C is a constant specific to the varistor, and α is the voltage-current nonlinear index. There are some with α as high as 50. Although such varistors have excellent performance in absorbing relatively high voltages, they have a low dielectric constant and
Since the inherent capacitance is small, it is hardly effective in absorbing a relatively low voltage below the varistor voltage, and the dielectric loss tan δ is as large as 5 to 10%.

一方、これらの低電圧のノイズなどの除去には見かけの
誘電率が5X10’程度で、tanδが1%前後の半導
体コンデンサが利用されている。しかし、このような半
導体コンデンサは号−ジなどによりある限度以上の電圧
または電流が印加されると、静電容量が減少したり破壊
したりして、コンデンサとしての機能を果たさなくなっ
たりする。
On the other hand, semiconductor capacitors with an apparent dielectric constant of about 5×10' and a tan δ of about 1% are used to remove these low voltage noises. However, when a voltage or current exceeding a certain limit is applied to such a semiconductor capacitor due to a voltage or the like, the capacitance decreases or breaks down, and the capacitor no longer functions as a capacitor.

そこで最近になって5rTiO,を主成分とし、バリス
タ特性とコンデンサ特性の両方の機能を有するものが開
発され、コンピュータなどの電子機器におけるIC,L
SIなどの半導体素子の保護に利用されている。
Recently, products containing 5rTiO as the main component and having both varistor and capacitor properties have been developed, and ICs and L
It is used to protect semiconductor devices such as SI.

発明が解決しようとする課題 上記の5rTiOsを主成分とするバリスタとコンデン
サの両方の機能を有する素子は、Zr+O系バリスタに
比べ誘電率が約10倍と大きいが、αやサージ耐量が小
さく、バリスタ電圧を低くすると特性が劣化しゃずいと
いった欠点を有していた。
Problems to be Solved by the Invention The above-mentioned 5rTiOs-based element, which functions as both a varistor and a capacitor, has a dielectric constant that is about 10 times higher than that of a Zr+O-based varistor, but its α and surge resistance are small, making it difficult to use as a varistor. This had the disadvantage that when the voltage was lowered, the characteristics deteriorated.

そこで本発明では、誘電率が大きく、バリスタ電圧が低
く、αが大きいと共にサージ耐量が大きい電圧依存性非
直線抵抗体磁器組成物およびバリスタの製造方法を提供
することを目的とするものである。
Therefore, an object of the present invention is to provide a voltage-dependent nonlinear resistor ceramic composition that has a large dielectric constant, a low varistor voltage, a large α, and a large surge withstand capacity, and a method for manufacturing the varistor.

