JPH0324873A - Solid-state image pickup device - Google Patents
Solid-state image pickup deviceInfo
- Publication number
- JPH0324873A JPH0324873A JP1158732A JP15873289A JPH0324873A JP H0324873 A JPH0324873 A JP H0324873A JP 1158732 A JP1158732 A JP 1158732A JP 15873289 A JP15873289 A JP 15873289A JP H0324873 A JPH0324873 A JP H0324873A
- Authority
- JP
- Japan
- Prior art keywords
- charge transfer
- charge
- section
- transfer
- transfer section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009825 accumulation Methods 0.000 claims abstract description 24
- 238000003384 imaging method Methods 0.000 claims description 19
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 230000002457 bidirectional effect Effects 0.000 abstract 2
- 239000011159 matrix material Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は受光部で発生する信号電荷を電荷転送部で転送
する固体撮像装置に関し、特に取り扱い電荷量を改善し
たものである.
〔発明の概要〕
本願の第1の発明は、複数の受光部からの電荷を第1及
び第2の電荷転送部のそれぞれを介して転送する固体撮
像装置において、受光部に対応して第2の電荷転送部の
電荷を一時的に蓄積する複数の電荷蓄積部を設け、その
電荷蓄積部で複数回分の電荷をで加算することにより、
その取り扱い電荷量を増大させるものである.
また、本願の第2の発明は、受光部から電荷転送部への
転送が読み出しゲートにより制御される固体撮像装置に
おいて、電荷の蓄積期間中、上記読み出しゲートを転送
状態にして電荷を上記電荷転送部に蓄積し、電荷の転送
期間中、上記読み出しゲートを遮断状態にすることによ
り、同様に取り扱い電荷量を増大させるものである.〔
従来の技術〕
ビデオカメラ,イメージリーダー等に用いられ、画像信
号を出力する固体撮像装置は、半導体微細加工技術の進
歩に伴って、その高解像度化が進められている.
ところで、固体撮像装置特にCCDイメージャは、半導
体基板上にフォトダイオードからなる受光部を有してお
り、この受光部で光電変換された信号電荷が電荷転送部
によって転送される.これら受光部と電荷転送部は基板
の表面に2次元的に配置される.
〔発明が解決しようとする課題〕
固体撮像装置の高解像度化を図る場合、各受光部や電荷
転送部等の微細化が行われる.すると、個々の受光部の
面積や電荷転送部の面積が縮小化されることになり、単
位セル当たりの取り扱い電荷量が低下する.このように
取り扱い電荷量が添加した時では、ダイナ稟ツクレンジ
が不足し、S/N比が劣化するという問題が生ずる.そ
こで、本発明は上述の技術的な課題に鑑み、取り扱い電
荷量を増大させ、高解像度化と高感度化を同時に実現さ
せるような固体撮像装置の提供を目的とする.
〔課題を解決するための手段〕
上述の目的を達威するための本願の第1の発明の固体撮
像装置は、複数の受光部と、それら受光部からの電荷を
転送する第1の電荷転送部と、その第1の電荷転送部か
らの電荷を転送する第2の電荷転送部と、その第2の電
荷転送部の側部に設けられ上記受光部に対応して上記第
2の電荷転送部の電荷を一時的に蓄積する複数の電荷蓄
積部を有し、上記受光部から転送された複数回分の電荷
を上記電荷蓄積部で加算することを特徴とする。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a solid-state imaging device in which a signal charge generated in a light receiving part is transferred by a charge transfer part, and in particular, the amount of charge handled is improved. [Summary of the Invention] A first invention of the present application provides a solid-state imaging device that transfers charges from a plurality of light receiving sections through first and second charge transfer sections, each of which has a second charge transfer section corresponding to the light receiving section. By providing a plurality of charge storage sections that temporarily store the charge of the charge transfer section, and adding the charges of multiple times in the charge storage section,
This increases the amount of charge handled. Further, a second invention of the present application is a solid-state imaging device in which transfer from a light receiving section to a charge transfer section is controlled by a readout gate, in which the readout gate is set in a transfer state during a charge accumulation period to transfer charges to the charge transfer section. During the charge transfer period, the readout gate is cut off, thereby increasing the amount of charge handled. [
[Background Art] Solid-state imaging devices used in video cameras, image readers, etc. and outputting image signals are becoming increasingly high-resolution along with advances in semiconductor microfabrication technology. Incidentally, a solid-state imaging device, particularly a CCD imager, has a light-receiving section made of a photodiode on a semiconductor substrate, and signal charges photoelectrically converted in the light-receiving section are transferred by a charge transfer section. These light receiving parts and charge transfer parts are arranged two-dimensionally on the surface of the substrate. [Problems to be solved by the invention] In order to increase the resolution of solid-state imaging devices, each light receiving section, charge transfer section, etc. are miniaturized. As a result, the area of each light-receiving section and the area of the charge transfer section are reduced, and the amount of charge handled per unit cell is reduced. When handling charges are added in this way, a problem arises in that the dynamic range is insufficient and the S/N ratio deteriorates. Therefore, in view of the above-mentioned technical problems, the present invention aims to provide a solid-state imaging device that increases the amount of charge handled and simultaneously achieves high resolution and high sensitivity. [Means for Solving the Problems] A solid-state imaging device of the first invention of the present application for achieving the above-mentioned object includes a plurality of light receiving sections and a first charge transfer device that transfers charges from the light receiving sections. a second charge transfer section that transfers charges from the first charge transfer section; and a second charge transfer section that is provided on a side of the second charge transfer section and corresponds to the light receiving section. The present invention is characterized in that it has a plurality of charge accumulation sections that temporarily accumulate charges of the light receiving section, and the charge accumulation sections add up the charges transferred from the light receiving section a plurality of times.
