JPS62128173A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS62128173A
JPS62128173A JP60267204A JP26720485A JPS62128173A JP S62128173 A JPS62128173 A JP S62128173A JP 60267204 A JP60267204 A JP 60267204A JP 26720485 A JP26720485 A JP 26720485A JP S62128173 A JPS62128173 A JP S62128173A
Authority
JP
Japan
Prior art keywords
charge
electrode
pulse
charge storage
storage section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60267204A
Other languages
Japanese (ja)
Inventor
Takao Kon
昆 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60267204A priority Critical patent/JPS62128173A/en
Publication of JPS62128173A publication Critical patent/JPS62128173A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To supply the charge transfer parts with reading-out charge to fade out any residual image by a method wherein electrodes to capacity-couple with charge accumulating parts are provided through the intermediary of an insulating layer to be impressed with pulse voltage synchronized with signal reading-out pulse. CONSTITUTION:Vertical CCDs comprising n<+> type buried channel CCD and charge accumulating diodes 12 comprising pn junction are adjacently formed on a semiconductor substrate 10 e.g. a part of P-type silicon substrate. Then an insulating film 14 to insulate transfer electrodes 13 is formed together with the transfer electrodes 13 to expose a part of charge accumulating diodes 12 on the n<+> type regions. Next, the transfer electrodes 13 are externally impressed with specified pulse. Through these procedures, the charge in the charge accumulating diodes 12 can be transferred to the vertical CCD 11 to be transferred successively in one direction by impressing the transfer electrodes 13 with charge reading-out pulse.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光導電膜を積層させた形の固体撮像装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a solid-state imaging device in which photoconductive films are laminated.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

光電変換を光導電膜で行なう固体撮像装置は開口率を大
きく取れるために高い感度を持つ。また入射光量の多く
は光導電膜内で吸収されるため、Si基板内部での電荷
の発生が少なく低スミアという特徴を有する。更に光導
電膜の種類により分光感度も自由に選べるため、最近、
アモルファスシリコン膜、Zn1−ウCd)(To膜等
を積層させた固体撮像装置の開発が進んでいる。
Solid-state imaging devices that perform photoelectric conversion using a photoconductive film have high sensitivity because they have a large aperture ratio. Furthermore, since most of the amount of incident light is absorbed within the photoconductive film, less charge is generated within the Si substrate, resulting in low smear. Furthermore, the spectral sensitivity can be freely selected depending on the type of photoconductive film, so recently,
Development of solid-state imaging devices in which amorphous silicon films, Zn1-Cd) (To films, etc.) are laminated is progressing.

この種の固体撮像装置の一例としては、′d!荷蓄積部
と電荷転送部とを有する半導体基板例えばCCD上に、
光導電膜と透明電極を順次積層させた形の構造のものが
ある。即ち、半導体基板に形成され一画素ごとに分離さ
れた電荷蓄積部となるダイオード領域に接続された画素
電極を半導体基板上に設け、この画素電極上に光導電膜
を形成し、更に光導電膜上に透明電極を設けている。そ
して光導電膜で発生した電荷を一定期間、電荷蓄積部に
蓄積した後、電荷蓄積部の電荷を電荷転送部により出力
端子に順次転送して1画像信号として読み出す。
An example of this type of solid-state imaging device is 'd! On a semiconductor substrate, such as a CCD, having a charge storage section and a charge transfer section,
Some have a structure in which a photoconductive film and a transparent electrode are sequentially laminated. That is, a pixel electrode connected to a diode region formed on the semiconductor substrate and serving as a charge storage section separated for each pixel is provided on the semiconductor substrate, a photoconductive film is formed on this pixel electrode, and a photoconductive film is further formed on the pixel electrode. A transparent electrode is provided on top. After the charges generated in the photoconductive film are accumulated in the charge storage section for a certain period of time, the charges in the charge accumulation section are sequentially transferred to the output terminal by the charge transfer section and read out as one image signal.