課題を解決するための手段 上記の問題点を解決するために本発明では、(Srl−
Jaw)@Ti0i (0,001≦x≦0.300.
0.950≦a<1.ooo)(以下第1成分と呼ぶ)
を90.000〜99.998so1$S Nb1O1
,TazOsJOs、DyzOx、YzO*、LazO
xCeOl、Sagos、Pr60+ zNdxoxの
うち少なくとも1種類以上(以下第2成分と呼ぶ)を0
.001〜5.000molχ、A1.Os、5bzO
s、BaO,BeO,PbO,BzO,、CrzO3F
e、03.CdO,KzO,CaO,Co、03.Cu
O,Cu2O,LirO,l−il−1F、門nJ、M
00z、NazO,NaF、NiO,Rh2O3,5e
02.AgJsio、、 sic、 SrO,Tl t
o3. The2. Til□、 V2O5,Ri p
ot 、 Zn0ZrOz、5nOzのうち少な(とも
1種類基ト(以上第3成分と呼ぶ)をo、oo+〜5.
OOOmolχ含有してなル主成分100!1部ト、M
gTlOs  60.000−32.500鵬O1χ、
 SiO□ 40.000〜67.5m。1χからなる
混合物を1200〜1300°Cで焼成してなる添加物
(以下第4成分と呼ぶ)  0.001〜10.000
重量部とからなる電圧依存性非直線抵抗体磁器組成物を
得ることにより、問題を解決しようとするものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides (Srl-
Jaw) @Ti0i (0,001≦x≦0.300.
0.950≦a<1. ooo) (hereinafter referred to as the first component)
90.000~99.998so1$S Nb1O1
, TazOsJOs, DyzOx, YzO*, LazO
At least one of xCeOl, Sagos, Pr60+ zNdxox (hereinafter referred to as the second component) is 0
.. 001 to 5.000 molχ, A1. Os, 5bzO
s, BaO, BeO, PbO, BzO, CrzO3F
e, 03. CdO, KzO, CaO, Co, 03. Cu
O, Cu2O, LirO, l-il-1F, gate nJ, M
00z, NazO, NaF, NiO, Rh2O3,5e
02. AgJsio,, sic, SrO, Tlt
o3. The2. Til□, V2O5, Ri p
ot, Zn0ZrOz, and 5nOz, each of which has one type of base (hereinafter referred to as the third component) is o, oo+ to 5.
Contains OOOmolχ, main component 100!1 part, M
gTlOs 60.000-32.500 PengO1χ,
SiO□ 40.000-67.5m. Additive obtained by firing a mixture consisting of 1χ at 1200 to 1300°C (hereinafter referred to as the fourth component) 0.001 to 10.000
The present invention attempts to solve this problem by obtaining a voltage-dependent nonlinear resistor ceramic composition consisting of parts by weight.

また、上記主成分と添加物とからなる組成物を1100
’C以上でで焼成したバリスタの製造方法、さらにはそ
の焼成後、還元性雰囲気中で1200℃以上で焼成し、
その後酸化性雰囲気中で900〜1300℃で焼成した
バリスタの製造方法を捷供しようとするものである。
In addition, a composition consisting of the above main ingredients and additives was added to 1100
A method for manufacturing a varistor fired at a temperature of 'C or higher, further comprising firing at a temperature of 1200°C or higher in a reducing atmosphere after firing,
The present invention attempts to provide a method for manufacturing a varistor which is then fired at 900 to 1300°C in an oxidizing atmosphere.

作用 上記の発明において第1成分は主たる成分であり、5r
TiO,のSrの一部をBaで1換することにより粒界
に形成される高抵抗層がサージに対して強くなる。また
、Sr、 BaなどのAサイトの化学量論比とTiなど
のBサイトの化学量論比をTi過剰にすることにより、
粒子内部の抵抗を低くし粒界に形成される誘電体の誘電
率を大きくすることができる。
Effect In the above invention, the first component is the main component, and 5r
By replacing a portion of Sr in TiO with Ba, a high resistance layer formed at grain boundaries becomes strong against surges. In addition, by making the stoichiometric ratio of A sites such as Sr and Ba and the stoichiometric ratio of B sites such as Ti excessive,
It is possible to lower the resistance inside the grains and increase the dielectric constant of the dielectric formed at the grain boundaries.

また、第2成分は主に第1成分の半導体化を促進する金
属酸化物である。さらに、第3成分は誘電率、α、サー
ジ耐量の改善に寄与するものであり、第4成分はバリス
タ電圧の低下、誘電率の改善に有効なものである。特に
、第4成分は融点が1230〜1250°Cと比較的低
いため、融点前後の温度で焼成すると液相となり、その
他の成分の反応を促進すると共に粒子の成長を促進する
。そのため粒界部分に第3成分が偏析しやすくなり、粒
界が高抵抗化されやすくなり、バリスタ機能およびコン
デンサ機能が改善される。また、粒成長が促進されるた
めバリスタ電圧が低くなり、粒径の均一性が向上するた
め特性の安定性が良くなり、特にサージ耐量が改善され
る。
Further, the second component is mainly a metal oxide that promotes the semiconductor formation of the first component. Further, the third component contributes to improving the dielectric constant, α, and surge resistance, and the fourth component is effective in reducing the varistor voltage and improving the dielectric constant. In particular, since the fourth component has a relatively low melting point of 1230 to 1250°C, it becomes a liquid phase when fired at a temperature around the melting point, which promotes the reaction of the other components and the growth of particles. Therefore, the third component is likely to be segregated in the grain boundary portion, and the resistance of the grain boundary is likely to be increased, thereby improving the varistor function and the capacitor function. In addition, since grain growth is promoted, the varistor voltage is lowered, and the uniformity of the grain size is improved, resulting in improved stability of characteristics, and in particular, improved surge resistance.