ここで、上記受光部は例えばマトリクス状或いはライン
状に配列される.受光部がマトリクス状に配列される場
合、第1の電荷転送部は受光部の垂直列に沿って形成で
き、第2の電荷転送部の転送方向も垂直方向とすること
ができる.この場合、第2の電荷転送部の端部には、水
平電荷転送部を設けることができ、或いは蓄積レジスタ
部を介して水平電荷転送部を設けても良い.上記電荷蓄
積部の容量は、受光部や電荷転送部の容量よりも大きく
されることが好ましい。上記複数回は2以上の回数であ
って、限定されるものではない.また、本願の第2の発
明の固体撮像装置は、前述の如き複数の受光部と、それ
ら受光部からの電荷を転送する電荷転送部と、その電荷
転送部と上記受光部の間に形威された読み出しゲートと
を有する.マトリクス状に受光部が配列されるものでは
、水平電荷転送部や一時蓄積用の第2の電荷転送部等を
設けることができる。そして、本発明は、電荷の141
1期間中、上記読み出しゲートを転送状態にして電荷を
上記電荷転送部にM8lし、電荷の転送期間中、上記読
み出しゲートを遮断状態にすることを特徴とする。Here, the light receiving sections are arranged, for example, in a matrix or in a line. When the light receiving parts are arranged in a matrix, the first charge transfer parts can be formed along the vertical rows of the light receiving parts, and the transfer direction of the second charge transfer parts can also be in the vertical direction. In this case, a horizontal charge transfer section may be provided at the end of the second charge transfer section, or a horizontal charge transfer section may be provided via an accumulation register section. It is preferable that the capacitance of the charge storage section is larger than the capacitance of the light receiving section and the charge transfer section. The above-mentioned multiple times is 2 or more times, and is not limited. Further, the solid-state imaging device of the second invention of the present application includes a plurality of light receiving sections as described above, a charge transfer section that transfers charges from the light receiving sections, and a structure between the charge transfer section and the light receiving section. It has a readout gate. In the case where the light receiving sections are arranged in a matrix, a horizontal charge transfer section, a second charge transfer section for temporary storage, etc. can be provided. And, the present invention has a charge of 141
The present invention is characterized in that during one period, the readout gate is placed in a transfer state to transfer charges to the charge transfer section, and during the charge transfer period, the readout gate is placed in a cutoff state.
本願の第1の発明の固体撮像装置では、第2の電荷転送
部の側部に設けられた電荷蓄積部に、複数の回数分に応
じて倍増した電荷量が蓄積され、受光部や第1及び第2
の電荷転送部の取り扱い電荷量を増大させることなく、
その電荷転送の時分割によって取り扱い電荷量の増大が
図られることになる.
また、第2の発明の固体撮像装置では、電荷の蓄積期間
中は、読み出しゲートが転送状態にされ、受光部で発生
した信号電荷は電荷転送部にも流れ込むことになる。従
って、受光部のみならず電荷転送部も信号電荷が蓄積さ
れることになり、その取り扱い電荷量が増大し、感度を
高めることができる.また、電荷の転送期間中、上記読
み出しゲートを遮断状態にすることで、他の受光部との
間で電荷が混じることが防止される.
〔実施例〕
本発明の好適な実施例を図面を参照しながら説明する.
第1の実施例
本実施例の固体撮像装置は、第2の電荷転送部へ複数回
の電荷の転送を行うCCDイメージャの例である。In the solid-state imaging device of the first invention of the present application, the amount of charge doubled according to the plurality of times is accumulated in the charge storage section provided on the side of the second charge transfer section, and and second
without increasing the amount of charge handled by the charge transfer section.
The amount of charge handled can be increased by time-sharing the charge transfer. Furthermore, in the solid-state imaging device of the second aspect of the invention, the readout gate is placed in the transfer state during the charge accumulation period, and the signal charges generated in the light receiving section also flow into the charge transfer section. Therefore, signal charges are accumulated not only in the light receiving section but also in the charge transfer section, increasing the amount of charge handled and increasing sensitivity. Furthermore, by keeping the readout gate in a cut-off state during the charge transfer period, it is possible to prevent charges from being mixed with other light receiving sections. [Example] A preferred example of the present invention will be described with reference to the drawings. First Embodiment The solid-state imaging device of this embodiment is an example of a CCD imager that transfers charge a plurality of times to a second charge transfer section.
第1図にその構造を示す。このCCDイメージャ1は、
半導体基板を微細加工して形威されるものであり、第1
図に示すように、マトリクス状に所定間隔で並んだ複数
の受光部2が形威される。Figure 1 shows its structure. This CCD imager 1 is
It is shaped by microfabrication of a semiconductor substrate, and the first
As shown in the figure, a plurality of light receiving sections 2 are arranged in a matrix at predetermined intervals.
受光部2はフォトダイオードを有して入射光に応じた信
号電荷を発生させる.この受光部2の垂直列に沿って各
列毎に第1の電荷転送部3が形成される.この受光部2
と第1の電荷転送部3の関係は通常のインターライン転
送型CCDイメージ十のものと同じである.第1の電荷
転送部3は、所要の転送電極群が形成され、その転送電
極群に多相の転送クロック(IMΦ)を供給することで
電荷の転送が行われる.なお、図示を省略するが、受光
部2と第1の電荷転送部3の間には、読み出しゲートを
形威しても良く、その読み出しゲートにより受光部2と
第1の電荷転送部3の間の電荷の転送すなわち読み出し
を制御できる.各列の第1の電荷転送部3の転送方向の
端部には、それぞれ第2の電荷転送部4が形威される。The light receiving section 2 has a photodiode and generates a signal charge according to the incident light. A first charge transfer section 3 is formed for each column along the vertical columns of the light receiving sections 2. This light receiving section 2
The relationship between the charge transfer section 3 and the first charge transfer section 3 is the same as that of a normal interline transfer type CCD image. In the first charge transfer section 3, a required transfer electrode group is formed, and charge transfer is performed by supplying a multiphase transfer clock (IMΦ) to the transfer electrode group. Although not shown, a readout gate may be provided between the light receiving section 2 and the first charge transfer section 3, and the readout gate allows the light receiving section 2 and the first charge transfer section 3 to be It is possible to control the transfer, or readout, of the charge between the two. A second charge transfer section 4 is formed at each end of the first charge transfer section 3 in the transfer direction in each column.
