JPS63215005A - Voltage-dependent nonlinear resistor porcelain compound - Google Patents

Voltage-dependent nonlinear resistor porcelain compound

Info

Publication number
JPS63215005A
JPS63215005A JP62049235A JP4923587A JPS63215005A JP S63215005 A JPS63215005 A JP S63215005A JP 62049235 A JP62049235 A JP 62049235A JP 4923587 A JP4923587 A JP 4923587A JP S63215005 A JPS63215005 A JP S63215005A
Authority
JP
Japan
Prior art keywords
voltage
mol
nonlinear resistor
component
dependent nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62049235A
Other languages
Japanese (ja)
Inventor
野井 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62049235A priority Critical patent/JPS63215005A/en
Publication of JPS63215005A publication Critical patent/JPS63215005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Thermistors And Varistors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気機器、電子機器で発生する異常高電圧、ノ
イズ、静電気から半導体及び回路を保護するためのコン
デンサ特性とバリスタ特性を有する電圧依存性非直線抵
抗体磁器組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a voltage-independent non-voltage device having capacitor characteristics and varistor characteristics for protecting semiconductors and circuits from abnormal high voltages, noise, and static electricity generated in electrical equipment and electronic equipment. The present invention relates to a linear resistor ceramic composition.

従来の技術 従来、各種電気機器、電子機器における異常高電圧の吸
収、ノイズの除去、火花消去、静電気対策のために電圧
依存性非直線抵抗特性を有するSiCバリスタや、Zn
O系バリスタなどが使用されていた。このようなバリス
タの電圧−電流特性は近似的に次式のように表すことが
できる。
Conventional technology Conventionally, SiC varistors and Zn varistors, which have voltage-dependent nonlinear resistance characteristics, have been used to absorb abnormally high voltages, remove noise, eliminate sparks, and counter static electricity in various electrical and electronic devices.
O-type varistors were used. The voltage-current characteristics of such a varistor can be approximately expressed as in the following equation.

I=(V/C)a ここで、Iは電流、■は電圧、Cはバリスタ固有の定数
、αは電圧非直線指数である。
I=(V/C)a Here, I is current, ■ is voltage, C is a constant specific to the varistor, and α is a voltage nonlinear index.

SiCバリスタのαは2〜7程度、ZnO系バリスタで
はαが50にもおよぶものがある。このようなバリスタ
は比較的高い電圧の吸収には優れた性能を有しているが
、誘電率が低(、固有の静電容量が小さいため、バリス
タ電圧以下の比較的低い電圧の吸収に対してはほとんど
効果を示さず、また誘電損失tanδが5〜10%と大
きい。
The α of SiC varistors is about 2 to 7, and the α of some ZnO-based varistors is as high as 50. Although such varistors have excellent performance in absorbing relatively high voltages, they have a low dielectric constant (and low inherent capacitance), so they are difficult to absorb relatively low voltages below the varistor voltage. However, the dielectric loss tan δ is as large as 5 to 10%.

一方、これらの低電圧のノイズなどの除去には見かけの
誘電率が5X10’程度で、tanδが1%前後の半導
体コンデンサが利用されている。しがし、このような半
導体コンデンサはサージなどによりある限度以上の電圧
または電流が印加されると、破壊したりしてコンデンサ
としての機能を果たさなくなったりする。
On the other hand, semiconductor capacitors with an apparent dielectric constant of about 5×10' and a tan δ of about 1% are used to remove these low voltage noises. However, if a voltage or current exceeding a certain limit is applied to such a semiconductor capacitor due to a surge or the like, it may break down and no longer function as a capacitor.

そこで最近になって、5rTi03を主成分とし、バリ
スフ特性とコンデンサ特性の両方の機能を有するものが
開発され、マイクロコンピュータなどの電子機器におけ
るIC,LSIなどの半導体素子の保護に使用されてい
る。
Therefore, recently, a material containing 5rTi03 as a main component and having both the functions of a variable thickness characteristic and a capacitor characteristic has been developed and is used to protect semiconductor elements such as ICs and LSIs in electronic devices such as microcomputers.