実施例 以下に実施例を挙げて本発明を具体的に説明する。Example The present invention will be specifically explained below with reference to Examples.

まず、MgTiOs、 5iftを下記の第1表に示す
ように組成比を種々変えて秤量し、ボールミルなどで2
4Hr混合する1次に、乾燥した後、下記の第1表に示
すように温度を種々変えて焼成し、再びボールミルなど
で24H「粉砕した後、乾燥し、第4成分とする。次い
で、第1成分、第2成分、第3成分、第4成分を下記の
第1表に示した組成比になるように秤量し、ボールミル
などで22Hr混合した後、乾燥し、ポリビニルアルコ
ールなどの有機バインダーを10−tχ添加して造粒し
た後、1 (t/cj)のプレス圧力で10φ×lt(
■)の円板状に成形し、10日0°Cで6)1r焼成し
脱バインダーする9次に、第1表に示したように温度と
時間を種々変えて焼成(第1焼成)し、その後還元性雰
囲気、例えば、N、:)lアー9:1のガス中で温度と
時間を種々変えて焼成(第2焼成)する。さらにその後
、酸化性雰囲気中で温度と時間を種々変えて焼成(第3
焼成)する。
First, 5ift of MgTiOs was weighed at various composition ratios as shown in Table 1 below, and 5ift was weighed using a ball mill or the like.
Mix for 4 hours. 1st Next, after drying, the mixture is baked at various temperatures as shown in Table 1 below, and ground again for 24 hours using a ball mill, etc., and then dried to form the fourth component. The first, second, third, and fourth components were weighed to have the composition ratio shown in Table 1 below, mixed for 22 hours using a ball mill, etc., dried, and mixed with an organic binder such as polyvinyl alcohol. After adding 10-tχ and granulating, 10φ×lt(
■) Formed into a disc shape and baked at 0°C for 10 days 6) 1r to remove the binder 9 Next, bake at various temperatures and times as shown in Table 1 (first baking). , and then fired in a reducing atmosphere, for example, a 9:1 ratio of N, :) l, at varying temperatures and times (second firing). Furthermore, after that, firing was performed at various temperatures and times in an oxidizing atmosphere (third stage).
firing).

(以下余白) 上記のようにして得られた第1図および第2図に示す焼
結体1の両平面に外周を残すようにしてAgなとの導電
性ペーストをスクリーン印刷などにより塗布し、610
℃、4m1nで焼成し、電極2.3を形成する6次に、
半田などによりリード線(図示せず)を取り付け、エポ
キシなどの樹脂(図示せず)を塗装する。このようにし
て得られた素子の特性を下記の第2表に示す。
(Hereinafter, blank space) A conductive paste such as Ag is applied by screen printing or the like, leaving the outer periphery on both planes of the sintered body 1 shown in FIGS. 1 and 2 obtained as described above. 610
6 times to form electrode 2.3 by firing at 4 m1n at
A lead wire (not shown) is attached using solder or the like, and a resin such as epoxy (not shown) is applied. The characteristics of the device thus obtained are shown in Table 2 below.

