JPH0327683A - Drive method for solid-state image pickup device - Google Patents

Drive method for solid-state image pickup device

Info

Publication number
JPH0327683A
JPH0327683A JP1161286A JP16128689A JPH0327683A JP H0327683 A JPH0327683 A JP H0327683A JP 1161286 A JP1161286 A JP 1161286A JP 16128689 A JP16128689 A JP 16128689A JP H0327683 A JPH0327683 A JP H0327683A
Authority
JP
Japan
Prior art keywords
region
shielding film
charge transfer
photoelectric conversion
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1161286A
Other languages
Japanese (ja)
Inventor
Yukio Taniji
谷治 行夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1161286A priority Critical patent/JPH0327683A/en
Publication of JPH0327683A publication Critical patent/JPH0327683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To reduce after image considerably by applying a pulse with a polarity expanding a depletion layer of a photoelectric conversion section to a conductive light shielding film in the case of reading the electric charge through the application of a read pulse to a read gate electrode. CONSTITUTION:At light shielding film application clock phiS having a negative polarity pulse generated synchronously with a period when a readout clock phiV applied to a read gate electrode is at a high level voltage VH is applied to a conductive light shielding film shielding the light to a vertical transfer register. The signal charge stored in a photo diode region 3 at a time to is read to a vertical transfer register area 4 when the voltage vH is applied to the readout gate electrode at a time t1 and a pulse phiS is applied to the light shielding film at the same time. Thus, the potential of the region 3 is changed as shown in solid lines from the substantial potential shown in dotted lines, thereby promoting the readout of the charge. Thus, the charge left in the region 3 at a time t2 is very small..

