JPH09321270A - Driving method for charge transfer device - Google Patents

Driving method for charge transfer device

Info

Publication number
JPH09321270A
JPH09321270A JP9080833A JP8083397A JPH09321270A JP H09321270 A JPH09321270 A JP H09321270A JP 9080833 A JP9080833 A JP 9080833A JP 8083397 A JP8083397 A JP 8083397A JP H09321270 A JPH09321270 A JP H09321270A
Authority
JP
Japan
Prior art keywords
charge transfer
transfer electrode
electrode
charge
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9080833A
Other languages
Japanese (ja)
Other versions
JP2904180B2 (en
Inventor
Yasutaka Nakashiba
康隆 中柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9080833A priority Critical patent/JP2904180B2/en
Publication of JPH09321270A publication Critical patent/JPH09321270A/en
Application granted granted Critical
Publication of JP2904180B2 publication Critical patent/JP2904180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it easy to provide timing in a charge transfer device wherein three charge transfer electrodes are taken as the unit of repetition and one of them functions as a shielding film as well. SOLUTION: Of a set of three charge transfer electrodes G1, G2, G3, G1 and G3 are formed of a polycrystalline silicon film and G2 is formed of an aluminum film so that it functions as a shielding film as well. A constant voltage Vs is applied to G2, and transfer pulses ϕ1a, ϕ2a of a phase dislocated 90 degrees from each other are applied to G1 and G3. This reduces difference in time constant between the charge transfer electrodes as compared with cases where transfer pulses are applied to each of G1 to G3, and thus makes it easy to provide timing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電荷転送装置の駆動
方法に関し、特にCCDレジスタの駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of driving a charge transfer device, and more particularly to a method of driving a CCD register.

【0002】[0002]

【従来の技術】現在、電子スティルカメラ、パソコンの
入力として使用されている固体撮像装置は、カメラ一体
型VTR用に開発されたものを流用しており、標準テレ
ビ受像機の表示方式(インタレース方式)とパソコン用
モニタとの表示方式(プログレッシブ方式)の違いのた
め、画素数や走査方式を変換する等の信号処理が必要と
なっている。このため、電子スティルカメラ、パソコン
の入力として簡単に使用できる固体撮像装置の必要性が
でてきた。
2. Description of the Related Art At present, a solid-state image pickup device used as an input for an electronic still camera or a personal computer uses a device developed for a camera-integrated VTR. Due to the difference between the display method (progressive method) and the display method (progressive method) between the personal computer monitor, signal processing such as conversion of the number of pixels and the scanning method is required. Therefore, there is a need for a solid-state image pickup device that can be easily used as an input for an electronic still camera or a personal computer.

【0003】プログレッシブ方式の固体撮像装置は、1
画素当りに3つの転送電極を備えた3相駆動の電荷転送
装置を使用して実現できる。このようなプログレッシブ
方式の固体撮像装置のうち構造が簡単なものが特開平4
−72762号公報に開示されている。以下、これにつ
いて説明する。
The progressive type solid-state image pickup device has one
It can be realized by using a three-phase drive charge transfer device having three transfer electrodes per pixel. Among such progressive type solid-state image pickup devices, one having a simple structure is disclosed in Japanese Unexamined Patent Publication No. Hei 4 (1999) -1999
-72762 gazette. Hereinafter, this will be described.

【0004】図4(a)はプログレッシブ方式の固体撮
像装置を概略的に示すブロック図、図4(b)は画素を
示す平面図、図4(c)は図4(b)のX−X線断面図
である。
FIG. 4 (a) is a block diagram schematically showing a progressive type solid-state image pickup device, FIG. 4 (b) is a plan view showing pixels, and FIG. 4 (c) is XX of FIG. 4 (b). It is a line sectional view.