ところでこの固体撮像装置は、電荷桁積部から電荷転送
部への信号電荷の移送が不完全転送モードで行なわれる
ため、信号電荷の一部が電荷蓄積部に取り残される。こ
の取り残された電荷が残他の原因となり、画質に悪影響
をもたらす。特に低照度での撮像の場合、この残像は数
フィールドにも及ぶ。
By the way, in this solid-state imaging device, since the signal charge is transferred from the charge accumulation section to the charge transfer section in an incomplete transfer mode, a part of the signal charge is left behind in the charge storage section. This left-over charge causes residual charges and adversely affects image quality. Particularly in the case of imaging at low illuminance, this afterimage extends over several fields.

〔発明の目的〕[Purpose of the invention]

装置の提供を目的とする。 The purpose is to provide equipment.

〔発明の概要〕[Summary of the invention]

即ち本発明は、絶縁層を介して電荷蓄積部と容斌結合す
る電極を設け、この電極に電荷蓄積部から電荷転送部に
信号電荷を移送する信号電荷読み出しパルスと同期した
パルス電圧を印加し、蓄積部電位を下げ、信号電荷読み
出しの際取り残された電荷を転送部へ移送させることを
特徴とする光導電膜積層型の固体撮像装置である。
That is, the present invention provides an electrode that is capacitively coupled to the charge storage section through an insulating layer, and applies a pulse voltage to this electrode that is synchronized with a signal charge read pulse that transfers the signal charge from the charge storage section to the charge transfer section. , a photoconductive film stacked solid-state imaging device characterized by lowering the potential of the storage section and transferring the charges left behind during signal charge readout to the transfer section.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細を図面を参照して説明する。 The details of the present invention will be explained below with reference to the drawings.

第1図は本発明の一実施例を示す図である。これからこ
の実施例を製造工程に従って説明する。
FIG. 1 is a diagram showing an embodiment of the present invention. This embodiment will now be described according to the manufacturing process.

まず半導体基板(10)例えばP型シリコン基板の一面
には、n+型の埋め込みチャンネルCCDからなる垂直
CCD (11)と、pn接合からなる電荷蓄積ダイオ
ード(12)が隣接して形成されている。そして転送電
極(13)を絶縁するための絶縁膜(14)が、電荷蓄
積ダイオード(12)のn十型領域上の一部が露出する
ように転送電極(13)とともに形成されている。こう
して半導体基板(10)には、電荷蓄積部や電荷転送部
が形成される。なお転送電極(13)には外部から所定
のパルスが印加されるようになっており、電荷読み出し
パルスを転送電極(13)に印加することにより電荷蓄
積ダイオード(12)内の電荷を垂直COD (11)
に移した後、順次一方向に転送できる。そして半導体基
板(10)上に一部が電荷蓄積ダイオード(12)即ち
電荷蓄積部に接触するように、例えばアルミニウムから
なる第1電極(15)が互いに分離して形成されている
。また第1電極(15)上には、例えばポリイミドから
なる絶縁層(16)が形成されて、平滑化がなされてい
る。この絶縁層(16)の形成は2回にわたって行なわ
れ、まず1回目の形成により半導体基板(10)の表面
をある程度率らにした後1例えばアルミニウムからなる
電極(17)を形成し、更に2回目の形成を行なって、
電極(17)は絶縁層(16)内に埋め込まれた形にな
っている。なお電極(17)は、後述する第2電極(1
8)と対向する位置に形成され、パルス電圧を印加する
ための外部電源(19)につながっている。そして絶縁
層(16)にコンタクトホール(20)が設けられ、絶
縁層(16)上に所定の間隔をおいて例えばアルミニウ
ムからなる第2電極(18)が形成されている。なお第
2電極(18)はコンタクトホール(20)を介して第
1電極(15)と電気的に接続されている。
First, on one surface of a semiconductor substrate (10), for example a P-type silicon substrate, a vertical CCD (11) consisting of an n+ type buried channel CCD and a charge storage diode (12) consisting of a pn junction are formed adjacent to each other. An insulating film (14) for insulating the transfer electrode (13) is formed together with the transfer electrode (13) so that a part of the n+ type region of the charge storage diode (12) is exposed. In this way, a charge storage section and a charge transfer section are formed in the semiconductor substrate (10). Note that a predetermined pulse is applied to the transfer electrode (13) from the outside, and by applying a charge read pulse to the transfer electrode (13), the charge in the charge storage diode (12) is converted into a vertical COD ( 11)
can be transferred in one direction sequentially. First electrodes (15) made of, for example, aluminum are formed separately from each other on the semiconductor substrate (10) so that a portion thereof contacts the charge storage diode (12), that is, the charge storage section. Further, an insulating layer (16) made of polyimide, for example, is formed on the first electrode (15) to smooth it. The formation of this insulating layer (16) is carried out twice: first, after the surface of the semiconductor substrate (10) is made somewhat rough by the first formation, an electrode (17) made of, for example, aluminum is formed; After the second formation,
The electrode (17) is embedded within the insulating layer (16). Note that the electrode (17) is a second electrode (17), which will be described later.
8), and is connected to an external power source (19) for applying a pulse voltage. A contact hole (20) is provided in the insulating layer (16), and a second electrode (18) made of, for example, aluminum is formed on the insulating layer (16) at a predetermined interval. Note that the second electrode (18) is electrically connected to the first electrode (15) via a contact hole (20).