発明が解決しようとする問題点 上記の5rTi(hを主成分とするバリスタはZnO系
バリスタに比べ誘電率が約10倍と大きいが、電圧非直
線指数(α)やサージ耐量が小さく、粒内抵抗が高いた
め、高周波のノイズなどを十分に吸収できないといった
欠点を有していた。
Problems to be Solved by the Invention Although the above-mentioned 5rTi (h)-based varistors have a dielectric constant about 10 times higher than ZnO-based varistors, their voltage nonlinearity index (α) and surge resistance are small, and Because of its high resistance, it had the disadvantage of not being able to absorb high-frequency noise sufficiently.

そこで本発明では、誘電率が大きくαが大きいと共に、
サージ耐量が大きぐ、粒内抵抗が低い電圧依存性非直線
抵抗体磁器組成物を提供することを目的とする。
Therefore, in the present invention, in addition to having a large dielectric constant and a large α,
It is an object of the present invention to provide a voltage-dependent nonlinear resistor ceramic composition that has a large surge resistance and a low intragranular resistance.

問題点を解決するための手段 上記の問題点を解決するために本発明では、5rTiO
s、 CaxSr+−xTiO2(2)SrTiO3、
CaxSr1−xTiO3(0.001≦x≦0.5)
Means for Solving the Problems In order to solve the above problems, the present invention uses 5rTiO
s, CaxSr+-xTiO2(2)SrTiO3,
CaxSr1-xTiO3 (0.001≦x≦0.5)
.

BaySr+−yTio3(2)SrTiO3、Cax
Sr1−xTiO3(0.0旧≦y≦0.5)。
BaySr+-yTio3(2)SrTiO3, Cax
Sr1-xTiO3 (0.0 old≦y≦0.5).

Mg25rl−、Ti(h(2)SrTiO3、Cax
Sr1−xTiO3(0.001≦z≦0.5)(以下
第一成分と呼ぶ)のうち少な(とも1種類以上を90.
000=99.998mol*、 Nb20B 、 T
a205 、 WO3。
Mg25rl-, Ti(h(2)SrTiO3, Cax
Among Sr1-xTiO3 (0.001≦z≦0.5) (hereinafter referred to as the first component), one or more types are 90.
000=99.998mol*, Nb20B, T
a205, WO3.

口yxOs、  Y2O3,La2.3.  Cen2
. 51203.  Pre(L+。
Mouth yxOs, Y2O3, La2.3. Cen2
.. 51203. Pre(L+.

Nd203(以下第二成分と呼ぶ)のうち少なくとも1
種類以上を0.001=5.0OOs+olK、 Sc
N (以下第三成分と呼ぶ)を0.001〜5.000
so目含有してなるか、または第一成分を80.000
−99.997mo目、第二成分を0.001mo1$
、第三成分を0.001−5.000mo目、Al2O
3,5b203. Bad、 Bed、 PbO,B2
O3,Cent。
At least 1 of Nd203 (hereinafter referred to as the second component)
More than type 0.001=5.0OOs+olK, Sc
N (hereinafter referred to as the third component) is 0.001 to 5.000
or contains 80.000 of the first component.
-99.997 moth, second component 0.001 mo1$
, the third component is 0.001-5.000 mo, Al2O
3,5b203. Bad, Bed, PbO, B2
O3, Cent.

Cr2O5,Fe2O3,CdO,K2O,Cab、 
CO2O3,Cub。
Cr2O5, Fe2O3, CdO, K2O, Cab,
CO2O3, Cub.

Cu2O,Li2O,MgO,Mn0g、 Mo53.
 Na2O,Nip。
Cu2O, Li2O, MgO, Mn0g, Mo53.
Na2O, Nip.