【0005】この固体撮像装置は、P型シリコン基板1
(シリコン基板の表面部に形成されたPウェルでもよ
い)の表面部にストライプ状に形成されたN型拡散層2
でなる埋込チャネル領域の表面を絶縁膜3−1,3−
2,3−3(同一厚さに設計)を介してそれぞれ横断し
て第1の電荷転送電極G1(読出ゲート電極を兼ねてい
る)、第2の電荷転送電極G2及び第3の電荷転送電極
G3が設けられ、それぞれ転送パルスφ1,φ2及びφ
3が印加される。第3の電荷転送電極G3は1層目の多
結晶シリコン膜、第1の電荷転送電極G1は2層目の多
結晶シリコン膜でなり、絶縁膜4を介して第3の電荷転
送電極G3と一部でオーバラップしている。第2の電荷
転送電極G2はアルミニウム膜でなり絶縁膜5を介して
G1,G3を被覆しN型拡散層2とその近傍のP+ 型チ
ャネルストッパ8に光が入射するのを防止する遮光膜を
兼ねている。6は表面にP+ 型拡散層を有するN型拡散
層でなるフォトダイオード(列状に配置されて光電変換
部101をなす)、7は読出ゲート領域である。
This solid-state image pickup device has a P-type silicon substrate 1
N-type diffusion layer 2 formed in a stripe shape on the surface portion (may be a P well formed on the surface portion of the silicon substrate)
The surface of the buried channel region made of
A first charge transfer electrode G1 (also serving as a read gate electrode), a second charge transfer electrode G2, and a third charge transfer electrode are traversed through 2, 3-3 (designed to have the same thickness). G3 is provided for transfer pulses φ1, φ2 and φ, respectively.
3 is applied. The third charge transfer electrode G3 is made of a first-layer polycrystalline silicon film, the first charge transfer electrode G1 is made of a second-layer polycrystalline silicon film, and the third charge transfer electrode G3 and the third charge transfer electrode G3 are formed via the insulating film 4. It partially overlaps. The second charge transfer electrode G2 is made of an aluminum film and covers G1 and G3 through the insulating film 5 to prevent light from entering the N type diffusion layer 2 and the P + type channel stopper 8 in the vicinity thereof. Doubles as Reference numeral 6 denotes a photodiode (arranged in rows to form the photoelectric conversion unit 101) formed of an N-type diffusion layer having a P + -type diffusion layer on its surface, and 7 denotes a read gate region.

【0006】図5は転送パルスφ1,φ2及びφ3を示
すタイムチャート、図6は電荷転送について説明するた
めのポテンシャル図である。
FIG. 5 is a time chart showing transfer pulses φ1, φ2 and φ3, and FIG. 6 is a potential diagram for explaining charge transfer.

【0007】まず、水平ブランキング期間のタイミング
t1において、φ1が読出ゲートを導通させるレベル
(以下“T”レベルと記す)、φ2が“H”レベル、φ
3が“L”レベルになると、任意の画素列における各画
素のフォトダイオード6に蓄積されている信号電荷Q
1,Q2,Q3…,は読出ゲート領域7を通って各電荷
転送装置の第1の電荷転送電極G1下のN型拡散層2に
移る。
First, at a timing t1 in the horizontal blanking period, φ1 is a level (hereinafter referred to as “T” level) for conducting a read gate, φ2 is an “H” level, and φ is a φ level.
3 becomes "L" level, the signal charge Q accumulated in the photodiode 6 of each pixel in an arbitrary pixel column
, 1, Q2, Q3, ... Transfer to the N-type diffusion layer 2 under the first charge transfer electrode G1 of each charge transfer device through the read gate region 7.

【0008】次にタイミングt2において、φ1が
“H”レベルになると信号電荷Q1,Q2,Q3,…,
の一部は隣接する第2の電荷転送電極G2下へ移り、タ
イミングt3でφ1が“L”レベルになると信号電荷Q
1,Q2,Q3の第2の電荷転送電極下への移動が完了
する。
Next, at a timing t2, when φ1 becomes "H" level, signal charges Q1, Q2, Q3, ...
Part of the signal charges moves to below the adjacent second charge transfer electrode G2, and when φ1 becomes “L” level at the timing t3, the signal charge Q
The movement of 1, Q2 and Q3 below the second charge transfer electrode is completed.

【0009】タイミングt4において、φ3を“H”レ
ベル、φ2を“L”レベルにすると、信号電荷Q1,Q
2,Q3,…,は隣接する画素の第1の電荷転送電極下
へ移る。各光電変換部101最終段のフォトダイオード
からの信号電荷61,62,…,63は水平電荷転送部
103へ転送される。
At timing t4, when φ3 is set to the “H” level and φ2 is set to the “L” level, the signal charges Q1 and Q are generated.
2, Q3, ... Move to below the first charge transfer electrodes of the adjacent pixels. The signal charges 61, 62, ..., 63 from the photodiodes at the final stage of each photoelectric conversion unit 101 are transferred to the horizontal charge transfer unit 103.