第2の電荷転送部4は、第1の電荷転送部3と電気的に
接続し、同様に所要の転送電極群が形放され、その転送
電極群に多相の転送クロンク(STΦ)を与えることで
電荷の転送が行われる.これら第2の電荷転送部4の側
部には電荷蓄積部5が形威される.この電荷蓄積部5は
、各列の第2の電荷転送部4の間に設けられ、上記受光
部2の画素数に対応して配列される.この電荷蓄積部5
で複数回分の信号電荷が加算される.この電荷蓄積部5
と第2の電荷転送部4の間には電荷の転送が双方向に行
われる.その電荷蓄積部5と第2の電荷転送部4の間に
は、双方向の電荷の転送を制御するために、転送制御ゲ
ートを設けることができこの第2の電荷転送部4の転送
方向の端部には、さらに水平電荷転送部6がその端部と
それぞれ電気的に接続して設けられる.この水平電荷転
送部6は各列の第2の電荷転送部4の信号電荷を一水平
ライン毎に転送するためのものである.この水平電荷転
送部6にも、所要の転送クロックが供給される転送電極
によって、電荷が転送されて行く。The second charge transfer unit 4 is electrically connected to the first charge transfer unit 3, and similarly, a required transfer electrode group is released, and a multiphase transfer clock (STΦ) is applied to the transfer electrode group. This causes charge transfer. A charge storage section 5 is formed on the side of these second charge transfer sections 4. The charge storage sections 5 are provided between the second charge transfer sections 4 in each column, and are arranged in accordance with the number of pixels of the light receiving section 2. This charge storage section 5
The signal charges for multiple times are added up. This charge storage section 5
Charge transfer is performed bidirectionally between the charge transfer section 4 and the second charge transfer section 4. A transfer control gate can be provided between the charge storage section 5 and the second charge transfer section 4 in order to control charge transfer in both directions. A horizontal charge transfer section 6 is further provided at each end and electrically connected to each end. This horizontal charge transfer section 6 is for transferring the signal charges of the second charge transfer section 4 of each column for each horizontal line. Charges are also transferred to this horizontal charge transfer section 6 by a transfer electrode to which a required transfer clock is supplied.
この水平電荷転送部6の終端部には、電荷を電圧に換え
て出力するための出力バッファ7が形威されており、こ
の出力バッファ7からビデオ信号が出力される。なお、
上記受光部2以外の領域には、それぞれアルミニウム膜
等からなる遮光膜が形威される.
このような構造の本実施例のCCDイメージャは、ビデ
オ信号の垂直プランキング期間内に複数回の電荷蓄積部
5への電荷の転送を行う。この動作の一例について第2
図を参照して説明する.まず、第2図に示すように、信
号V mLKが立ち下がり、垂直プランキング期間T
8LKが開始したものとする.すると、垂直プランキン
グ期間T ltx中に、周期的に3度の読み出しバルス
Φllol+ΦR。!Φ,。,が第1の電荷転送部3の
転送電極に供給される.この各読み出しパルスΦ,。1
,Φ5。2,Φ7。,のタイミングで受光部2から第1
の電荷転送部3への電荷の転送が行われる。これら転送
時には、垂直プランキング期間以外の期間を蓄積期間と
して蓄積された信号電荷を3分割して読み出すため、例
えば各読み出しバルスΦ,。,,Φ,。2,ΦRO2の
レベルをtJ4節して1回分の取り扱い電荷を調整した
り、読み出しゲートのレベルを調節して読み出しゲート
のポテンシャルバリアの高さを調整したりできる.この
ように電荷量を3度に分けて転送できるため、第1の電
荷転送部3の取り扱い電荷量は1度に転送する場合に比
較して3分の1で良いことになる.
各読み出しバルスΦア。1.Φ8。2,Φ8。,のタイ
ミングの直後では、信号電荷が第1の電荷転送部3にあ
る.そこで、信号IMΦ,信号STΦに示すように、第
1及び第2の電荷転送部3.4の各転送電極に供給され
る信号を転送用のクロンク信号の状態にさせ、各期間T
.で第1の電荷転送部3と第2の電荷転送部4の連動に
よって、信号電荷を第2の電荷転送部4まで転送する.
そして、第2の電荷転送部4まで転送された信号電荷は
、図中それぞれ時刻Mのタイミングで、第2の電荷転送
部4の側部に設けられた電荷蓄積部5へ転送され、その
電荷蓄積部5で一時的に蓄積されて加算される.なお、
期間TILK中の最終の時刻Mのタイミングでは電荷蓄
積部5へ電荷を蓄積しなくとも良い.
このような3度の電荷蓄積部5への蓄積動作が行われた
後、電荷蓄積部5から再び第2の電荷転送部4への読み
出しがバルスΦPのタイミングで行われる.そして、垂
直プランキング期間TILKが終わり、映像期間中では
、第2の電荷転送部4からラインシフトパルスΦ1,に
より水平電荷転送部6に信号電荷が送られる.その水平
電荷転送部6に転送された電荷は、ラインシフトパルス
Φtsの間の期間に水平電荷転送部6中で転送され、最
終的に出力バッファ7から所要のビデオ信号が取り出さ
れる.
なお、上述の実施例では、受光部2から第1の電荷転送
部3への垂直プランキング期間内の電荷の転送回数を3
回としているが、これに限定されるものではない.
第2の実施例
本実施例の固体撮像装置は、上記第1の実施例の第2の
電荷転送部と水平電荷転送部の間に、第3の電荷転送部
を設けた構造のCCDイメージャの例である.
その構造を第3図に示す.このCCDイメージ+11は
、第1の実施例と同様に、半導体基板を微細加工して形
威されるものであり、マトリクス状に所定間隔で並んだ
複数の受光部12が形成される.受光部12はフォトダ
イオードを有して入射光に応じた信号電荷を発生させる
。この受光部12の垂直列に沿って各列毎に第1の電荷
転送部13が形威される.第1の電荷転送部l3は、所
要の転送電極群が形或され、その転送電極群に多相の転
送クロック(IMΦ)を供給することで電荷の転送が行
われる.なお、図示を省略するが、受光部12と第1の
電荷転送部13の間には読み出しゲートを形威しても良
い.