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電荷結合素子型の固体撮像素子の駆動方法に
関し、特に、固体撮像素子の残像現象を低減せしめた駆
動方法に関する. [従来の技術コ インターライン転送型の固体撮像素子は、第6図に示す
ようなセル構造となっている.第6図において、1はp
型半導体基板、2はp+型のチャネルストップ、3は、
半導体基板lとともにフォトダイオードを構成する、n
型拡散領域であるフォトダイオード領域、4は、フォト
ダイオード領域3内に蓄積された信号電荷の転送を受け
この電荷の転送領域となる垂直転送レジスタ領域、5は
半導体基板表面を覆う酸化膜、6は読み出しゲート電極
を兼ねる垂直転送レジスタ1IX8ii、7は、フォト
ダイオード領域3以外の部分を遮光するAJ等の導電性
材料で形成された遮光膜、8は、フォトダイオード領域
3と垂直転送レジスタ領域4との間にあって信号電荷の
読み出しをコントロールする領域となる読み出しゲート
領域である.この固体撮像素子に対する従来の駆動方法
は、垂直転送レジスタ電極6に、第7図に示す読み出し
夕ロツクφVを印加するものであった.この読み出し動
作の各時点におけるポテンシャル図を第8図(a)〜(
c)に示す.時刻t2oではフォトダイオード領域3は
第8図(a)に示すように、電荷蓄積状態にあるが、時
刻t21となって読み出しクロックφ■がハイレベルV
Hとなると、電荷は、フォトダイオード領域3から読み
出しゲート領域8を介して垂直転送レジスタ領域4へ読
み出?れる.第8図(c)は、時刻t22となって読み
出し動作が終了した状態を示している.[発明が解決し
ようとする課題] 上述した従来の駆動方法では、時刻t2■において、そ
れ迄にフォトダイオード領域3内に蓄積されていた信号
電荷は、垂直転送レジスタ領域4へ読み出されるが、電
荷がほとんど読み出された状態では、読み出しゲート領
域8からフォトダイオード領域3への電界は非常に弱く
なり、有限時間では電荷の読み出しが完全には行われず
、読み出し動作が終了した時点t22でも第8図(c)
に示すように、フォトダイオード領域3内に電荷がとり
残されてしまう.従って、この残された電荷が次回の読
み出しで残像戒分として観測されることになる. この残像対策としては、フォトダイオード領域3を構成
する拡散層の不純物濃度を低くすることによりフォトダ
イオード領域を完全空乏化させ、読み出し時においてフ
ォトダイオード領域3と読み出しゲート8に電位差をつ
ける方法や、読み出しクロックパルスの電圧(第7図の
VH)を増大させ、前述の方法と同様の効果を生じさせ
る方法等が考えられる.しかしながら、フォトダイオー
ド領域の不純物濃度を低下させると、その領域内におけ
る最大蓄積可能電荷が減少する.而して、現在、固体撮
像素子においては、解像度を向上させるために画素を増
加させる傾向にあり、フォトダイオード面積は次第に減
少させられており、フォトダイオードの蓄積可能な電荷
が減少させられつつあるので、フォトダイオードの蓄積
可能電荷量を一N減少させる前者の方法を採用すること
はできない.また、最近の固体撮像素子の微細化に伴い
、固体撮像素子の耐圧はますます低下せしめられる傾向
にあるので、その駆動クロックの振幅も低く抑えること
が求められている.従って、後者の手段を採用すること
は、上記の技術動向に反することになる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for driving a charge-coupled device type solid-state image sensor, and particularly to a method for driving a solid-state image sensor that reduces the afterimage phenomenon. [Conventional technology A coin-interline transfer type solid-state image sensor has a cell structure as shown in FIG. In Figure 6, 1 is p
type semiconductor substrate, 2 is a p+ type channel stop, 3 is
constitutes a photodiode together with the semiconductor substrate l, n
4 is a photodiode region which is a type diffusion region; 4 is a vertical transfer register region which receives signal charges accumulated in the photodiode region 3 and serves as a charge transfer region; 5 is an oxide film covering the surface of the semiconductor substrate; denotes a vertical transfer register 1IX8ii which also serves as a readout gate electrode, 7 denotes a light-shielding film made of a conductive material such as AJ that shields parts other than the photodiode region 3, and 8 denotes a photodiode region 3 and a vertical transfer register region 4. This is the readout gate region that is located between the two and controls the readout of signal charges. The conventional driving method for this solid-state image sensor is to apply a readout clock φV shown in FIG. 7 to the vertical transfer register electrode 6. The potential diagrams at each point in time of this read operation are shown in FIGS.
Shown in c). At time t2o, the photodiode region 3 is in a charge accumulation state as shown in FIG.
When it becomes H, the charge is read out from the photodiode region 3 to the vertical transfer register region 4 via the readout gate region 8? It will be done. FIG. 8(c) shows a state in which the read operation is completed at time t22. [Problems to be Solved by the Invention] In the conventional driving method described above, at time t2■, the signal charges accumulated in the photodiode region 3 until then are read out to the vertical transfer register region 4; When most of the charges are read out, the electric field from the readout gate region 8 to the photodiode region 3 becomes very weak, and the charge is not completely read out in a finite time. Figure (c)
As shown in the figure, charges are left behind in the photodiode region 3. Therefore, this remaining charge will be observed as an afterimage in the next readout. As a countermeasure against this afterimage, there is a method of completely depleting the photodiode region by lowering the impurity concentration of the diffusion layer constituting the photodiode region 3, and applying a potential difference between the photodiode region 3 and the readout gate 8 during readout. A method can be considered in which the voltage of the read clock pulse (VH in FIG. 7) is increased to produce an effect similar to the method described above. However, reducing the impurity concentration in the photodiode region reduces the maximum charge that can be stored in that region. Currently, in solid-state imaging devices, there is a trend to increase the number of pixels in order to improve resolution, and the area of the photodiode is gradually decreasing, which is reducing the amount of charge that can be stored in the photodiode. Therefore, the former method of reducing the amount of charge that can be stored in the photodiode by 1N cannot be adopted. In addition, with the recent miniaturization of solid-state image sensors, the withstand voltage of solid-state image sensors tends to decrease further, so it is necessary to keep the amplitude of the driving clock low. Therefore, adopting the latter method is contrary to the above-mentioned technical trend.