【0010】次に、垂直ブランキング期間に一水平ライ
ン分の信号電荷は水平電荷転送部103内を転送されて
出力回路104により信号電圧として検出され増幅され
て出力電圧Voutとして順次に出力される。
Next, during the vertical blanking period, the signal charge for one horizontal line is transferred in the horizontal charge transfer section 103, detected by the output circuit 104 as a signal voltage, amplified, and sequentially output as an output voltage Vout. .

【0011】タイミングt2〜t6のサイクルを繰返す
ことによって1フィールド分の映像信号を得る。
A video signal for one field is obtained by repeating the cycle of timings t2 to t6.

【0012】[0012]

【発明が解決しようとする課題】このような従来の電荷
転送装置を垂直電荷転送部に有する固体撮像装置の駆動
方法は、第1及び第3の電荷転送電極を構成する多結晶
シリコン膜の抵抗値(膜厚0.4μmの場合、約30Ω
/□程度)と、遮光膜を兼ねる第2の電荷転送電極を構
成する金属膜(たとえばアルミニウム膜)の抵抗値(膜
厚1μmの場合、約0.03Ω/□)と非常に異なるた
め、時定数の相違により、各電極間に異なる波形のなま
り、遅延が発生すると行った問題が生じ、パルスのタイ
ミングが合わず垂直電荷転送部での信号電荷の転送効率
の劣化、および取扱電荷量の低下が発生し、特に転送周
波数の速い場合に於いては、電荷転送自体が困難になる
と言う問題が発生するという欠点があった。
A driving method of a solid-state image pickup device having such a conventional charge transfer device in a vertical charge transfer portion is a resistance of a polycrystalline silicon film forming first and third charge transfer electrodes. Value (approx. 30 Ω for 0.4 μm film thickness)
/ □) and the resistance value of the metal film (for example, aluminum film) forming the second charge transfer electrode which also serves as the light-shielding film (about 0.03 Ω / □ when the film thickness is 1 μm), so Due to the difference in the constants, different waveforms are blunted between the electrodes and the delay occurs, which causes the problem that occurred, the timing of the pulses did not match, the transfer efficiency of the signal charge in the vertical charge transfer unit deteriorates, and the amount of charge handled decreases. However, there is a drawback that charge transfer itself becomes difficult especially when the transfer frequency is high.

【0013】本発明の目的は、このような欠点のない、
高速転送可能な、3つの転送電極の組を繰返し単位とし
て有する電荷転送装置の駆動方法を提供することにあ
る。
The object of the present invention is to eliminate these drawbacks,
It is an object of the present invention to provide a driving method of a charge transfer device which has a set of three transfer electrodes as a repeating unit capable of high-speed transfer.

【0014】[0014]

【課題を解決するための手段】本発明の電荷転送装置の
駆動方法は、半導体基板表面部の第1導電型半導体層の
表面部のチャネル領域の表面を絶縁膜を介してそれぞれ
横断して第1の電荷転送電極,第2の電荷転送電極及び
第3の電荷転送電極でなる複数の組を順次に配列してな
り、前記第2の電荷転送電極が第1の電荷転送電極及び
第3の電荷転送電極より電気抵抗が低く前記チャネル領
域に光が入射するのを防ぐ遮光膜を兼ねる電荷転送装置
の駆動方法であって、前記第2の電荷転送電極に所定の
定電圧を印加し、前記第1の電荷転送電極及び第3の電
荷転送電極に互いに位相差のある転送パルスを印加して
前記チャネル領域内で信号電荷を転送するというもので
ある。
According to a method of driving a charge transfer device of the present invention, a surface of a channel region in a surface portion of a first conductivity type semiconductor layer on a surface portion of a semiconductor substrate is traversed by an insulating film. A plurality of sets of one charge transfer electrode, a second charge transfer electrode, and a third charge transfer electrode are sequentially arranged, and the second charge transfer electrode is a first charge transfer electrode and a third charge transfer electrode. A method of driving a charge transfer device, which has a lower electric resistance than a charge transfer electrode and also serves as a light blocking film for preventing light from entering the channel region, wherein a predetermined constant voltage is applied to the second charge transfer electrode, A transfer pulse having a phase difference is applied to the first charge transfer electrode and the third charge transfer electrode to transfer the signal charge in the channel region.