各列の第1の電荷転送部l3の転送方向の端部には、そ
れぞれ第2の電荷転送部l4が形威される.第2の電荷
転送部14は、第1の電荷転送部13と電気的に接続し
、同様に所要の転送電極群が形威され、その転送電極群
に多相の転送クロック(STΦ)を与えることで電荷の
転送が行われる。これら第2の電荷転送部l4の側部に
は電荷蓄積部l5が形成される.これら電荷蓄積部15
は、各列の第2の電荷転送部14の間に設けられ、上記
受光部l2の画素数に対応して配列される.これら電荷
蓄積部15で複数回分の電荷が加算れる.この電荷蓄積
部15と第2の電荷転送部l4の間には電荷の転送が双
方向に行われる。電荷蓄積部I5と第2の電荷転送部1
4の間の電荷の転送を制御するために転送制御ゲートを
設ける構造としても良い.
この第2の電荷転送部l4の転送方向の端部には、第3
の電荷転送部l8が形威される。この第3の電荷転送部
18は、第2の電荷転送部14と電気的に接続し、同様
に所要の転送電極群が形成され、その転送電極群に多相
の転送クロソク(ST2Φ)を与えることで電荷の転送
が行われる。At the terminal end of the horizontal charge transfer section 6, an output buffer 7 for converting charge into voltage and outputting it is formed, and a video signal is output from this output buffer 7. In addition,
A light-shielding film made of an aluminum film or the like is formed in each region other than the light-receiving section 2. The CCD imager of this embodiment having such a structure transfers charges to the charge storage section 5 multiple times within the vertical blanking period of the video signal. The second example of this operation is
This will be explained with reference to the figure. First, as shown in FIG. 2, the signal V mLK falls and the vertical blanking period T
Assume that 8LK has started. Then, during the vertical planking period T ltx, there are periodically three reading pulses Φllol+ΦR. ! Φ、. , is supplied to the transfer electrode of the first charge transfer section 3. This each read pulse Φ,. 1
, Φ5.2, Φ7. , from the light receiving section 2 to the first
Transfer of charges to the charge transfer unit 3 is performed. At the time of these transfers, the accumulated signal charges are divided into three parts and read out using a period other than the vertical blanking period as an accumulation period, so that, for example, each read pulse Φ. ,,Φ,. 2. The level of ΦRO2 can be adjusted by tJ4 to adjust the charge handled for one time, and the level of the readout gate can be adjusted to adjust the height of the potential barrier of the readout gate. Since the amount of charge can be transferred in three steps in this manner, the amount of charge handled by the first charge transfer section 3 can be reduced to one-third of the amount of charge that is transferred at one time. Each read pulse Φa. 1. Φ8.2, Φ8. Immediately after the timing of , the signal charge is present in the first charge transfer section 3. . Therefore, as shown in the signal IMΦ and the signal STΦ, the signals supplied to each transfer electrode of the first and second charge transfer sections 3.4 are made to be in the transfer clonk signal state, and each period T
.. Then, the signal charge is transferred to the second charge transfer section 4 by the first charge transfer section 3 and the second charge transfer section 4 working together.
Then, the signal charges transferred to the second charge transfer unit 4 are transferred to the charge storage unit 5 provided on the side of the second charge transfer unit 4 at the timing of time M in the figure, and the charges are transferred to the charge storage unit 5 provided on the side of the second charge transfer unit 4. The data are temporarily stored in the storage unit 5 and added. In addition,
It is not necessary to store charges in the charge storage section 5 at the final time M during the period TILK. After the accumulation operation in the charge storage section 5 is performed three times, reading from the charge storage section 5 to the second charge transfer section 4 is performed again at the timing of the pulse ΦP. Then, the vertical blanking period TILK ends, and during the video period, signal charges are sent from the second charge transfer section 4 to the horizontal charge transfer section 6 by the line shift pulse Φ1. The charges transferred to the horizontal charge transfer section 6 are transferred within the horizontal charge transfer section 6 during the period between the line shift pulses Φts, and a required video signal is finally taken out from the output buffer 7. In the above embodiment, the number of times charge is transferred from the light receiving section 2 to the first charge transfer section 3 within the vertical blanking period is set to 3.
However, it is not limited to this. Second Embodiment The solid-state imaging device of this embodiment is a CCD imager having a structure in which a third charge transfer section is provided between the second charge transfer section and the horizontal charge transfer section of the first embodiment. This is an example. Its structure is shown in Figure 3. Similar to the first embodiment, this CCD image +11 is formed by finely processing a semiconductor substrate, and a plurality of light receiving parts 12 arranged in a matrix at predetermined intervals are formed. The light receiving section 12 has a photodiode and generates a signal charge according to incident light. A first charge transfer section 13 is formed in each column along the vertical rows of the light receiving sections 12. In the first charge transfer section l3, a required transfer electrode group is formed, and charge transfer is performed by supplying a multiphase transfer clock (IMΦ) to the transfer electrode group. Although not shown, a readout gate may be provided between the light receiving section 12 and the first charge transfer section 13. A second charge transfer section l4 is formed at each end of the first charge transfer section l3 in the transfer direction of each column. The second charge transfer unit 14 is electrically connected to the first charge transfer unit 13, has a required transfer electrode group, and applies a multiphase transfer clock (STΦ) to the transfer electrode group. This causes charge transfer. Charge storage portions l5 are formed on the sides of these second charge transfer portions l4. These charge storage parts 15
are provided between the second charge transfer sections 14 in each column, and are arranged in accordance with the number of pixels of the light receiving section l2. These charge storage units 15 add charges for multiple times. Charge is transferred bidirectionally between the charge storage section 15 and the second charge transfer section l4. Charge storage section I5 and second charge transfer section 1
A structure may also be provided in which a transfer control gate is provided to control the transfer of charges between the two. At the end of the second charge transfer section l4 in the transfer direction, there is a third charge transfer section l4.
A charge transfer section l8 is implemented. This third charge transfer section 18 is electrically connected to the second charge transfer section 14, similarly has a required transfer electrode group formed therein, and applies a multiphase transfer cross (ST2Φ) to the transfer electrode group. This causes charge transfer.
この第3の電荷転送部1日は、次の水平電荷転送部l6
への電荷の転送の順番を待たせるために用いられ、フレ
ームインターライン型CCDの蓄積部の如き機能を有す
る。This third charge transfer section 1 is connected to the next horizontal charge transfer section l6.