[課題を解決するための手段] 本発明は、光電変換部と、該光電変換部で発生した光電
変換電荷を転送する転送レジスタ部と、前記光電変換部
から電荷を転送レジスタ部へ読み出すための読み出しゲ
ート部と、半導体基板上に絶縁膜を介して形戒された光
電変換部以外の部分を遮光する導電性遮光膜とを有する
固体撮像素子の駆動方法であって、前記読み出しゲート
部の電極に読み出しパルスを印加して電荷読み出し動作
を行う際に、前記導電性遮光膜に前記光電変換部の空乏
層を拡げる極性のパルスを印加することを特徴としてい
る. [実施例] 次に、本発明の実施例について図面を参照して説明する
.第1図は、本発明の一実施例に用いられる駆動クロッ
クの波形図である.この実施例では、垂直転送レジスタ
t8i!を兼ねる読み出しゲート電極に印加する読み出
しクロックφVの、ハイレベル電圧VHが印加される期
間に同期して発生する負極性のパルスを有する遮光膜印
加クロツクφSを、垂直転送レジスタを遮光する導電性
遮光膜に印加する.第2図(a)〜(c)に、第1図の
t。.tI.t2の各時点におけるフォトダイ?ード領
域、読み出しゲート領域および垂直転送レジスタ領域の
ポテンシャルと電荷の転送状態を示す。時刻toでフォ
トダイオード領域3に第2図(a)のように蓄積されて
いた信号電荷は、t1において、読み出しゲート電極に
■■なる電圧が印加されると垂直転送レジスタ領域4へ
読み出されるが、同時に、遮光膜に負の極性のパルスが
印加されるため、フォトダイオード表面には瞬時的に遮
光膜との層間膜で形戒される結合容量により電界がかか
り、フォトダイオード領域のポテンシャルは第2図(b
)のように、点線で示す本来のポテンシャルから実線の
ように変化し、電荷の読み出し動作は促進される.従っ
て、第2図(C)のようにt2の時点において領域3内
にとり残される電荷は極めて少目なものとなる.このよ
うに、本発明によれば、読み出しクロックφ■のパルス
振幅値を低く抑えつつ、これを十分に高くしたのと同等
の効果をあげることができる.この点を第3図を参照し
てさらに説明する.第3図は、1/2インチ光学系に合
致した固体撮像素子に対して本実施例に従って遮光膜に
遮光膜印加クロツクφSを印加したときに、フォトダイ
オード領域を完全に空乏化するために要する垂直転送レ
ジスタ電極への印加電圧がどのように変化するかをクロ
ックφSの振幅に関連して示したグラフである.同図に
示されるように、例えば、遮光膜に5■の振幅のパルス
を印加したときには、遮光膜を接地電位に固定しておい
た場合に比較して、2■弱低い電圧を転送レジスタ電極
に印加することによってフォトダイオード領域を空乏化
することができる.従って、本発明によれば、読み出し
クロックの振幅を低く抑えることができるので、高密度
化した固体撮像素子における垂直転送レジスタ間の耐圧
問題を緩和することができる.第4図は、本発明の他の
実施例に用いられる駆動クロックの波形図である.本実
施例の先の実施例と異なる点は、第4図に示すように、
遮光膜印加クロックφSのパルスの立上りのタイミング
を読み出しクロックφVのパルスの立上りのタイミング
より遅らせその立下りのタイミングを読み出し?ロック
φ■のそれより速めた点である.この実施例において、
第4図に示す時刻tlo〜tl4における各部のポテン
シャルと電荷の転送状態を第5図に示す.時刻tloに
おいては、第5図(a)に示すようにフォトダイオード
領域3には信号電荷がM8されているが、時刻tl1に
おいて読み出しクロツクφ■がハイレベル(VH)とな
ると、信号電荷の大部分は垂直転送レジスタ領域4へ転
送される.時刻t1■において遮光膜印加クロツクφS
が負となると、フォトダイオード領域3のポテンシャル
が第5図(c)に示すように破線から実線で示す値に変
化し、残留していた信号電荷が読み出される。続いて時
刻t+sにおいて遮光膜印加クロツクφSがOt位とな
ると、第5図(d)に示すように、フォトダイオード領
域のポテンシャルも通常の状態にもどる。時刻tl4に
おいて第5図(e)に示すように、読み出し動作は終了
する。
[Means for Solving the Problems] The present invention includes a photoelectric conversion section, a transfer register section for transferring photoelectric conversion charges generated in the photoelectric conversion section, and a transfer register section for reading charges from the photoelectric conversion section to the transfer register section. A method for driving a solid-state image sensor having a readout gate section and a conductive light-shielding film that blocks light from a portion other than a photoelectric conversion section formed on a semiconductor substrate via an insulating film, the method comprising: an electrode of the readout gate section; The present invention is characterized in that when a readout pulse is applied to perform a charge readout operation, a pulse with a polarity that expands a depletion layer of the photoelectric conversion section is applied to the conductive light-shielding film. [Example] Next, an example of the present invention will be described with reference to the drawings. FIG. 1 is a waveform diagram of a driving clock used in an embodiment of the present invention. In this example, vertical transfer register t8i! A conductive light shielding film that shields the vertical transfer register from the light shielding film applying clock φS having a negative polarity pulse generated in synchronization with the period in which the high level voltage VH is applied to the readout clock φV applied to the readout gate electrode which also serves as a readout gate electrode. Apply voltage to the membrane. In FIGS. 2(a) to 2(c), t of FIG. 1 is shown. .. tI. Photo die at each time point of t2? The potential and charge transfer state of the readout gate region, readout gate region, and vertical transfer register region are shown. The signal charges accumulated in the photodiode region 3 at time t as shown in FIG. 2(a) are read out to the vertical transfer register region 4 when a voltage of ■■ is applied to the readout gate electrode at t1. At the same time, a pulse of negative polarity is applied to the light-shielding film, so an electric field is instantaneously applied to the photodiode surface due to the coupling capacitance formed by the interlayer between the light-shielding film and the potential of the photodiode region. Figure 2 (b
), the original potential shown by the dotted line changes as shown by the solid line, and the charge readout operation is accelerated. Therefore, as shown in FIG. 2(C), the amount of charge left behind in region 3 at time t2 is extremely small. As described above, according to the present invention, while keeping the pulse amplitude value of the read clock φ■ low, it is possible to achieve the same effect as when the pulse amplitude value is made sufficiently high. This point will be further explained with reference to Figure 3. FIG. 3 shows the amount of energy required to completely deplete the photodiode region when the light-shielding film application clock φS is applied to the light-shielding film according to this embodiment in a solid-state image pickup device compatible with a 1/2-inch optical system. This is a graph showing how the voltage applied to the vertical transfer register electrode changes in relation to the amplitude of the clock φS. As shown in the figure, for example, when a pulse with an amplitude of 5 cm is applied to the light shielding film, a voltage slightly lower by 2 cm is applied to the transfer register electrode than when the light shielding film is fixed at the ground potential. The photodiode region can be depleted by applying . Therefore, according to the present invention, the amplitude of the read clock can be suppressed to a low level, so that the problem of withstand voltage between vertical transfer registers in a high-density solid-state image sensor can be alleviated. FIG. 4 is a waveform diagram of a driving clock used in another embodiment of the present invention. The difference between this embodiment and the previous embodiments is as shown in FIG.
Read the timing of the rise of the pulse of the light-shielding film application clock φS, delay the timing of the rise of the pulse of the clock φV, and read the timing of its fall? This is faster than the lock φ■. In this example,
FIG. 5 shows the potential and charge transfer state of each part at times tlo to tl4 shown in FIG. 4. At time tlo, the signal charge is M8 in the photodiode region 3 as shown in FIG. The portion is transferred to vertical transfer register area 4. At time t1■, the light shielding film application clock φS
When becomes negative, the potential of the photodiode region 3 changes from the broken line to the value shown by the solid line as shown in FIG. 5(c), and the remaining signal charges are read out. Subsequently, at time t+s, when the light shielding film application clock φS reaches the Ot level, the potential of the photodiode region also returns to the normal state, as shown in FIG. 5(d). At time tl4, the read operation ends as shown in FIG. 5(e).