【0015】この場合、第1の電荷転送電極及び第3の
電荷転送電極に互いに90度の位相差のある転送パルス
を印加するのが好ましい。
In this case, it is preferable to apply transfer pulses having a phase difference of 90 degrees to the first charge transfer electrode and the third charge transfer electrode.

【0016】又、信号電荷の転送時に第2の電荷転送電
極下のチャネル領域の電位がその両側の第1又は第2の
電荷転送電極下のチャネル領域の電位の中間になるよう
に定電圧を設定するのが好ましい。
Further, at the time of transferring the signal charge, a constant voltage is set so that the potential of the channel region under the second charge transfer electrode is in the middle of the potential of the channel region under the first or second charge transfer electrode on both sides thereof. It is preferable to set.

【0017】更に、第1の電荷転送電極、第2の電荷転
送電極及び第3の電荷転送電極の組あたりに1つの光電
変換部が設けられて固体撮像装置を構成していてもよ
い。
Further, one photoelectric conversion unit may be provided for each set of the first charge transfer electrode, the second charge transfer electrode, and the third charge transfer electrode to form the solid-state image pickup device.

【0018】更に又、第1の電荷転送電極及び第3の電
荷転送電極が層次の異なる多結晶シリコン膜でなり、第
2の電荷転送電極が金属膜でなるものであってもよい。
Furthermore, the first charge transfer electrode and the third charge transfer electrode may be made of polycrystalline silicon films having different layers, and the second charge transfer electrode may be made of a metal film.

【0019】電気抵抗の低い第2の電荷転送装置の電位
を固定しておくので、転送パルスを印加する第1,第3
の電荷転送電極の時定数の相違が小さくなる。
Since the potential of the second charge transfer device having a low electric resistance is fixed, the first and third transfer pulses are applied.
The difference in the time constants of the charge transfer electrodes is reduced.

【0020】[0020]

【発明の実施の形態】次に、本発明の発明の実施の形態
について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described.

【0021】図1(a)は本発明の一実施の形態につい
て説明するためのプログレッシブ方式の固体撮像装置を
概略的に示すブロック図で、光電変換部101,垂直電
荷転送部102でなる画素列を複数有する撮像部と、水
平電荷転送部103,出力回路部104で構成されてい
ることは、図4の従来例と同じである。垂直電荷転送部
には、2相転送パルスと所望の定電圧VS が印加され
る。光電変換部の構成単位(フォトダイオード)に対し
て垂直電荷転送部の1段が対応して配置されている。
FIG. 1A is a block diagram schematically showing a progressive-type solid-state image pickup device for explaining an embodiment of the present invention, in which a pixel array including a photoelectric conversion portion 101 and a vertical charge transfer portion 102 is provided. It is the same as the conventional example of FIG. 4 in that it is composed of an image pickup section having a plurality of horizontal lines, a horizontal charge transfer section 103, and an output circuit section 104. A two-phase transfer pulse and a desired constant voltage V S are applied to the vertical charge transfer section. One stage of the vertical charge transfer unit is arranged corresponding to the structural unit (photodiode) of the photoelectric conversion unit.

【0022】このような電荷転送装置を垂直電荷転送部
に有する固体撮像装置の駆動方法の概略について説明す
る。
An outline of a driving method of a solid-state image pickup device having such a charge transfer device in a vertical charge transfer portion will be described.

【0023】まず、平面上に配置された光電変換部10
1にて入射光の光量に応じて信号電荷が蓄積される。
First, the photoelectric conversion unit 10 arranged on a plane.
At 1, signal charges are accumulated according to the amount of incident light.