そして第2電極(18)上には、光導電膜(21)例え
ばi型の水素化非晶質シリコン、バリア層(22)例え
ばp型の水素化非晶質シリコンカーバイト及び例えばI
T○からなる透明電極(23)が順次形成されている。
And on the second electrode (18) there is a photoconductive film (21) such as i-type hydrogenated amorphous silicon, a barrier layer (22) such as p-type hydrogenated amorphous silicon carbide and, for example, I
Transparent electrodes (23) made of T◯ are sequentially formed.

ここでバリア層(22)は、透明電極(23)からの電
荷の注入を阻止する働きをもっている。また透明電極(
23)は光導電膜(21)にバイアス電圧を与えるため
に、外部電源(24)につながっている。
Here, the barrier layer (22) has the function of blocking charge injection from the transparent electrode (23). Also, transparent electrode (
23) is connected to an external power source (24) in order to apply a bias voltage to the photoconductive film (21).

次にこの実施例の動作を第2図と第3図を用いて説明す
る。ここで第2図はこの実施例における転送電極(13
)と電極(17)に印加するパルス波形を示す図であり
、同図(a)は転送電極(13)に印加するパルスタイ
ミング、同図(b)は電極(17)に印加するパルスタ
イミングを表わしている。また第3図(a)〜(e)は
第2図に示した時間t1〜t、における電荷蓄積部、電
荷転送部及びこの両者の間の電位の変化を示す図である
Next, the operation of this embodiment will be explained using FIGS. 2 and 3. Here, FIG. 2 shows the transfer electrode (13) in this embodiment.
) and the pulse waveform applied to the electrode (17), in which (a) shows the pulse timing applied to the transfer electrode (13), and (b) shows the pulse timing applied to the electrode (17). It represents. Further, FIGS. 3(a) to 3(e) are diagrams showing changes in the charge storage section, the charge transfer section, and the potential between the two during times t1 to t shown in FIG. 2.

第2図(a)において、Aは電荷転送パルス、Bは信号
読み出しパルスであり1例えば時間t2では、電荷蓄積
部から電荷転送部への信号電荷の読み出しが行なわれて
いる状態にある。また第2図(b)かられかるように、
電極(17)には信号読み出しパルスBと同期したパル
ス電圧C1即ち通常は電圧Vaであるが時間1..1.
の間の途中から時間t、までは電圧vbとなるパルス電
圧が印加されている。
In FIG. 2(a), A is a charge transfer pulse, B is a signal readout pulse, and, for example, at time t2, signal charges are being read from the charge storage section to the charge transfer section. Also, as can be seen from Figure 2(b),
The electrode (17) is supplied with a pulse voltage C1 synchronized with the signal readout pulse B, that is, normally the voltage Va, but at a time of 1. .. 1.
A pulse voltage of voltage vb is applied from the middle of the period to time t.