以上説明したように、本実施例でも残像現象を発生させ
るとり残し電荷を大きく低減させることができるが、本
実施例ではφVに対してφSの位相が異なるように設定
してあるので、同時にパルスが印加される場合と比較し
て、ウエルの電位のゆれを低く抑えることができ、また
、パルス間の干渉を低減することができ、フォトダイオ
ードの蓄積電荷を安定に取り出すことできる.[発明の
効果コ 以上説明したように、本発明は、固体撮像素子において
、光電変換部から電荷転送領域に電荷を読み出す際に、
電荷転送領域上の導電性の遮光膜に、光電変換部の空乏
層が拡がる極性のパルスを印加するものであるので、本
発明によれば、信号電荷の読み出し残りをほぼ完全にな
くすことができ残像を大幅に低減させることができる.
また、本発明によれば、光電変換部であるフォトダイオ
ード領域の不純物濃度を高くしておくことができるので
、蓄積可能な信号電荷を低下させることがなく、ダイナ
ミックレンジを大きくとることができる.さらに、フォ
トダイオード領域を完全空乏化するに要する読み出しク
ロックのパルス振幅を低く抑えることができるので、転
送レジスタ電極間等において絶縁破壊を生じさせること
がない。
As explained above, this embodiment can also greatly reduce the residual charge that causes the afterimage phenomenon. However, in this embodiment, the phase of φS is set to be different from φV, so the pulse Compared to the case where the voltage is applied, fluctuations in the potential of the well can be suppressed to a low level, interference between pulses can be reduced, and the accumulated charge in the photodiode can be extracted stably. [Effects of the Invention] As explained above, the present invention provides the following advantages:
Since a pulse with a polarity that expands the depletion layer of the photoelectric conversion section is applied to the conductive light-shielding film on the charge transfer region, according to the present invention, it is possible to almost completely eliminate unread signal charges. Afterimages can be significantly reduced.
Furthermore, according to the present invention, the impurity concentration in the photodiode region, which is the photoelectric conversion section, can be kept high, so that the signal charge that can be stored does not decrease, and the dynamic range can be widened. Furthermore, since the pulse amplitude of the read clock required to completely deplete the photodiode region can be suppressed to a low level, dielectric breakdown does not occur between the transfer register electrodes or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第4図は、それぞれ本発明の実施例に用いられ
る駆動クロツクの波形図、第2図、第3図及び第5図は
、本発明の実施例の動作説明図、第6図は、固体撮像素
子の断面図、第7図は、従来例に用いられる駆動パルス
の波形図、第8図はその動作説明図である. 1・・・p型半導体基板、    2・・・チャネルス
トップ、      3・・・フォトダイオード領域、
4・・・垂直転送レジスタ領域、   5・・・酸化膜
、6・・・垂直転送レジスタ電極、   7・・・遮光
膜、8・・・読み出しゲート領域.
1 and 4 are waveform diagrams of driving clocks used in the embodiment of the present invention, FIGS. 2, 3, and 5 are operation explanatory diagrams of the embodiment of the present invention, and FIG. 6 7 is a sectional view of a solid-state image sensor, FIG. 7 is a waveform diagram of a drive pulse used in a conventional example, and FIG. 8 is an explanatory diagram of its operation. DESCRIPTION OF SYMBOLS 1...p-type semiconductor substrate, 2...channel stop, 3...photodiode region,
4... Vertical transfer register area, 5... Oxide film, 6... Vertical transfer register electrode, 7... Light shielding film, 8... Read gate area.