【0024】次に、すべての光電変換部101の信号電
荷11,12,13,21,22,23,31,32,
33,41,42,43,51,52,53,61,6
2,63が対応する垂直電荷転送部102へと読み出さ
れる。次に、垂直電荷転送部を構成する第1の電荷転送
電極と第3の電荷転送電極にそれぞれ90度位相の異な
る転送パルスφ1a,φ2aを、第2の電荷転送電極に
所望の定電圧VS を印加することにより、信号電荷1
1,12,13,21,22,23,31,32,3
3,41,42,43,51,52,53,61,6
2,63は、各垂直電荷転送部102中を垂直方向に転
送され、水平の1ライン毎に水平電荷転送部103へ送
られ、水平電荷転送部103中を水平方向に転送され出
力回路部104を介して出力される。
Next, the signal charges 11, 12, 13, 21, 22, 23, 31, 32 of all the photoelectric conversion units 101,
33, 41, 42, 43, 51, 52, 53, 61, 6
2, 63 are read out to the corresponding vertical charge transfer unit 102. Next, transfer pulses φ1a and φ2a having phases different by 90 degrees are applied to the first charge transfer electrode and the third charge transfer electrode which form the vertical charge transfer unit, and a desired constant voltage V S is applied to the second charge transfer electrode. Signal charge 1
1, 12, 13, 21, 22, 23, 31, 32, 3
3,41,42,43,51,52,53,61,6
2, 63 are vertically transferred in each vertical charge transfer unit 102, are sent to the horizontal charge transfer unit 103 for each horizontal line, are transferred in the horizontal charge transfer unit 103 in the horizontal direction, and are output circuit unit 104. Is output via.

【0025】これによって1フレームすなわち、全フォ
トダイオードの信号電荷が読み出されることになる。
As a result, one frame, that is, the signal charges of all the photodiodes are read out.

【0026】次に、垂直電荷転送部の構造と動作につい
て詳細に説明する。
Next, the structure and operation of the vertical charge transfer section will be described in detail.

【0027】図1(b)は、固体撮像装置のセル部(画
素)を示す平面図、図1(c)は、図1(b)のX−X
線断面図であり、P型シリコン基板1、N型拡散層2、
1層目の多結晶シリコン膜で形成された第3の電荷転送
電極G3、2層目の多結晶シリコン膜で形成された第1
の電荷転送電極G1、金属遮光膜を兼ねる第2の電荷転
送電極G2を有し、構造上は図4のものと同じである
が、第1〜第3の電荷転送電極にφ1a,VS ,φ2a
を印加する点で相違がある。
FIG. 1B is a plan view showing a cell portion (pixel) of the solid-state image pickup device, and FIG. 1C is a sectional view taken along line XX of FIG.
FIG. 3 is a line cross-sectional view showing a P-type silicon substrate 1, an N-type diffusion layer 2,
The third charge transfer electrode G3 formed of the first-layer polycrystalline silicon film, and the first charge transfer electrode G3 formed of the second-layer polycrystalline silicon film.
Has the same charge transfer electrode G1 and the second charge transfer electrode G2 which also functions as a metal light-shielding film. The structure is the same as that of FIG. 4, but the first to third charge transfer electrodes have φ1a, V S , φ2a
There is a difference in applying.

【0028】図2は本発明の一実施の形態について説明
するためのタイムチャート、図3は電荷転送について説
明するためのポテンシャル図である。
FIG. 2 is a time chart for explaining one embodiment of the present invention, and FIG. 3 is a potential diagram for explaining charge transfer.

【0029】水平ブランキング期間のタイミングt1に
おいてφ2aが“L”レベル、φ1aが“T”レベルに
なり、任意の光電変換部101より同じ画素列の垂直電
荷転送部102にそれぞれ読み出された信号電荷Q1
a,Q2a,Q3a,…,は、読み出し電圧VT が印加
されている第1の電荷転送電極G1下に蓄積される。次
にタイミングt2において、φ1aが“H”レベルにな
っても信号電荷Q1a,Q2a,Q3a,…,は、ハイ
電圧VH が印加されている第1の電荷転送電極G1下に
蓄積されたままである。以下同様にしてタイミングt3
において、φ1aが“L”レベルになると、信号電荷Q
1a,…,は、定電圧VS が印加されている第2の電荷
転送電極G2下に移動し、第3の電荷転送電極G3下に
移動し、タイミングt5において、φ1aが“H”レベ
ルになると第3の電荷転送電極G3と隣りの画素の第1
の電荷転送電極G1下に移動し、タイミングt6におい
てφ2aが“L”レベルになると第1の電荷転送電極G
1下に順次移動する。
At the timing t1 of the horizontal blanking period, φ2a becomes “L” level and φ1a becomes “T” level, and the signals read from the arbitrary photoelectric conversion units 101 to the vertical charge transfer units 102 of the same pixel column, respectively. Charge Q1
, a are stored under the first charge transfer electrode G1 to which the read voltage V T is applied. Next, at the timing t2, the signal charges Q1a, Q2a, Q3a, ... Are still accumulated below the first charge transfer electrode G1 to which the high voltage V H is applied, even if φ1a becomes “H” level. is there. Similarly, the timing t3
, When φ1a becomes “L” level, the signal charge Q
, 1 move to below the second charge transfer electrode G2 to which the constant voltage V S is applied, move to below the third charge transfer electrode G3, and at timing t5, φ1a becomes “H” level. Then, the third charge transfer electrode G3 and the first pixel
Of the first charge transfer electrode G1 at the timing t6 when φ2a becomes “L” level.
Move down one by one.