It is used to wait for the turn of charge transfer to the CCD, and has a function similar to the storage section of a frame interline type CCD.
この第3の電荷転送部l8の電荷の転送方向の端部には
、水平電荷転送部16が電気的に接続して設けられる。A horizontal charge transfer section 16 is electrically connected to and provided at the end of the third charge transfer section l8 in the charge transfer direction.
この水平電荷転送部16は各列の第3の電荷転送部18
の信号電荷を一水平ライン毎に転送するためのものであ
る.この水平電荷転送部16にも、所要の転送クロンク
が供給される転送電極によって、電荷が転送されて行く
。この水平電荷転送部16の終端部には、電荷を電圧に
換えて出力するための出力バッファ17が形戒さ?てお
り、この出力バッファ17からビデオ信号が出力される
.なお、上記受光部l2以外の領域には所要の遮光膜が
形成される.
次に、このCCDイメージャの動作について第4図を参
照しながら説明する.本実施例のCCDイメージャでは
、受光部l2から第1の電荷転送部l3への電荷の転送
のタイξングが垂直プランキング期間以外の期間でも可
能となる。This horizontal charge transfer section 16 is a third charge transfer section 18 in each column.
This is to transfer the signal charge for each horizontal line. Charges are also transferred to this horizontal charge transfer section 16 by a transfer electrode to which a required transfer clock is supplied. At the terminal end of this horizontal charge transfer section 16, there is an output buffer 17 for converting charge into voltage and outputting it. A video signal is output from this output buffer 17. Note that a required light shielding film is formed in the area other than the light receiving portion l2. Next, the operation of this CCD imager will be explained with reference to FIG. In the CCD imager of this embodiment, the timing of charge transfer from the light receiving section l2 to the first charge transfer section l3 can be performed even during a period other than the vertical blanking period.
まず、第4図に示すように、垂直プランキング期間TI
LEの終了後、第1の電荷転送部13に供給される信号
IMΦとして、読み出しバルスΦ,■が第1の電荷転送
部13の転送電極に供給される.この読み出しパルスΦ
2■によって、受光部l2から第1の電荷転送部13に
電荷が読み出される.この第1の電荷転送部13への読
み出し動作の後、第1の電荷転送部13及び第2の電荷
転送部14の転送電極に共に転送クロック信号が与えら
れ、期間T.中に第1の電荷転送部13から第2の電荷
転送部14の電荷の転送が行われる。その第2の電荷転
送部14への転送の後、図中時刻Mのタイミングで、第
2の電荷転送部14から電荷蓄積部l5への電荷の蓄積
動作が行われる.このような受光部12から第1及び第
2の電荷転送部13.14を介した電荷蓄積部15への
転送動作は、本実施例のCCDイメージャでは、映像期
間中に繰り返しn回行われる。すなわち、このn回の繰
り返した転送によって、電荷蓄積部15でn回分の電荷
が加算される.その結果、取り扱い電荷量はn倍になる
ことになり、大きな取り扱い電荷量が得られることにな
る。また、次に説明する第3の電荷転送部18の機能に
より、本実施例の読み出しでは、受光部12からの転送
を垂直プランキング期間のみに行う必要がないため、映
像期間の均等な分割によって、取り扱い電荷量を増大さ
せることができる.そして、本実施例のCODイメージ
ャでは、読み出しのタイミングに対する受光部12の蓄
積期間を均等にでき、読み出しゲートやパルスのレベル
の調整等は不要である.
n回の繰り返した受光部12から電荷蓄積部15への転
送の後、信号STΦには、読み出しパルスΦPが与えら
れる.すると、電荷蓄積部l5に加算されていったn回
分の電荷は、第2の電荷蓄積部14に一度に戻される.
そのパルスΦPを与えた後、垂直プランキング期間T
ILX中の期間T2に、第2の電荷転送部l4から第3
の電荷転送部15への電荷の転送が行われる.その結果
、1フィールド分の信号電荷は、全部第3の電荷転送部
l8に移動させられたことになり、次の映像期間中では
第1及び第2の電荷転送部13.14において、再びn
回の電荷の転送が可能である。First, as shown in FIG. 4, the vertical planking period TI
After completion of LE, the read pulse Φ,■ is supplied to the transfer electrode of the first charge transfer unit 13 as the signal IMΦ supplied to the first charge transfer unit 13. This read pulse Φ
2), charges are read out from the light receiving section l2 to the first charge transfer section 13. After the read operation to the first charge transfer section 13, a transfer clock signal is applied to both the transfer electrodes of the first charge transfer section 13 and the second charge transfer section 14, and the transfer clock signal is applied to the transfer electrodes of the first charge transfer section 13 and the second charge transfer section 14, and the period T. During this period, charges are transferred from the first charge transfer section 13 to the second charge transfer section 14. After the transfer to the second charge transfer section 14, at the timing M in the figure, an operation of accumulating charges from the second charge transfer section 14 to the charge storage section l5 is performed. In the CCD imager of this embodiment, such a transfer operation from the light receiving section 12 to the charge storage section 15 via the first and second charge transfer sections 13 and 14 is repeatedly performed n times during the image period. That is, by repeating the transfer n times, charges for n times are added in the charge storage section 15. As a result, the amount of charge to be handled will be increased by n times, and a large amount of charge to be handled will be obtained. Furthermore, due to the function of the third charge transfer section 18, which will be explained next, in the readout of this embodiment, it is not necessary to transfer from the light receiving section 12 only during the vertical blanking period, so that the image period can be evenly divided. , the amount of charge handled can be increased. In the COD imager of this embodiment, the storage period of the light receiving section 12 can be made equal to the readout timing, and there is no need to adjust the readout gate or pulse level. After the transfer from the light receiving section 12 to the charge storage section 15 is repeated n times, a read pulse ΦP is applied to the signal STΦ. Then, the charges added to the charge storage section l5 n times are returned to the second charge storage section 14 all at once.
After applying the pulse ΦP, the vertical planking period T
During the period T2 during ILX, the second charge transfer unit l4 to the third
The charge is transferred to the charge transfer unit 15. As a result, all the signal charges for one field have been moved to the third charge transfer section l8, and during the next video period, they are transferred again to n in the first and second charge transfer sections 13.14.