Rh2o3+ 5e02* Ag2O,5i02r S
tC+ SrO、Tl2O+Th02 、 TiO2、
V2O6、Bi2O3、WO3,ZnO,ZrO2、5
n02(以下第四成分と呼ぶ)のうち少な(とも1種類
以上を0.00)(2)SrTiO3、CaxSr1−
xTiO3(0.OOO*ol零含有してなる電圧依存
性非直線抵抗体磁器組成物を得ることにより、問題を解
決しようとするものである。
Rh2o3+ 5e02* Ag2O,5i02r S
tC+ SrO, Tl2O+Th02, TiO2,
V2O6, Bi2O3, WO3, ZnO, ZrO2, 5
A small amount of n02 (hereinafter referred to as the fourth component) (0.00 for one or more types) (2) SrTiO3, CaxSr1-
The present invention attempts to solve this problem by obtaining a voltage-dependent nonlinear resistor ceramic composition containing xTiO3 (0.00*ol).

作用 上記発明において第一成分は主成分であり、第二成分は
主に半導体化を促進する金属酸化物である。また、第三
成分は誘電率及び粒内抵抗の改善に寄与するものであり
、第四成分は誘電率、α。
Function: In the above invention, the first component is the main component, and the second component is mainly a metal oxide that promotes semiconductor formation. Further, the third component contributes to improving the dielectric constant and intragranular resistance, and the fourth component is the dielectric constant, α.

サージ耐量の改善に寄与する。特に、第三成分は素子全
体に均一に分散し、添加時点では窒化物であるが、還元
焼成後に空気中で熱処理することにより酸化物に変わり
、電子を放出する反応がおこる。すなわち、粒界部分で
は拡散してきた多量の酸素により酸化物が形成され、放
出された電子は酸素イオンに捕獲され粒界は絶縁化され
る。一方、粒子内部は酸素の拡散が起こりに(いため大
部分のScNが窒化物のままで存在し、仮に粒子内部ま
で酸素が拡散してきても原子価が変わることによって電
子を放出するため、酸化による高抵抗化を抑制する作用
をする。このため粒子内部を低抵抗にすることができる
Contributes to improving surge resistance. In particular, the third component is uniformly dispersed throughout the device, and is a nitride at the time of addition, but when heat treated in air after reduction firing, it changes to an oxide, and a reaction occurs that releases electrons. That is, oxides are formed at the grain boundaries due to the large amount of oxygen that has diffused, and the emitted electrons are captured by oxygen ions, making the grain boundaries insulating. On the other hand, most of the ScN exists as a nitride because oxygen diffusion occurs inside the particles, and even if oxygen diffuses to the inside of the particles, it will change its valence and release electrons, resulting in oxidation. It has the effect of suppressing high resistance.Therefore, the internal resistance of the particles can be made low.

実施例 以下に本発明の実施例を上げて具体的に説明する。Example EXAMPLES The present invention will be described in detail below using examples.

まず、5rCO3r CaCO3,BaCO3,MgC
O5、TiOxを下記の第1表の組成比になるように秤
量し、ボールミルなどで40時間混合し、乾燥した後、
1000℃で15時間仮焼する。こうして得られた仮焼
物にZrNと添加物を下記の第2表の組成比になるよう
に秤量し、ボールミルなどで24時間混合し、乾燥した
後、ポリビニルアルコールなどのバインダーを10wt
零添加して造粒した後、1 (t/c+j )のプレス
圧力で10φXlt(m)の円板状に成形する。その後
、空気中で1100℃、1時間仮焼脱バインダーを行っ
た後、N2: H2=9 : 1の混合ガス中で152
0℃、3時間焼成する。さらに、空気中で1100℃、
12時間焼成し、このようにして得られた第1図、第2
図に示す焼結体1の開平面に外周を残すようにしてAg
などの導電性ペーストをスクリーン印刷などにより塗布
し、600℃、5分間焼成し、電極2,3を形成する。
First, 5rCO3r CaCO3, BaCO3, MgC
Weigh O5 and TiOx so that they have the composition ratio shown in Table 1 below, mix them in a ball mill etc. for 40 hours, dry them, and then
Calcinate at 1000°C for 15 hours. ZrN and additives were weighed to the thus obtained calcined product so as to have the composition ratio shown in Table 2 below, mixed in a ball mill etc. for 24 hours, dried, and then 10wt of a binder such as polyvinyl alcohol was added.
After adding zero and granulating, it is molded into a disk shape of 10φXlt (m) with a press pressure of 1 (t/c+j). After that, the binder was removed by calcination in air at 1100°C for 1 hour, and then 152
Bake at 0°C for 3 hours. Furthermore, at 1100℃ in air,
After baking for 12 hours, the thus obtained Fig. 1 and Fig. 2
The Ag
A conductive paste such as the above is applied by screen printing or the like and baked at 600° C. for 5 minutes to form electrodes 2 and 3.