【0030】以後t2〜t6のタイミングを繰り返すこ
とにより信号電荷は、垂直電荷転送部を転送されてい
く。
Thereafter, the signal charges are transferred through the vertical charge transfer section by repeating the timings from t2 to t6.

【0031】抵抗値の低い第2の電荷転送電極には定電
圧VS (VL <VS <VH )を印加し、多結晶シリコン
膜でなり、比較的電気抵抗の高い第1,第3の電荷転送
電極に転送パルスφ1a,φ2aを印加するので時定数
の相違があまりなく、タイミングが取り易い。従って、
転送効率や取扱電荷量(転送可能な最大電荷量)の低下
を回避でき、高速転送が可能となる。又、2相駆動であ
るので駆動回路が簡単になる。
A constant voltage V S (V L <V S <V H ) is applied to the second charge transfer electrode having a low resistance value, which is made of a polycrystalline silicon film and has a relatively high electric resistance. Since the transfer pulses .phi.1a and .phi.2a are applied to the charge transfer electrodes of No. 3, there is not much difference in time constant, and the timing is easy to take. Therefore,
It is possible to avoid a decrease in transfer efficiency or the amount of charge handled (the maximum amount of charge that can be transferred), and high-speed transfer becomes possible. In addition, since it is a two-phase drive, the drive circuit becomes simple.

【0032】なお、第1,第3の電荷転送電極は各行
(水平)方向に連結され、第2の電荷転送電極は各列毎
に分割されている(実際には一端で共通接続されてVS
を印加する)場合を図示したが、第2の電荷転送電極も
各行方向に連結してもよい。
The first and third charge transfer electrodes are connected in each row (horizontal) direction, and the second charge transfer electrodes are divided for each column (actually, one end is commonly connected to V. S
However, the second charge transfer electrodes may also be connected in each row direction.

【0033】又、埋込チャネル型の垂直電荷転送部を有
する場合について説明したが、表面チャネル型にも本発
明を適用しうることはいうまでもない。更に、固体撮像
装置に限らず、単なる電荷転送装置に本発明を適用する
ことができる。
Further, although the case of having the buried channel type vertical charge transfer portion has been described, it goes without saying that the present invention can also be applied to the surface channel type. Further, the present invention can be applied not only to the solid-state image pickup device but also to a simple charge transfer device.

【0034】なお、パルスの位相差は90度が最も好ま
しいが、180度未満で0を超える任意の値ならば電荷
転送は可能なので特性上の許容範囲と製造上のばらつき
などを考慮して所望の値に設計すればよいことは改めて
詳細に説明をするまでもなく明らかなことである。
The pulse phase difference is most preferably 90 degrees, but charge transfer is possible at any value less than 180 degrees and more than 0. Therefore, it is desirable considering the allowable range of characteristics and manufacturing variations. It is obvious that the value of should be designed without needing to explain it in detail again.

【0035】[0035]

【発明の効果】本発明の電荷転送装置の駆動方法は、抵
抗値の低い遮光膜を兼ねる第2の電荷転送電極に、定電
圧を印加し、抵抗値の高い第1及び第3の電荷転送電極
に互いに位相のずれた転送パルスを印加するので、転送
パルスを印加とするので転送パルスを印加する電荷転送
電極の時定数の差が小さくなり、タイミングを合せ易く
なり転送効率及び転送可能最大電荷量の低下を防止し、
高速転送が可能となるという効果がある。
According to the driving method of the charge transfer device of the present invention, a constant voltage is applied to the second charge transfer electrode which also serves as a light shielding film having a low resistance value, and the first and third charge transfer devices having a high resistance value are transferred. Since transfer pulses whose phases are shifted from each other are applied to the electrodes, the transfer pulses are applied, so the difference in the time constants of the charge transfer electrodes to which the transfer pulses are applied becomes small, the timing is easily adjusted, and the transfer efficiency and the maximum transferable charge Prevent a decrease in quantity,
This has the effect of enabling high-speed transfer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態について説明するための
プログレッシブ方式の固体撮像装置を概略的に示すブロ
ック図(図1(a))、画素を示す平面図(図1
(b))、及び図1(b)のX−X線断面図(図1
(c))。
FIG. 1 is a block diagram (FIG. 1A) schematically showing a progressive-type solid-state imaging device for explaining an embodiment of the present invention, and a plan view showing pixels (FIG. 1).
(B)), and the XX sectional view taken on the line of FIG.
(C)).