なお、第2表において、誘電率はlに1セでの静電容量
から計夏したものであり、αは a = 1 / log(V IO+sA/ V II
IJ(ただし、■、□、■1゜、Aはl mA、 10
s+Aの電流を流した時に素子の両端にかかる電圧であ
る。)で評価した。また、サージ耐量はパルス性の電流
を印加した後のVl、Aの変化率が±10%以内である
時の最大のパルス性電流値により評価している。
In addition, in Table 2, the dielectric constant is calculated from the capacitance at 1 cell in l, and α is a = 1 / log (V IO + sA / V II
IJ (However, ■, □, ■1゜, A is l mA, 10
This is the voltage applied across the device when a current of s+A flows through it. ) was evaluated. Further, the surge resistance is evaluated based on the maximum pulse current value when the rate of change of Vl and A after applying the pulse current is within ±10%.

(以下余白) 本発明において、第1成分の(Srl−xBaJaTi
03のXの範囲を規定したのは、Xが0.001よりも
小さいと効果を示さず、0.300を趙えると格子欠陥
が発生しにくくなるため半導体化が促進されず、粒界に
Baが単一相として析出するため、組織が不均一になり
、VlmAが高くなりすぎて特性が劣化するためである
。またaの範囲を規定したのは0.950よりも小さく
なるとTi単体の結晶が析出し組織が不均一になるため
特性が劣化し、i、oooを超えると誘電体の誘電率が
小さくなるためである。さらに、第2成分は0.001
molχ未満では効果を示さず、5.OOOmolχを
超えると粒界に偏析して粒界の高抵抗化を抑制し、粒界
に第2相を形成することから特性が劣化するものである
。また、第3成分は0.001■olχ未満では効果を
示さず、5.000 mo1%を趙えると粒界に偏析し
て第2相を形成することから特性が劣化するものである
。そして、第4成分はMgTiOsとSiO□の2成分
系の相図のなかで最も融点の低い領域の物質であり、そ
の範囲外では融点が高くなるものである。また、第4成
分の添加量は、0.0OIffi量部未満では効果を示
さず、io、ooo重置部を超えると粒界の抵抗は高(
なるが粒界の幅が厚くなるため、静電容量が小さくなる
と共にVlmAが高くなり、サージに対して弱くなるも
のである。さらに、第4成分の焼成温度を規定したのは
、低融点の第4成分が合成される温度が1200″Cで
あるためである。そして、第1焼成の温度を規定したの
は、第4成分の融点が1230〜1250℃であるため
、1100℃以上の温度で焼成すると第4成分が液相に
近い状態になって焼結が促進されるためであり、110
0”C未満では第4成分の液相焼結効果がないためであ
る。また、第2焼成の温度を規定したのは、1200″
C未満では第1焼成後の焼結体が十分に還元されず、バ
リスタ特性、コンデンサ特性が共に劣化するためである
(Hereinafter, blank space) In the present invention, the first component (Srl-xBaJaTi
The reason for specifying the range of X in 03 is that if X is smaller than 0.001, there will be no effect, and if This is because Ba precipitates as a single phase, resulting in a non-uniform structure and an excessively high VlmA, deteriorating the properties. The range of a was specified because if it becomes smaller than 0.950, crystals of Ti alone will precipitate and the structure will become non-uniform, resulting in deterioration of characteristics, and if it exceeds i, ooo, the dielectric constant of the dielectric will become small. It is. Furthermore, the second component is 0.001
No effect is shown below molχ; 5. If it exceeds OOOmolχ, it will segregate at the grain boundaries, suppress the increase in resistance of the grain boundaries, and form a second phase at the grain boundaries, resulting in deterioration of properties. Further, the third component exhibits no effect if it is less than 0.001 molχ, and if it exceeds 5.000 mol %, it segregates at grain boundaries and forms a second phase, resulting in deterioration of properties. The fourth component is a substance having the lowest melting point in the phase diagram of the binary system of MgTiOs and SiO□, and has a high melting point outside of this range. Furthermore, if the amount of the fourth component added is less than 0.0 OIffi part, no effect will be shown, and if it exceeds the io, ooo overlapping part, the grain boundary resistance will be high (
However, since the width of the grain boundary becomes thicker, the capacitance becomes smaller and VlmA becomes higher, making the material vulnerable to surges. Furthermore, the firing temperature of the fourth component was specified because the temperature at which the fourth component with a low melting point was synthesized was 1200''C. This is because the melting point of the component is 1230 to 1250°C, so when fired at a temperature of 1100°C or higher, the fourth component becomes close to a liquid phase and sintering is accelerated.
This is because there is no liquid phase sintering effect of the fourth component below 0"C. Also, the temperature of the second firing was specified at 1200"C.
This is because if it is less than C, the sintered body after the first firing will not be sufficiently reduced, and both the varistor characteristics and the capacitor characteristics will deteriorate.