次に、半田などによりリード線(図示せず)を取付け、
エポキシなどの樹脂(図示せず〉を塗装する。このよう
にして得られた素子の特性を以下の第2表に示す。なお
、誘電率はIKHzでの静電容量から計算したものであ
り、粒内抵抗(ESR)は共振周波数でのインピーダン
スにより評価し、αは a = 1 / Log (V 1011A/ V I
IIIA )(ただし、VIOIIAI V+m^Lt
ソれぞれ10IIA。
Next, attach the lead wire (not shown) with solder etc.
A resin such as epoxy (not shown) is applied.The characteristics of the device thus obtained are shown in Table 2 below.The dielectric constant is calculated from the capacitance at IKHz. The intragranular resistance (ESR) is evaluated by the impedance at the resonant frequency, and α is a = 1/Log (V 1011A/VI
IIIA) (However, VIOIIAI V+m^Lt
10 IIA each.

1n+Aの電流を流した時に素子の両端にかかる電圧で
ある。)で評価した。また、サージ耐量はパルス性の電
流を印加した後のVImAの変化が±10窓以内である
時の最大のパルス性電流値により評価している。
This is the voltage applied across the device when a current of 1n+A flows through it. ) was evaluated. Further, the surge resistance is evaluated based on the maximum pulse current value when the change in VImA after applying the pulse current is within a ±10 window.

(以  下  余  白  ) また、第一成分の5rTi(h。(Hereafter, the rest is white) In addition, the first component 5rTi (h.

Cax5rI−xTiO2(2)SrTiO3、Cax
Sr1−xTiO3(0.001≦x≦0.5)。
Cax5rI-xTiO2(2)SrTiO3, Cax
Sr1-xTiO3 (0.001≦x≦0.5).

BaySr t−yTiO3(0.001≦y≦0.5
)。
BaySr t-yTiO3 (0.001≦y≦0.5
).

Mg、5rl−、Ti03(2)SrTiO3、Cax
Sr1−xTiO3(0.001≦z≦0.5)のx、
y、zの範囲を規定したのは、0.0(11未満では効
果を示さず、0.5を越えると粒成長及び半導体化が抑
制され特性が劣化するためである。また、第二成分は0
.001mol$未満では効果を示さず、5.000m
o1gを越えると粒界に偏析して粒界の高抵抗化を抑制
し、粒界に第二相を形成するため特性が劣化するもので
ある。さらに、第三成分は0.001moI!未満では
効果を示さず、5.0001101零を越えると粒界に
第二相を形成するため特性が劣化するものである。そし
て、第四成分は0.001io1*未満では効果を示さ
ず、5.000mol*を越えると粒界に第二相を形成
し粒成長が抑制され、粒界の抵抗は高(なるが粒界の幅
が厚くなるため、静電容量が小さくなり、バリスタ電圧
が高(なり、サージに対して弱(なることによる。
Mg, 5rl-, Ti03(2)SrTiO3, Cax
x of Sr1-xTiO3 (0.001≦z≦0.5),
The reason for specifying the range of y and z is that if it is less than 0.0 (11), no effect will be shown, and if it exceeds 0.5, grain growth and semiconducting will be suppressed and the characteristics will deteriorate. is 0
.. No effect is shown below 001mol$, 5.000m
If it exceeds o1g, it will segregate at the grain boundaries, suppress the increase in resistance of the grain boundaries, and form a second phase at the grain boundaries, resulting in deterioration of properties. Furthermore, the third component is 0.001 moI! If it is less than 5.0001101, no effect will be exhibited, and if it exceeds 5.0001101, a second phase will be formed at the grain boundaries, resulting in deterioration of properties. When the fourth component is less than 0.001 io1*, it does not show any effect, and when it exceeds 5.000 mol*, it forms a second phase at the grain boundaries, suppressing grain growth, and the resistance of the grain boundaries becomes high (although the grain boundary As the width of the varistor becomes thicker, the capacitance becomes smaller, the varistor voltage becomes high, and the varistor becomes weak against surges.