【図2】本発明の一実施の形態について説明するための
タイムチャート。
FIG. 2 is a time chart for explaining an embodiment of the invention.

【図3】本発明の一実施の形態について説明するための
ポテンシャル図。
FIG. 3 is a potential diagram for explaining an embodiment of the present invention.

【図4】従来例について説明するためのプログレッシブ
方式の固体撮像装置を概略的に示すブロック図(図4
(a))、画素を示す平面図(図4(b))及び図4
(b)のX−X線断面図(図4(c))。
FIG. 4 is a block diagram schematically showing a progressive-type solid-state imaging device for explaining a conventional example (FIG. 4).
FIG. 4A is a plan view showing a pixel (FIG. 4B) and FIG.
The XX sectional view taken on the line (b) (FIG.4 (c)).

【図5】従来例について説明するためのタイムチャー
ト。
FIG. 5 is a time chart for explaining a conventional example.

【図6】従来例について説明するためのポテンシャル
図。
FIG. 6 is a potential diagram for explaining a conventional example.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2 N型拡散層 3−1,3−2,3−3,4,5 絶縁膜 6 フォトダイオード 7 流出ゲート領域 8 P+ 型チャネルストッパ 11〜61,12〜62,…,13−63 信号電荷 101 光電変換部(フォトダイオード列) 102 垂直電荷転送部 103 水平電荷転送部 104 出力回路部 φ1,φ1a,φ2,φ2a,φ3 転送パルス VS 定電圧1 P-type silicon substrate 2 N-type diffusion layer 3-1, 3-2, 3-3, 4, 5 Insulating film 6 Photodiode 7 Outflow gate region 8 P + type channel stopper 11-61, 12-62, ..., 13-63 signal charge 101 photoelectric conversion unit (photodiode array) 102 vertical charge transfer portion 103 horizontal charge transfer portion 104 output circuit φ1, φ1a, φ2, φ2a, φ3 transfer pulse V S constant voltage