さらに、第3焼成の温度を規定したのは、900℃未満
では粒界の高抵抗化が十分に進まないため、VlmAが
低くなりすぎバリスタ特性が劣化するためであり、13
00°Cを趙えると静電容量が小さくなりすぎコンデン
サ特性が劣化するためである。さらに、第1焼成の雰囲
気は酸化性雰囲気でも還元性雰囲気でも同様の効果があ
ることを確認した。
Furthermore, the temperature for the third firing was specified because if it is less than 900°C, the resistance of the grain boundaries will not increase sufficiently, resulting in VlmA becoming too low and the varistor characteristics deteriorating.
This is because if the temperature exceeds 00°C, the capacitance becomes too small and the capacitor characteristics deteriorate. Furthermore, it was confirmed that the same effect can be obtained whether the atmosphere for the first firing is an oxidizing atmosphere or a reducing atmosphere.

また、本実施例では添加物の組み合わせについては、第
1成分として(Sr+−Jax)、TiO* (0,0
01≦x≦0.300.0.950≦a<1.000)
、第2成分としてNbzOs−丁azOsWOs、Dy
zOs、YtO3+LazOj、Ce0z 、第3成分
トL 7AIzOs、PbO,Crt03.CdO,K
J、CJO3,Cll0Cu、O,MnO,、MoOs
、NiO,AgtO,SiC,TlzO3,ZnO,Z
rO,、第4成分としてMgTi0i、SiO□につい
てのみ示したが、その他に第2成分としてSs!03.
Pr60+++NdtOz、第3成分として5bzOs
、 Bad、 Bed、 BtOx、 Feto3+ 
Ca0LizO,LiF、MgO,NatO,NaF、
RhtO3,5eOz、5iO1,5rOThO1,T
rOt、VtOs、BIzO!+5nO1を用いた組成
の組み合わせでも同様の効果が得られることを確認した
。また、第2成分および第3成分については、それぞれ
2種類以上を所定の範囲で組み合わせて用いても差支え
ないことを併せて確認した。なお、第1成分、第2成分
、第3成分、第4成分を第1焼成するだけでも第4成分
が液相になり、その他の成分の反応を促進すると共に粒
子の成長を促進するため、粒界部分に第3成分が偏析し
やすくなり、粒界が高抵抗化され易くなり、バリスタ機
能およびコンデンサ機能が改善されるという効果がある
があることを確認した。
In addition, in this example, regarding the combination of additives, (Sr+-Jax) and TiO* (0,0
01≦x≦0.300.0.950≦a<1.000)
, NbzOs-DingazOsWOs, Dy as the second component
zOs, YtO3+LazOj, Ce0z, third component L 7AIzOs, PbO, Crt03. CdO,K
J, CJO3, Cll0Cu, O, MnO,, MoOs
, NiO, AgtO, SiC, TlzO3, ZnO, Z
rO,, only MgTiOi and SiO□ are shown as the fourth component, but in addition, Ss! as the second component! 03.
Pr60+++NdtOz, 5bzOs as the third component
, Bad, Bed, BtOx, Feto3+
Ca0LizO, LiF, MgO, NatO, NaF,
RhtO3,5eOz,5iO1,5rOThO1,T
rOt, VtOs, BIzO! It was confirmed that similar effects could be obtained by combining compositions using +5nO1. Furthermore, it was also confirmed that two or more types of the second and third components may be used in combination within a predetermined range. In addition, simply by first firing the first component, second component, third component, and fourth component, the fourth component becomes a liquid phase, which promotes the reaction of the other components and the growth of particles. It was confirmed that the third component is more likely to segregate in the grain boundary portion, the grain boundaries are more likely to have a high resistance, and the varistor function and capacitor function are improved.