なお、本実施例では一部の添加物の組み合わせについて
のみ示したが、その他の添加物の組み合わせについても
同様の効果があることを確認した。
In this example, only some combinations of additives were shown, but it was confirmed that other combinations of additives had similar effects.

発明の効果 以上に示したように本発明によれば、誘電率。Effect of the invention As shown above, according to the present invention, the dielectric constant.

αが大きく、粒内抵抗が小さいため、サージ電流が印加
された後の発熱が少ないため、素子の劣化が小さく、サ
ージ耐量が大きくなるという効果が得られる。
Since α is large and the intragranular resistance is small, less heat is generated after a surge current is applied, resulting in less deterioration of the element and increased surge resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による素子を示す上面図、第2図は本発
明による素子の断面図である。 1・・・・・・焼結体、2,3・・・・・・電極。 代理人の氏名 弁理士 中尾敏男 ほか1名1−焼紹体 2.3−1   極 第1図 第2図
FIG. 1 is a top view showing an element according to the invention, and FIG. 2 is a sectional view of the element according to the invention. 1... Sintered body, 2, 3... Electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person 1-Chart 2.3-1 Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)SrTiO_3、Ca_xSr_1_−_xTi
O_3(0.001≦x≦0.5)、Ba_ySr_1
_−_yTiO_3(0.001≦y≦0.5)、Mg
_zSn_1_−_zTiO_3(0.001≦z≦0
.5)のうち少なくとも1種類以上を90.000〜9
9.998mol%、Nb_2O_5、Ta_2O_5
、WO_3、Dy_2O_3、Y_2O_3、La_2
O_3、CeO_2、Sm_2O_3、Pr_6O_1
_1、Nd_2O_3のうち少なくとも1種類以上を0
.001〜5.000mol%、ScNを0.001〜
5.000mol%含有してなる電圧依存性非直線抵抗
体磁器組成物。
(1) SrTiO_3, Ca_xSr_1_-_xTi
O_3 (0.001≦x≦0.5), Ba_ySr_1
____yTiO_3 (0.001≦y≦0.5), Mg
_zSn_1_−_zTiO_3 (0.001≦z≦0
.. 90.000 to 9 for at least one of the following
9.998 mol%, Nb_2O_5, Ta_2O_5
, WO_3, Dy_2O_3, Y_2O_3, La_2
O_3, CeO_2, Sm_2O_3, Pr_6O_1
At least one of _1, Nd_2O_3 is 0
.. 001-5.000 mol%, ScN 0.001-5.000 mol%
A voltage-dependent nonlinear resistor ceramic composition containing 5.000 mol%.
(2)SrTiO_3、Ca_xSr_1_−_xTi
O_3(0.001≦x≦0.5)、Ba_ySr_1
_−_yTiO_3(0.001≦y≦0.5)、Mg
_zSr_1_−_zTiO_3(0.001≦z≦0
.5)のうち少なくとも1種類以上を80.000〜9
9.997mol%、Nb_2O_5、Ta_2O_5
、WO_3、Dy_2O_3、Y_2O_3、La_2
O_3、CeO_2、Sm_2O_3、Pr_6O_1
_1、Nd_2O_3のうち少なくとも1種類以上を0
.001〜5.000mol%、ScNを0.001〜
5.000mol%、Al_2O_3、Sb_2O_3
、BaO、BeO、PbO、B_2O_3、CeO_2
、Cr_2O_3、Fe_2O_3、CdO、K_2O
、CaO、Co_2O_3、CuO、Cu_2O、Li
_2O、MgO、MnO_2、MoO_3、Na_2O
、NiO、Rh_2O_3、SeO_2、Ag_2O、
SiO_2、SiC、SrO、Ti_2O、ThO_2
、TiO_2、V_2O_5、Bi_2O_3、WO_
3、ZnO、ZrO_2、SnO_2のうち少なくとも
1種類以上を0.001〜10.000mol%含有し
てなる電圧依存性非直線抵抗体磁器組成物。
(2) SrTiO_3, Ca_xSr_1_-_xTi
O_3 (0.001≦x≦0.5), Ba_ySr_1
____yTiO_3 (0.001≦y≦0.5), Mg
_zSr_1_−_zTiO_3 (0.001≦z≦0
.. 80.000-9 for at least one of the following
9.997 mol%, Nb_2O_5, Ta_2O_5
, WO_3, Dy_2O_3, Y_2O_3, La_2
O_3, CeO_2, Sm_2O_3, Pr_6O_1
At least one of _1, Nd_2O_3 is 0
.. 001-5.000 mol%, ScN 0.001-5.000 mol%
5.000 mol%, Al_2O_3, Sb_2O_3
, BaO, BeO, PbO, B_2O_3, CeO_2
, Cr_2O_3, Fe_2O_3, CdO, K_2O
, CaO, Co_2O_3, CuO, Cu_2O, Li
_2O, MgO, MnO_2, MoO_3, Na_2O
, NiO, Rh_2O_3, SeO_2, Ag_2O,
SiO_2, SiC, SrO, Ti_2O, ThO_2
, TiO_2, V_2O_5, Bi_2O_3, WO_
3. A voltage-dependent nonlinear resistor ceramic composition containing 0.001 to 10.000 mol% of at least one of ZnO, ZrO_2, and SnO_2.
JP62049235A 1987-03-04 1987-03-04 Voltage-dependent nonlinear resistor porcelain compound Pending JPS63215005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62049235A JPS63215005A (en) 1987-03-04 1987-03-04 Voltage-dependent nonlinear resistor porcelain compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62049235A JPS63215005A (en) 1987-03-04 1987-03-04 Voltage-dependent nonlinear resistor porcelain compound