Transfer of charge is possible.
このように第3の電荷転送部15まで、転送されて来た
電荷は、次の映像期間にラインシフトバルスΦ,,のタ
イミングで1水平ライン毎に水平電荷転送部l6に送ら
れ、それらラインシフトバルスΦL,の間の期間に水平
電荷転送部l6中を転送され、最終的に出力バッファ1
7から所要のビデオ信号が取り出される。The charges transferred to the third charge transfer unit 15 in this way are sent to the horizontal charge transfer unit l6 for each horizontal line at the timing of the line shift pulse Φ, during the next video period, and During the period between the shift pulses ΦL, the charges are transferred through the horizontal charge transfer unit l6, and are finally transferred to the output buffer 1.
The required video signal is taken out from 7.
このような第3の電荷転送部l8を水平電荷転送部l6
と第2の電荷転送部14の間に設けた本実施例のCCD
イメージャは、垂直プランキング期間中にのみ複数回の
電荷の転送が行われる分けではなく、lフィールド期間
中に、n回の電荷の転送が行われる.このため配線の遅
延等により短時間内に何回も転送することが困難な場合
でも、十分な読み出しが可能である.そして、そのn回
の読み出しにより、取り扱い電荷量がn倍になり、ダイ
ナミックレンジやS/N比を改善できることになる。Such a third charge transfer section l8 is called a horizontal charge transfer section l6.
and the second charge transfer section 14.
In the imager, charge is transferred n times during the 1-field period, rather than having multiple charge transfers performed only during the vertical blanking period. Therefore, even if it is difficult to transfer data multiple times within a short period of time due to wiring delays, etc., sufficient reading is possible. Then, by reading the data n times, the amount of charge to be handled is increased by n times, and the dynamic range and S/N ratio can be improved.
第3の実施例
本実施例は、受光部における電荷の蓄積期間に、読み出
しゲートを転送状態にして、電荷転送部を電荷の蓄積用
に用いるCCDイメージャの例である.
まず、その構造は、第5図に示すように、通常のフレー
ムインターライン転送型のCCDの構造を有する.すな
わち、CCDイメージャ3lは、半導体基板を微細加工
して形成されるものであり、マトリクス状に所定間隔で
並んだ複数の受光部32が形威され、受光部32はフォ
トダイオードを有して入射光に応じた信号電荷を発生さ
せる.これら受光部32の垂直列に沿って各列毎に第1
の電荷転送部33が形威される.各受光部32の周囲に
はチャンネルストッパー領域が形威され、各受光部32
と第1の電荷転送部33の間では読み出しゲートが形威
される.この読み出しゲートは転送電極の一部を用いた
構造とされ、3値レベルで駆動される転送電極に最も高
い電圧が印加された時に、読み出しゲートの部分のポテ
ンシャルバリアが低くなり、受光部32の電荷が第1の
電荷転送部33に読み出される.そして、受光部32か
らの電荷は、その読み出しゲートを介して第1の電荷転
送部33に転送される,なお、転送電極の一部を読み出
しゲートとする構造ではなく、独立の読み出しゲートを
有する構造とすることもできる.
第1の電荷転送部33は、所要の転送電極群が形威され
、その転送電極群に多相の転送クロック(IMΦ)を供
給することで電荷の転送が行われる.それら各列の第1
の電荷転送部33の転送方向の端部には、それぞれ第2
の電荷転送部34が形威される.第2の電荷転送部34
は、第1の電荷転送部33と電気的に接続し、同様に所
要の転送電極群が形威され、その転送電極群に多相の転
送クロック(STΦ)を与えることで電荷の転送が行わ
れる.第2の電荷転送部34には、第1の電荷転送部3
3から高速に電荷が転送されて、その電荷は当該第2の
電荷転送部34に一時的に蓄積される.
この第2の電荷転送部34の転送方向の端部には、さら
に水平電荷転送部36がその端部とそれぞれ電気的に接
続して設けられる。この水平電荷転送部36は各列の第
2の電荷転送部34の信号電荷を一水平ライン毎に転送
するためのものである.この水平電荷転送部36にも、
所要の転送クロックが供給される転送電極によって、電
荷が転送されて行く.この水平電荷転送部36の終端部
には、電荷を電圧に換えて出力するための出力バッファ
37が形成されており、この出力バッファ37からビデ
オ信号が出力される.なお、上記受光部32以外の領域
には、それぞれアルミニウム膜等からなる遮光膜が形威
される.
上述の如き構造を有する本実施例のCCDイメージャは
、次のように作動する.
まず、電荷の転送期間中では、読み出しゲートは遮断状
態とされる.すなわち、受光部32付近のポテンシャル
の状態は、第6図に示すように、読み出しゲートのポテ
ンシャルΦつ。。の障壁が高くされる.第1の電荷転送
部33のポテンシャル井戸Φ、に蓄積された電荷は多相
の転送クロックに従って転送されて行くが、その間読み
出しゲートのポテンシャルΦ.。。の障壁は高いままで
あり、他の受光部の電荷が混じるようなことはない.こ
の電荷の転送は、第1の電荷転送部33から第2の電荷
転送部34への転送であって、垂直プランキング期間に
行われることは、通常のフレームインターライン転送型
のCCDイメージャと同様である.
次に、電荷の蓄積期間では、読み出しゲートは?送状態
とされる.すなわち、受光部32付近のポテンシャルの
状態は、第7図に示すように、一読み出しゲートのポテ
ンシャルΦ.。。が受光部32のポテンシャルΦ門と同
じ程度の値となる.また、第1の電荷転送部33のポテ
ンシャル井戸Φ、も深くされる.このような転送状態は
、転送電極に高い電圧の.信号を供給することで可能で
ある.このポテンシャルの分布からは、受光部32で発
生する電荷は受光部32に蓄積されると共に第1の電荷
転送部33にも蓄積される.これは実質的に蓄積するた
めの容量が増大したことになり、取り扱い電荷量が増大
することを意味する.このような電荷の蓄積期間中の読
み出しゲートのポテンシャルΦ■。6を下げる動作は、
蓄積期間中に読み出しゲートにかかる転送電極に高いD
C電圧を与えることで行っても良く、受光部32が蓄積
を行っている期間に、周期的に読み出しゲートのポテン
シャルΦIIOGを下げるパルスを供給することで行う
ようにして良い.