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型半導体領域内に形成された第2導電型
の複数の光電変換部と、前記第1導電型半導体領域内に
形成され前記光電変換部から信号電荷の転送を受けこの
信号電荷の転送領域となる第2導電型の電荷転送領域と
、前記電荷転送領域と前記光電変換部との間に配置され
た読み出しゲート領域と、前記電荷転送領域および前記
読み出しゲート領域上に絶縁膜を介して形成された電荷
転送電極と、前記電荷転送電極上に絶縁膜を介して形成
された前記光電変換部上に開口を有する導電性遮光膜と
を具備する固体撮像素子の駆動方法であって、前記電荷
転送電極に読み出しパルスを印加して前記光電変換部か
ら前記電荷転送領域へ信号電荷を読み出す際に、前記導
電性遮光膜に前記第1導電型半導体領域と前記光電変換
部との間の空乏層を拡げる方向の極性を有するパルスを
印加することを特徴とする固体撮像素子の駆動方法。
(1) A plurality of photoelectric conversion parts of a second conductivity type formed in a first conductivity type semiconductor region, and a plurality of photoelectric conversion parts formed in the first conductivity type semiconductor region and receiving signal charges from the photoelectric conversion part and receiving the signal. a charge transfer region of a second conductivity type serving as a charge transfer region; a readout gate region disposed between the charge transfer region and the photoelectric conversion section; and an insulating film on the charge transfer region and the readout gate region. A method for driving a solid-state imaging device, comprising: a charge transfer electrode formed on the charge transfer electrode via an insulating film; and a conductive light-shielding film having an opening on the photoelectric conversion section formed on the charge transfer electrode via an insulating film. When applying a readout pulse to the charge transfer electrode to read out signal charges from the photoelectric conversion section to the charge transfer region, the conductive light-shielding film is formed between the first conductivity type semiconductor region and the photoelectric conversion section. A method for driving a solid-state imaging device, comprising applying a pulse having a polarity in a direction that expands a depletion layer between the two.
(2)前記電荷転送電極に印加する読み出しパルスに対
し前記導電性遮光膜に印加するパルスはその位相が立上
り時において遅れかつ立下り時において進んでいること
を特徴とする請求項1記載の固体撮像素子の駆動方法。
(2) The solid state according to claim 1, wherein the phase of the pulse applied to the conductive light-shielding film is delayed at the time of rising and advanced at the time of fall with respect to the readout pulse applied to the charge transfer electrode. How to drive the image sensor.
JP1161286A 1989-06-24 1989-06-24 Drive method for solid-state image pickup device Pending JPH0327683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1161286A JPH0327683A (en) 1989-06-24 1989-06-24 Drive method for solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1161286A JPH0327683A (en) 1989-06-24 1989-06-24 Drive method for solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPH0327683A true JPH0327683A (en) 1991-02-06