発明の効果 以上に示したように本発明によれば、第4成分による液
相焼結効果により、粒子径が大きいため、バリスタ電圧
が低く、誘電率Cおよびαが大きく、粒子径のばらつき
が小さいため、サージ電流が素子に均一に流れ、またB
aによって粒界が効果的に高抵抗化されるため、サージ
耐量が大きくなるという効果が得られる。
Effects of the Invention As described above, according to the present invention, due to the liquid phase sintering effect of the fourth component, the particle size is large, so the varistor voltage is low, the dielectric constants C and α are large, and the variation in particle size is reduced. Because it is small, surge current flows uniformly through the element, and B
Since grain boundaries are effectively made to have a high resistance by a, the effect of increasing surge resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による素子を示す上面図、第2図は本発
明による素子を示す断面図である。 1・・・・・・焼結体、2.3・・・・・・電極。 代理人の氏名 弁理士 粟野重孝 はか1名第 図 第 図
FIG. 1 is a top view showing an element according to the invention, and FIG. 2 is a sectional view showing the element according to the invention. 1... Sintered body, 2.3... Electrode. Name of agent: Patent attorney Shigetaka Awano

Claims (3)

【特許請求の範囲】[Claims] (1)(Sr_1_−_xBa_x)_aTiO_3(
0.001≦x≦0.300,0.950≦a<1.0
00)を90.000〜99.998mol%、Nb_
2O_5,Ta_2O_5,WO_3,Dy_2O_3
,Y_2O_3,La_2O_3,CeO_2,Sm_
2O_3,Pr_6O_1_1,Nd_2O_3のうち
少なくとも1種類以上を0.001〜5.000mol
%,Al_2O_3,Sb_2O_3,BaO,BeO
,PbO,B_2O_3,Cr_2O_3,Fe_2O
_3,CdO,K_2O,CaO,Co_2O_3,C
uO,Cu_2O,Li_2O,LiF,MgO,Mn
O_2,MoO_3,Na_2O,NaF,NiO,R
h_2O_3,SeO_2,Ag_2O,SiO_2,
SiC,SrO,Tl_2O_3,ThO_2,TiO
_2,V_2O_5,Bi_2O_3,ZnO,ZrO
_2,SnO_2のうち少なくとも1種類以上を0.0
01〜5.000mol%含有してなる主成分100重
量部と、MgTiO_3 60.000〜32.500
mol%,SiO_2 40.000〜67.5mol
%からなる混合物を1200℃以上で焼成してなる添加
物0.001〜10.000重量部とからなることを特
徴とする電圧依存性非直線抵抗体磁器組成物。
(1) (Sr_1_−_xBa_x)_aTiO_3(
0.001≦x≦0.300, 0.950≦a<1.0
00) to 90.000 to 99.998 mol%, Nb_
2O_5, Ta_2O_5, WO_3, Dy_2O_3
, Y_2O_3, La_2O_3, CeO_2, Sm_
0.001 to 5.000 mol of at least one of 2O_3, Pr_6O_1_1, Nd_2O_3
%, Al_2O_3, Sb_2O_3, BaO, BeO
, PbO, B_2O_3, Cr_2O_3, Fe_2O
_3, CdO, K_2O, CaO, Co_2O_3, C
uO, Cu_2O, Li_2O, LiF, MgO, Mn
O_2, MoO_3, Na_2O, NaF, NiO, R
h_2O_3, SeO_2, Ag_2O, SiO_2,
SiC, SrO, Tl_2O_3, ThO_2, TiO
_2, V_2O_5, Bi_2O_3, ZnO, ZrO
_2, at least one type of SnO_2 0.0
100 parts by weight of the main component containing 01 to 5.000 mol% and MgTiO_3 60.000 to 32.500
mol%, SiO_2 40.000-67.5 mol
% and 0.001 to 10.000 parts by weight of an additive obtained by firing a mixture consisting of
(2)(Sr_1_−_xBa_x)_aTiO_3(
0.001≦x≦0.300,0.950≦a<1.0
00)を90.000〜99.998mol%、Nb_
2O_5,Ta_2O_5,WO_3,Dy_2O_3
,Y_2O_3,La_2O_3,CeO_2,Sm_
2O_3,Pr_6O_1_1,Nd_2O_3のうち
少なくとも1種類以上を0.001〜5.000mol
%、Al_2O_3,Sb_2O_3,BaO,BeO
,PbO,B_2O_3,Cr_2O_3,Fe_2O