いま第1図に示した固体撮像装置において、光電変換を
行なう光導電膜(21)に光が入射したとする。すると
入射光により光導電膜(21)で発生していた信号電荷
は電荷蓄積ダイオード(12)即ち電荷蓄積部に蓄積さ
れるが、第3図(a)に示すように、時間t工では電荷
蓄積部に信号電荷Qsigが蓄積されていてその電位は
Vsとなっている。なお同図(a)において、 Vdは
信号電荷が蓄積され始めるときの電位であり、この電位
は電1’ffi (17)に印加する電圧Vaで設定さ
れる。次に時間t2では、信号読み出しパルスBがON
の状態であり、信号電荷が電荷転送部へ移送される。し
かしこの動作は不完全転送モードで行なわれるため、第
3図(b)に示すように、電荷蓄積部にはQc、の電荷
が取り残されてその電位はvLとなっており、この取り
残し電荷が残像の原因となる。そこで信号読み出しパル
スBがまだONである時間t3には、電極(17)にパ
ルス電圧Cを印加し、電圧をvbまで下げた状態にする
。すると電極(17)は絶縁層(16)内で第2電極(
18)と対向する位置にある構造上、電荷蓄積部と容量
結合しており、前述の電圧変化により電荷蓄積部の電位
は低下し、第3図(c)に示すように、取り残し電荷Q
Lは電荷転送部へと流れ出す。このときの電荷蓄積部の
電位減少分はvbで決定されるが、vb−■、だけの電
位を減少させればよい。こうして取り残し電荷QLは電
荷転送部へ流れ出し、信号の読み、残しはなくなるが、
この動作も不完全転送モードで行なわれるため、第3図
(c)に示すように、電荷蓄積部の電位はVLになって
いる。しかし時間t4即ち信号読み出しパルスがOFF
になったときに、第3図(d)に示すように電荷転送部
の電位が下がり1時間t、即ち電極(17)の電圧がv
bがらVaに上昇したとき、電荷蓄積部の電位はVd 
−Vしたけ上昇するため、第3図(e)に示すように、
電荷蓄積部の電位は再びVdとなる。そしてこの電位V
dの状態がら、次のフィールドの信号電荷の蓄積が始ま
る。
Assume that in the solid-state imaging device shown in FIG. 1, light is incident on a photoconductive film (21) that performs photoelectric conversion. Then, the signal charge generated in the photoconductive film (21) by the incident light is accumulated in the charge storage diode (12), that is, the charge storage part, but as shown in FIG. A signal charge Qsig is accumulated in the accumulation section, and its potential is Vs. In FIG. 3A, Vd is the potential at which signal charges begin to be accumulated, and this potential is set by the voltage Va applied to the voltage 1'ffi (17). Next, at time t2, signal read pulse B is turned ON.
The signal charge is transferred to the charge transfer section. However, since this operation is performed in incomplete transfer mode, as shown in FIG. 3(b), the charge Qc is left behind in the charge storage section and its potential becomes vL. This may cause afterimages. Therefore, at time t3 while the signal readout pulse B is still ON, a pulse voltage C is applied to the electrode (17) to lower the voltage to vb. Then, the electrode (17) becomes the second electrode (
18), it is capacitively coupled to the charge storage section due to its structure, and due to the voltage change described above, the potential of the charge storage section decreases, and as shown in FIG. 3(c), the remaining charge Q
L flows out to the charge transfer section. The potential reduction of the charge storage section at this time is determined by vb, but it is sufficient to reduce the potential by vb-■. In this way, the leftover charge QL flows to the charge transfer section, and the signal can be read and no leftover charge is left.
Since this operation is also performed in the incomplete transfer mode, the potential of the charge storage section is at VL, as shown in FIG. 3(c). However, at time t4, the signal read pulse is OFF.
As shown in FIG. 3(d), the potential of the charge transfer section decreases for one hour t, that is, the voltage of the electrode (17) becomes v.
When b rises to Va, the potential of the charge storage section becomes Vd
-V increases, as shown in Figure 3(e),
The potential of the charge storage section becomes Vd again. And this potential V
In state d, accumulation of signal charges for the next field begins.