なお、第2の電荷転送部34から水平1荷転送部36へ
の電荷の転送は、映像期間中に1水平ライン毎に行われ
る。Third Embodiment This embodiment is an example of a CCD imager in which the readout gate is placed in a transfer state during the charge accumulation period in the light receiving section, and the charge transfer section is used for charge accumulation. First, its structure is that of a normal frame interline transfer type CCD, as shown in FIG. That is, the CCD imager 3l is formed by finely processing a semiconductor substrate, and has a plurality of light receiving sections 32 arranged in a matrix at predetermined intervals. Generates signal charges in response to light. Along the vertical rows of these light receiving sections 32, the first
A charge transfer unit 33 is implemented. A channel stopper area is formed around each light receiving section 32, and each light receiving section 32 is provided with a channel stopper area.
A read gate is provided between the charge transfer section 33 and the first charge transfer section 33. This readout gate has a structure using a part of the transfer electrode, and when the highest voltage is applied to the transfer electrode driven at a ternary level, the potential barrier at the readout gate portion becomes low, and the light receiving part 32 The charges are read out to the first charge transfer section 33. The charge from the light receiving section 32 is transferred to the first charge transfer section 33 via the readout gate. Note that the structure is not such that a part of the transfer electrode is used as the readout gate, but has an independent readout gate. It can also be a structure. The first charge transfer unit 33 has a required transfer electrode group, and charges are transferred by supplying a multiphase transfer clock (IMΦ) to the transfer electrode group. the first in each of those columns
At the end of the charge transfer section 33 in the transfer direction, a second
A charge transfer unit 34 is implemented. Second charge transfer section 34
is electrically connected to the first charge transfer unit 33, a required transfer electrode group is formed in the same way, and charge transfer is performed by applying a multiphase transfer clock (STΦ) to the transfer electrode group. It will happen. The second charge transfer section 34 includes the first charge transfer section 3
Charge is transferred from the second charge transfer section 34 at high speed, and the charge is temporarily stored in the second charge transfer section 34. A horizontal charge transfer section 36 is further provided at each end of the second charge transfer section 34 in the transfer direction, electrically connected to each end. This horizontal charge transfer section 36 is for transferring the signal charges of the second charge transfer section 34 of each column for each horizontal line. This horizontal charge transfer section 36 also includes
Charges are transferred by the transfer electrodes that are supplied with the required transfer clock. An output buffer 37 is formed at the terminal end of the horizontal charge transfer section 36 for converting charge into voltage and outputting it, and a video signal is output from this output buffer 37. Note that a light-shielding film made of an aluminum film or the like is formed in each region other than the light-receiving portion 32. The CCD imager of this embodiment having the structure described above operates as follows. First, during the charge transfer period, the read gate is cut off. That is, the state of the potential near the light receiving section 32 is the readout gate potential Φ, as shown in FIG. . Barriers to this will be raised. The charges accumulated in the potential well Φ of the first charge transfer section 33 are transferred in accordance with the multiphase transfer clock, but during this time the potential well Φ of the read gate. . . The barrier remains high, and charges from other photodetectors do not mix. This charge transfer is from the first charge transfer section 33 to the second charge transfer section 34, and is carried out during the vertical blanking period, similar to a normal frame interline transfer type CCD imager. It is. Next, during the charge accumulation period, what about the readout gate? It is considered to be in a sending state. That is, the state of the potential near the light receiving section 32 is as shown in FIG. 7, as shown in FIG. . . is approximately the same value as the potential Φ gate of the light receiving section 32. Furthermore, the potential well Φ of the first charge transfer section 33 is also made deeper. Such a transfer state occurs when a high voltage is applied to the transfer electrode. This is possible by supplying a signal. From this potential distribution, the charges generated in the light receiving section 32 are accumulated in the light receiving section 32 and also in the first charge transfer section 33. This essentially means that the storage capacity has increased, meaning that the amount of charge to be handled increases. The readout gate potential Φ■ during such charge accumulation period. The action of lowering 6 is
A high D is applied to the transfer electrode across the readout gate during the storage period.
This may be done by applying a C voltage, or by periodically supplying a pulse that lowers the potential ΦIIOG of the readout gate during the period when the light receiving section 32 is performing accumulation. Note that charge transfer from the second charge transfer unit 34 to the horizontal charge transfer unit 36 is performed for each horizontal line during the video period.
このように本実施例のCCDイメージ中では、蓄積期間
中に、信号電荷が受光部32だけでなく、第1の電荷転
送部33にも蓄積されるため、その取り扱い電荷量が増
大する.その結果、ダイナミックレンジやS/N比の改
善がなされることになる。As described above, in the CCD image of this embodiment, signal charges are accumulated not only in the light receiving section 32 but also in the first charge transfer section 33 during the accumulation period, so that the amount of handled charges increases. As a result, the dynamic range and S/N ratio will be improved.
本発明の固体撮像装置は、第2の電荷転送部の側部の電
荷蓄積部へ複数回電荷を転送する構造や受光部と電荷転
送部の間の読み出しゲートを電荷の蓄積期間中に転送状
態としておく構戒により、その取り扱い電荷量を増大さ
せることができる.このため、高感度化,ダイナξツク
レンジの向上やS/N比の改善を図ることができる。The solid-state imaging device of the present invention has a structure in which charges are transferred multiple times to the charge accumulation section on the side of the second charge transfer section, and a readout gate between the light receiving section and the charge transfer section is placed in a transfer state during the charge accumulation period. By keeping it as such, the amount of charge it can handle can be increased. Therefore, it is possible to achieve higher sensitivity, an improvement in the dynamic range, and an improvement in the S/N ratio.