Publications (1)

Publication Number Publication Date
JPS63215005A true JPS63215005A (en) 1988-09-07

Family

ID=12825228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62049235A Pending JPS63215005A (en) 1987-03-04 1987-03-04 Voltage-dependent nonlinear resistor porcelain compound

Country Status (1)

Country Link
JP (1) JPS63215005A (en)

Similar Documents

Publication Publication Date Title
JP2830322B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH03109261A (en) Production of porcelain composition for nonlinear resistor having voltage dependency and varistor
JP2727693B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPS63215005A (en) Voltage-dependent nonlinear resistor porcelain compound
JP2830321B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPS63215001A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215019A (en) Voltage-dependent nonlinear resistor porcelain compound
JPH038760A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JPS63215017A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215006A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS62179103A (en) Voltage-dependant nonlinear resistance porcelain compound
JPS63215003A (en) Voltage-dependent nonlinear resistor porcelain compound
JP2548277B2 (en) Voltage-dependent nonlinear resistor porcelain composition
JP2548278B2 (en) Voltage-dependent nonlinear resistor porcelain composition
JPH01226120A (en) Voltage-dependent non-linear resistor ceramic composition
JPS63215012A (en) Voltage-dependent nonlinear resistor porcelain compound
JPH01175702A (en) Voltage-dependent non-linear resistor having porcelain composition
JPS63215015A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215018A (en) Voltage-dependent nonlinear resistor porcelain compound
JP2548279B2 (en) Voltage-dependent nonlinear resistor porcelain composition
JPS63215014A (en) Voltage-dependent nonlinear resistor porcelain compound
JPH01226119A (en) Voltage-dependent non-linear resistor ceramic composition
JPS63215008A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215004A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215009A (en) Voltage-dependent nonlinear resistor porcelain compound