Family

ID=15732222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1161286A Pending JPH0327683A (en) 1989-06-24 1989-06-24 Drive method for solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPH0327683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942749A (en) * 1996-07-29 1999-08-24 Nec Corporation Photodetector having means for processing optical input signals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942749A (en) * 1996-07-29 1999-08-24 Nec Corporation Photodetector having means for processing optical input signals

Similar Documents

Publication Publication Date Title
JPH0410785B2 (en)
GB2065974A (en) Integrated CCD Image Sensor of the Interline Transfer Type
GB2128052A (en) Flicker reduction in field-interlaced three-phase clocked ccd imagers
JP3416432B2 (en) Photoelectric conversion device and driving method thereof
JPH022793A (en) Two-dimensional ccd image pickup element driving method
JPH0327683A (en) Drive method for solid-state image pickup device
JPS6044867B2 (en) solid-state imaging device
JPS61194870A (en) Solid-state image pick-up device
JPH06268923A (en) Drive method for solid-state image pickup device
JPS63234677A (en) Drive method of charge coupling element
JPS6048907B2 (en) Charge storage method in charge coupled devices
JP2903008B2 (en) Driving method of solid-state imaging device
JPH03195185A (en) Driving method for solid-state image pickup element
JP3148459B2 (en) Driving method of solid-state imaging device
JPH0435372A (en) Driving method for solid-state image pickup element
JPH09321270A (en) Driving method for charge transfer device
JPS62152167A (en) Drive system of semiconductor device using charge transfer device
JPS62193372A (en) Driving method for solid-state image pickup device
JPS60233986A (en) Drive method of solid-state image pickup device
JP2004229058A (en) Method for driving solid state imaging device
JPH02229469A (en) Method of driving photoelectric converting element
JPH0520892A (en) Ccd element
JPH09107504A (en) Solid-state image pickup element and its drive method
JPH0244871A (en) Solid-state image pickup device
JPS62128173A (en) Solid-state image pickup device