第1図は本発明の固体撮像装置の一例の平面構造を示す
模式図、第2図はその一例の動作を説明するためのタイ
ミングチャート、第3図は本発明の固体撮像装置の他の
一例の平面構造を示す模式図、第4図は上記他の一例の
動作を説明するためのタイミングチャートである.また
、第5図は本発明の固体撮像装置のさら4他の一例の平
面構造を示す模式図、第6図は上記さらに他の一例の転
送時の受光部付近のポテンシャルの状態を示すポテンシ
ャル分布図、第7図は上記さらに他の一例の蓄積時の受
光部付近のポテンシャルの状態を示すポテンシャル分布
図である.
1.11.31・・・CCDイメージャ2,12.32
・・・受光部
3,13.33・・・第1の電荷転送部4.14.14
・・・第2の電荷転送部5,15・・・電荷蓄積部
6,16.36・・・水平電荷転送部
7,17.37・・・出力バッファFIG. 1 is a schematic diagram showing the planar structure of an example of the solid-state imaging device of the present invention, FIG. 2 is a timing chart for explaining the operation of the example, and FIG. 3 is another example of the solid-state imaging device of the invention. FIG. 4 is a timing chart for explaining the operation of the other example described above. Further, FIG. 5 is a schematic diagram showing the planar structure of still another example of the solid-state imaging device of the present invention, and FIG. 6 is a potential distribution showing the state of the potential near the light receiving part during transfer of the above-mentioned still another example. 7 are potential distribution diagrams showing the state of the potential near the light-receiving section during accumulation in still another example of the above. 1.11.31...CCD imager 2, 12.32
... Light receiving section 3, 13.33... First charge transfer section 4.14.14
...Second charge transfer section 5, 15...Charge storage section 6, 16.36...Horizontal charge transfer section 7, 17.37...Output buffer
Claims (2)
する第1の電荷転送部と、その第1の電荷転送部からの
電荷を転送する第2の電荷転送部と、その第2の電荷転
送部の側部に設けられ上記受光部に対応して上記第2の
電荷転送部の電荷を一時的に蓄積する複数の電荷蓄積部
を有し、上記受光部から転送された複数回分の電荷を上
記電荷蓄積部で加算することを特徴とする固体撮像装置
。(1) A plurality of light receiving sections, a first charge transfer section that transfers charges from the light receiving sections, a second charge transfer section that transfers charges from the first charge transfer section, and a second charge transfer section that transfers charges from the first charge transfer section; A plurality of charge storage sections are provided on the sides of the charge transfer section and temporarily accumulate the charges of the second charge transfer section corresponding to the light reception section, and the charge storage section temporarily stores the charges of the second charge transfer section, which are transferred from the light reception section a plurality of times. A solid-state imaging device characterized in that the charges of are added in the charge storage section.
する電荷転送部と、その電荷転送部と上記受光部の間に
形成された読み出しゲートとを有し、電荷の蓄積期間中
、上記読み出しゲートを転送状態にして電荷を上記電荷
転送部に蓄積し、電荷の転送期間中、上記読み出しゲー
トを遮断状態にすることを特徴とする固体撮像装置。(2) It has a plurality of light receiving sections, a charge transfer section that transfers charges from the light receiving sections, and a readout gate formed between the charge transfer section and the light receiving section, and during the charge accumulation period, A solid-state imaging device, characterized in that the readout gate is placed in a transfer state to accumulate charge in the charge transfer section, and the readout gate is placed in a cutoff state during a charge transfer period.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1158732A JPH0324873A (en) | 1989-06-21 | 1989-06-21 | Solid-state image pickup device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1158732A JPH0324873A (en) | 1989-06-21 | 1989-06-21 | Solid-state image pickup device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0324873A true JPH0324873A (en) | 1991-02-01 |
Family
ID=15678123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1158732A Pending JPH0324873A (en) | 1989-06-21 | 1989-06-21 | Solid-state image pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0324873A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09181292A (en) * | 1995-12-27 | 1997-07-11 | Nec Corp | Solid state image pickup element and its drive method |
JP2008278477A (en) * | 2007-03-30 | 2008-11-13 | Panasonic Electric Works Co Ltd | Image pickup element |
JP2008277797A (en) * | 2007-03-30 | 2008-11-13 | Panasonic Electric Works Co Ltd | Imaging device |
-
1989
- 1989-06-21 JP JP1158732A patent/JPH0324873A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09181292A (en) * | 1995-12-27 | 1997-07-11 | Nec Corp | Solid state image pickup element and its drive method |
JP2008278477A (en) * | 2007-03-30 | 2008-11-13 | Panasonic Electric Works Co Ltd | Image pickup element |
JP2008277797A (en) * | 2007-03-30 | 2008-11-13 | Panasonic Electric Works Co Ltd | Imaging device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0313322B1 (en) | Solid-state image sensor having a plurality of horizontal transfer portions | |
EP0876053B1 (en) | Method for driving a solid state image sensor | |
US4661854A (en) | Transfer smear reduction for charge sweep device imagers | |
JPH0324873A (en) | Solid-state image pickup device | |
JP2554621B2 (en) | Solid-state imaging device | |
JP2001053267A (en) | Solid-state image sensing element and its driving method and camera system | |
US6785027B1 (en) | Method for driving a CCD solid-state imaging device | |
JPS6329872B2 (en) | ||
JP3397151B2 (en) | Driving method of solid-state imaging device | |
JP2799003B2 (en) | Driving method of solid-state image sensor | |
JPS59122085A (en) | Solid-state image pickup element | |
JPH0150156B2 (en) | ||
JP2904180B2 (en) | Driving method of charge transfer device | |
JPS63294081A (en) | Image pickup device | |
JP2662444B2 (en) | Solid-state imaging device and driving method thereof | |
JP3050223B2 (en) | Solid-state imaging device and driving method thereof | |
EP1073262A2 (en) | High speed image sensor | |
JPS5834996B2 (en) | Color Kotai Satsuzou Sochi | |
JPH01125073A (en) | Solid-state image pickup device | |
JP3303736B2 (en) | Driving method of solid-state imaging device | |
JP3248265B2 (en) | Solid-state imaging device | |
JPH0654245A (en) | Driving system for solid state image pickup element | |
JPH06343143A (en) | Driving method of solid-state image pickup element | |
JPH0773348B2 (en) | Driving method for two-dimensional CCD image sensor | |
JPH04117082A (en) | Method for driving solid-state image pickup element |