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板表面部の第1導電型半導体層
の表面部のチャネル領域の表面を絶縁膜を介してそれぞ
れ横断して第1の電荷転送電極,第2の電荷転送電極及
び第3の電荷転送電極でなる複数の組を順次に配列して
なり、前記第2の電荷転送電極が第1の電荷転送電極及
び第3の電荷転送電極より電気抵抗が低く前記チャネル
領域に光が入射するのを防ぐ遮光膜を兼ねる電荷転送装
置の駆動方法であって、前記第2の電荷転送電極に所定
の定電圧を印加し、前記第1の電荷転送電極及び第3の
電荷転送電極に互いに位相差のある転送パルスを印加し
て前記チャネル領域内で信号電荷を転送することを特徴
とする電荷転送装置の駆動方法。
1. A first charge transfer electrode, a second charge transfer electrode, and a third charge transfer electrode which traverse the surface of a channel region on the surface of a first conductivity type semiconductor layer on the surface of a semiconductor substrate through an insulating film, respectively. A plurality of sets of charge transfer electrodes are sequentially arranged, and the second charge transfer electrode has a lower electric resistance than the first charge transfer electrode and the third charge transfer electrode, and light is incident on the channel region. A method of driving a charge transfer device which also serves as a light-shielding film for preventing the above-mentioned charge transfer, comprising applying a predetermined constant voltage to the second charge transfer electrode, and applying the same to the first charge transfer electrode and the third charge transfer electrode. A method of driving a charge transfer device, comprising applying a transfer pulse having a phase difference to transfer signal charges in the channel region.
【請求項2】 第1の電荷転送電極及び第3の電荷転送
電極に互いに90度の位相差のある転送パルスを印加す
る請求項1記載の電荷転送装置の駆動方法。
2. The method of driving a charge transfer device according to claim 1, wherein transfer pulses having a phase difference of 90 degrees are applied to the first charge transfer electrode and the third charge transfer electrode.
【請求項3】 信号電荷の転送時に第2の電荷転送電極
下のチャネル領域の電位がその両側の第1又は第2の電
荷転送電極下のチャネル領域の電位の中間になるように
定電圧を設定する請求項1又は2記載の電荷転送装置の
駆動方法。
3. A constant voltage is set so that the potential of the channel region under the second charge transfer electrode is intermediate between the potentials of the channel regions under the first or second charge transfer electrodes on both sides of the second charge transfer electrode during the transfer of the signal charges. The method for driving the charge transfer device according to claim 1, wherein the setting is performed.
【請求項4】 第1の電荷転送電極、第2の電荷転送電
極及び第3の電荷転送電位の組あたりに1つの光電変換
部が設けられて固体撮像装置を構成する請求項1,2又
は3記載の電荷転送装置の駆動方法。
4. The solid-state imaging device according to claim 1, wherein one photoelectric conversion unit is provided for each set of the first charge transfer electrode, the second charge transfer electrode, and the third charge transfer potential to form a solid-state imaging device. 4. The method for driving the charge transfer device according to item 3.
【請求項5】 第1の電荷転送電極及び第3の電荷転送
電極が層次の異なる多結晶シリコン膜でなり、第2の電
荷転送電極が金属膜でなる請求項1,2,3又は4記載
の電荷転送装置の駆動方法。
5. The first charge transfer electrode and the third charge transfer electrode are formed of a polycrystalline silicon film having different layers, and the second charge transfer electrode is formed of a metal film. Driving method of the electric charge transfer device.
JP9080833A 1996-03-29 1997-03-31 Driving method of charge transfer device Expired - Fee Related JP2904180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9080833A JP2904180B2 (en) 1996-03-29 1997-03-31 Driving method of charge transfer device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7608696 1996-03-29
JP8-76086 1996-03-29
JP9080833A JP2904180B2 (en) 1996-03-29 1997-03-31 Driving method of charge transfer device

Publications (2)

Publication Number Publication Date
JPH09321270A true JPH09321270A (en) 1997-12-12
JP2904180B2 JP2904180B2 (en) 1999-06-14

Family

ID=26417238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9080833A Expired - Fee Related JP2904180B2 (en) 1996-03-29 1997-03-31 Driving method of charge transfer device

Country Status (1)

Country Link
JP (1) JP2904180B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020141029A (en) * 2019-02-27 2020-09-03 株式会社東芝 Solid-state imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020141029A (en) * 2019-02-27 2020-09-03 株式会社東芝 Solid-state imaging device

Also Published As

Publication number Publication date
JP2904180B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
JP2001267548A (en) Solid-state image pickup device
EP0866502A2 (en) Architecture for a CCD-imager with multiple readout registers
JPH06121238A (en) Ccd imaging element
JP2943714B2 (en) Solid-state imaging device
GB2244863A (en) CCD image sensor
JP2001053267A (en) Solid-state image sensing element and its driving method and camera system
JP2904180B2 (en) Driving method of charge transfer device
JP3509184B2 (en) Driving method of solid-state imaging device
JP3042042B2 (en) Solid-state imaging device
JPS62208668A (en) Charge transfer type solid-state image sensing element
JPS5838026B2 (en) color signal generator
JPH0130306B2 (en)
JP2001060681A (en) Solid-state image pickup device and method for driving the same
JP3397151B2 (en) Driving method of solid-state imaging device
JPS59122085A (en) Solid-state image pickup element
JP2825075B2 (en) Solid-state imaging device and driving method thereof
JP5525327B2 (en) Pixel peripheral recording type imaging device and imaging device
JPH06268923A (en) Drive method for solid-state image pickup device
JP3158324B2 (en) Driving method of solid-state imaging device
JP2500438B2 (en) Solid-state image sensor and driving method thereof
JP2768324B2 (en) Solid-state imaging device and driving method thereof
JPH0324873A (en) Solid-state image pickup device
JPS63234677A (en) Drive method of charge coupling element
JPH0451116B2 (en)
JPS60244064A (en) Solid-state image pickup device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990223

LAPS Cancellation because of no payment of annual fees