_3,CdO,K_2O,CaO,Co_2O_3,C
uO,Cu_2O,Li_2O,LiF,MgO,Mn
O_2,MnO_2,Na_2O,NaF,NiO,R
h_2O_3,SeO_2,Ag_2O,SiO_2,
SiC,SrO,Ti_2O_3,ThO_2,TiO
_2,V_2O_5,Bi_2O_3,ZnO,ZrO
_2,SnO_2のうち少なくとも1種類以上を0.0
01〜5.000mol%含有してなる主成分100重
量部と、MgTiO_3 60.000〜32.500
mol%,SiO_2 40.000〜67.5mol
%からなる混合物を1200℃以上で焼成してなる添加
物0.001〜10.000重量部とからなる組成物を
、1100℃以上で焼成したことを特徴とするバリスタ
の製造方法。
(2) (Sr_1_−_xBa_x)_aTiO_3(
0.001≦x≦0.300, 0.950≦a<1.0
00) to 90.000 to 99.998 mol%, Nb_
2O_5, Ta_2O_5, WO_3, Dy_2O_3
, Y_2O_3, La_2O_3, CeO_2, Sm_
0.001 to 5.000 mol of at least one of 2O_3, Pr_6O_1_1, Nd_2O_3
%, Al_2O_3, Sb_2O_3, BaO, BeO
, PbO, B_2O_3, Cr_2O_3, Fe_2O
_3, CdO, K_2O, CaO, Co_2O_3, C
uO, Cu_2O, Li_2O, LiF, MgO, Mn
O_2, MnO_2, Na_2O, NaF, NiO, R
h_2O_3, SeO_2, Ag_2O, SiO_2,
SiC, SrO, Ti_2O_3, ThO_2, TiO
_2, V_2O_5, Bi_2O_3, ZnO, ZrO
_2, at least one type of SnO_2 0.0
100 parts by weight of the main component containing 01 to 5.000 mol% and MgTiO_3 60.000 to 32.500
mol%, SiO_2 40.000-67.5 mol
A method for manufacturing a varistor, characterized in that a composition comprising 0.001 to 10.000 parts by weight of an additive is obtained by firing a mixture of 10% and 10% by weight at 1200°C or higher, and a composition comprising 0.001 to 10.000 parts by weight of an additive is fired at 1100°C or higher.
(3)(Sr_1_−_xBa_x)_aTiO_3(
0.001≦x≦0.300,0.950≦a<1.0
00)を90.000〜99.998mol%、Nb_
2O_5,Ta_2O_5,WO_3,Dy_2O_3
,Y_2O_3,La_2O_3,CeO_2,Sm_
2O_3,Pr_6O_1_1,Nd_2O_3のうち
少なくとも1種類以上を0.001〜5.000mol
%、Al_2O_3,Sb_2O_3,BaO,BeO
,PbO,B_2O_3,Cr_2O_3,Fe_2O
_3,CdO,K_2O,CaO,Co_2O_3,C
uO,Cu_2O,Li_2O,LiF,MgO,Mn
O_2,MoO_3,Na_2O,NaF,NiO,R
h_2O_3,SeO_2,Ag_2O,SiO_2,
SiC,SrO,Tl_2O_3,ThO_2,TiO
_2,V_2O_5,Bi_2O_3,ZnO,ZrO
_2,SnO_2のうち少なくとも1種類以上を0.0
01〜5.000mol%含有してなる主成分100重
量部と、MgTiO_3 60.000〜32.500
mol%,SiO_2 40.000〜67.5mol
%からなる混合物を1200℃以上で焼成してなる添加
物0.001〜10.000重量部とからなる組成物を
、1100℃以上で焼成した後、還元性雰囲気中で12
00℃以上で焼成し、その後酸化性雰囲気中で900〜
1300℃で焼成したことを特徴とするバリスタの製造
方法。
(3) (Sr_1_−_xBa_x)_aTiO_3(
0.001≦x≦0.300, 0.950≦a<1.0
00) to 90.000 to 99.998 mol%, Nb_
2O_5, Ta_2O_5, WO_3, Dy_2O_3
, Y_2O_3, La_2O_3, CeO_2, Sm_
0.001 to 5.000 mol of at least one of 2O_3, Pr_6O_1_1, Nd_2O_3
%, Al_2O_3, Sb_2O_3, BaO, BeO
, PbO, B_2O_3, Cr_2O_3, Fe_2O
_3, CdO, K_2O, CaO, Co_2O_3, C
uO, Cu_2O, Li_2O, LiF, MgO, Mn
O_2, MoO_3, Na_2O, NaF, NiO, R
h_2O_3, SeO_2, Ag_2O, SiO_2,
SiC, SrO, Tl_2O_3, ThO_2, TiO
_2, V_2O_5, Bi_2O_3, ZnO, ZrO
_2, at least one type of SnO_2 0.0
100 parts by weight of the main component containing 01 to 5.000 mol% and MgTiO_3 60.000 to 32.500
mol%, SiO_2 40.000-67.5 mol
A composition consisting of 0.001 to 10.000 parts by weight of an additive obtained by firing a mixture consisting of