この実施例では、電極(17)に信号読み出しパルスB
と同期したパルス電圧を印加することにより、電荷蓄積
部に読み残した電荷を除去することができて残像は減少
し、不完全転送モードによる影響をなくすことができる
。。
In this embodiment, the signal readout pulse B is applied to the electrode (17).
By applying a pulse voltage synchronized with , it is possible to remove charges left unread in the charge storage section, reduce afterimages, and eliminate the effects of incomplete transfer mode. .

〔発明の他の実施例〕[Other embodiments of the invention]

第4図は本発明の他の実施例を示す図であり、第1図と
対応する部分には同一の符号を付しである。この実施例
は第1図に示した実施例と比べ、電極(17)の位置が
異なっている。即ち電極(17)は、第2電極(18)
間の間隙の下部で電荷蓄積ダイオード(12)と対向す
る位置に設けられている。そして転送電極(13)及び
電極(17)には、同じく第2図に 1示すようなパル
ス電圧が印加されている。
FIG. 4 is a diagram showing another embodiment of the present invention, and parts corresponding to those in FIG. 1 are given the same reference numerals. This embodiment differs from the embodiment shown in FIG. 1 in the position of the electrode (17). That is, the electrode (17) is the second electrode (18)
The charge storage diode (12) is provided at a position facing the charge storage diode (12) at the bottom of the gap between the two. A pulse voltage as shown at 1 in FIG. 2 is also applied to the transfer electrode (13) and the electrode (17).

この実施例は、電極(17)が電荷蓄積部と容量結合し
ているため、第1図に示した実施例と同様の効果がある
ばかりでなく、第2電極(18)間の間隙を通って半導
体基板(10)に達する入射光を電極(17)によりあ
る程度まで阻止することができ、スミアの発生を抑えら
れる。
In this embodiment, since the electrode (17) is capacitively coupled to the charge storage section, it not only has the same effect as the embodiment shown in FIG. Incident light reaching the semiconductor substrate (10) can be blocked to some extent by the electrode (17), and the occurrence of smear can be suppressed.

なお電極(17)を設ける位置は、第1図や第4図に示
した位置に限らず、絶縁層(16)内で電荷蓄積部と容
量結合する位置、即ち第1電極(15)或いは第2電極
(18)と絶縁層(16)を介して対向する位置であれ
ばよいことは言うまでもない。
Note that the position where the electrode (17) is provided is not limited to the positions shown in FIGS. Needless to say, it is sufficient that the two electrodes (18) face each other with the insulating layer (16) in between.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の固体撮像装置は。 As explained above, the solid-state imaging device of the present invention is provided.

絶縁層を介して電荷蓄積部と容量結合する電極を設け、
この電極に信号読み出しパルスと同期したパルス電圧を
印加することにより、読み残し電荷を電荷転送部へ流し
込み、残像を減少させることができる。
Providing an electrode that capacitively couples with the charge storage part through an insulating layer,
By applying a pulse voltage synchronized with the signal readout pulse to this electrode, unread charges can be caused to flow into the charge transfer section, thereby reducing afterimages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は第1
図に示した実施例における転送電極等に印加するパルス
波形の一例を示す図、第3図は第1図に示した実施例に
おける電荷蓄積部と電荷転送部の電位の変化の一例を示
す図、第4図は本発明の他の実施例を示す断面図である
。 (10)・・・半導体基板 (15)・・・第1電極 (16)・・・絶縁層 (17)・・・電極 (18)・・・第2電極 (21)・・・光導電膜 (23)・・・透明電極 代理人 弁理士 則 近 憲 佑 同  大胡典夫 第  1  凶 第2図 第  3  図 第4図
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG.
FIG. 3 is a diagram showing an example of a pulse waveform applied to the transfer electrode etc. in the embodiment shown in FIG. , FIG. 4 is a sectional view showing another embodiment of the present invention. (10)...Semiconductor substrate (15)...First electrode (16)...Insulating layer (17)...Electrode (18)...Second electrode (21)...Photoconductive film (23)... Transparent electrode representative Patent attorney Nori Chika Ken Yudo Norio Ogo 1st figure 2nd figure 3rd figure 4th figure

Claims (2)

【特許請求の範囲】[Claims] (1)電荷蓄積部と電荷転送部が形成された半導体基板
と、前記電荷蓄積部に接触するように互いに分離して形
成された第1電極と、この第1電極上を平滑化する絶縁
層と、前記第1電極と電気的に接続され且つ前記絶縁層
上に所定の間隔をおいて形成された第2電極と、この第
2電極上に形成された光導電膜と、この光導電膜上に形
成された透明電極とを備えた固体撮像装置において、前
記電荷蓄積部と容量結合するように前記絶縁層内に電極
を設け、前記電荷蓄積部から前記電荷転送部へ信号電荷
を読み出す信号読み出しパルスと同期したパルス電圧を
前記電極に印加することを特徴とする固体撮像装置。
(1) A semiconductor substrate on which a charge storage section and a charge transfer section are formed, a first electrode formed separately from each other so as to contact the charge storage section, and an insulating layer smoothing the top of the first electrode. a second electrode electrically connected to the first electrode and formed on the insulating layer at a predetermined interval; a photoconductive film formed on the second electrode; and a photoconductive film formed on the second electrode. In the solid-state imaging device, an electrode is provided in the insulating layer so as to be capacitively coupled to the charge storage section, and a signal is read out from the charge storage section to the charge transfer section. A solid-state imaging device characterized in that a pulse voltage synchronized with a read pulse is applied to the electrode.
(2)前記電極は前記第2電極間の間隙の下部に位置し
ていることを特徴とする特許請求の範囲第1項記載の固
体撮像装置。
(2) The solid-state imaging device according to claim 1, wherein the electrode is located below the gap between the second electrodes.
JP60267204A 1985-11-29 1985-11-29 Solid-state image pickup device Pending JPS62128173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60267204A JPS62128173A (en) 1985-11-29 1985-11-29 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60267204A JPS62128173A (en) 1985-11-29 1985-11-29 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS62128173A true JPS62128173A (en) 1987-06-10

Family

ID=17441573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60267204A Pending JPS62128173A (en) 1985-11-29 1985-11-29 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS62128173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1326278A2 (en) * 2002-01-07 2003-07-09 Xerox Corporation Image sensor with performance enhancing structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1326278A2 (en) * 2002-01-07 2003-07-09 Xerox Corporation Image sensor with performance enhancing structures
EP1326278A3 (en) * 2002-01-07 2004-03-10 Xerox Corporation Image sensor with performance enhancing structures

Similar Documents

Publication Publication Date Title
EP0365000B1 (en) CCD image sensor with vertical overflow drain
EP0214408A2 (en) Solid-state image sensor
US4688098A (en) Solid state image sensor with means for removing excess photocharges
US4462047A (en) Solid state imager with blooming suppression
JPS6156583A (en) Solid-state image pickup device
EP0073144A2 (en) Solid state image sensor
JPH0453149B2 (en)
US5739851A (en) Driving method for solid state imaging device
JP3285928B2 (en) Solid-state imaging device
JPS62128173A (en) Solid-state image pickup device
JPS6160592B2 (en)
JPS61294977A (en) Driving system for solid state image pickup device
JPS63164270A (en) Laminated type solid-state image sensing device
JP2790096B2 (en) Driving method and device for infrared solid-state imaging device
JPS6285579A (en) Driving method for solid-state image pickup device
JPS6048907B2 (en) Charge storage method in charge coupled devices
JPS61174765A (en) Solid image pickup device
JPS6148307B2 (en)
JP2818193B2 (en) Driving method of CCD solid-state imaging device
JP2758739B2 (en) Driving method of solid-state imaging device
JP2777162B2 (en) Driving method of solid-state imaging device
JPS60233986A (en) Drive method of solid-state image pickup device
JPS639429B2 (en)
JPS60163584A (en) Drive method of solid-state image pickup element
JPS6079773A (en) Solid-state image pickup device