Calcinate at 00℃ or higher, then heat to 900℃ or higher in an oxidizing atmosphere.
A method for manufacturing a varistor, characterized by firing at 1300°C.
JP2151991A 1990-06-11 1990-06-11 Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor Pending JPH0443606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2151991A JPH0443606A (en) 1990-06-11 1990-06-11 Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2151991A JPH0443606A (en) 1990-06-11 1990-06-11 Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor

Publications (1)

Publication Number Publication Date
JPH0443606A true JPH0443606A (en) 1992-02-13

Family

ID=15530675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2151991A Pending JPH0443606A (en) 1990-06-11 1990-06-11 Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor

Country Status (1)

Country Link
JP (1) JPH0443606A (en)

Similar Documents

Publication Publication Date Title
JP2789714B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2800268B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2830322B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2727693B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH0442855A (en) Porcelain composition and its production
JP2808775B2 (en) Varistor manufacturing method
JPH0443606A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JP2830321B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2789675B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2808777B2 (en) Varistor manufacturing method
JP2822612B2 (en) Varistor manufacturing method
JPH0443602A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH038766A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JP2789676B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2808778B2 (en) Varistor manufacturing method
JPH038765A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JP2789674B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH038767A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JPH0443605A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH0443601A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JPH0443610A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor
JP2555791B2 (en) Porcelain composition and method for producing the same
JPH03237058A (en) Porcerain composition for voltage dependent nonlinear resistor and production of varistor
JP2555790B2 (en) Porcelain composition and method for producing the same
JPH0443609A (en) Manufacture of voltage-dependent nonlinear resistor ceramic composition and varistor