JPS6285579A - Driving method for solid-state image pickup device - Google Patents

Driving method for solid-state image pickup device

Info

Publication number
JPS6285579A
JPS6285579A JP60224655A JP22465585A JPS6285579A JP S6285579 A JPS6285579 A JP S6285579A JP 60224655 A JP60224655 A JP 60224655A JP 22465585 A JP22465585 A JP 22465585A JP S6285579 A JPS6285579 A JP S6285579A
Authority
JP
Japan
Prior art keywords
charge
signal
electrode
pulse
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60224655A
Other languages
Japanese (ja)
Inventor
Takao Kon
昆 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60224655A priority Critical patent/JPS6285579A/en
Priority to EP85116384A priority patent/EP0186162B1/en
Priority to DE8585116384T priority patent/DE3570806D1/en
Priority to US06/813,466 priority patent/US4688098A/en
Publication of JPS6285579A publication Critical patent/JPS6285579A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress blooming and highlight afterimages by applying a stored excess charge to a pulse voltage in synchronizing with a signal charge reading pulse and making said excess charge flow to a charge control electrode. CONSTITUTION:When the intensive light is made incident on a photoconductive film 21, the produced signal charge is stored in a charge storing diode 12 of a storing part up to the maximum level prescribed by the voltage applied to a charge control electrode 17. This stored signal charge is read outside via a transfer part in response to a signal reading pulse. Here a pulse in synchronizing with the signal reading pulse is applied to the electrode 17 and the amount of the stored charge of the diode 12 is reduced. Then the stored charge partially flows out to the electrode 17 and the charge scarcely remains at the diode 12 and the transfer part after the charge is transferred. As a result, the blooming and the highlight afterimages are suppressed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光導電膜を積層させた形の固体撮像装置の駆動
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for driving a solid-state imaging device in which photoconductive films are stacked.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

光電変換を光導電膜で行なう固体撮像装置は開口率を大
きく取れるために高い感度を持つ。また入射光量の多く
は光導電膜内で吸収されるため、Si基板内部での電荷
の発生が少なく低スミアという特徴を有する。更に光導
電膜の種類により分光感度も自由に選べるため、最近、
アモルファスシリコン膜y Zr1l−x CdzTe
膜等・を積層させた固体撮像装置の開発が進んでいる。
Solid-state imaging devices that perform photoelectric conversion using a photoconductive film have high sensitivity because they have a large aperture ratio. Furthermore, since most of the amount of incident light is absorbed within the photoconductive film, less charge is generated within the Si substrate, resulting in low smear. Furthermore, the spectral sensitivity can be freely selected depending on the type of photoconductive film, so recently,
Amorphous silicon film y Zr1l-x CdzTe
Development of solid-state imaging devices with laminated films, etc. is progressing.

この種の固体撮像装置の一例としては、電荷転送機能を
有する半導体基板例えばCCD上に、光導電膜と透明電
極を順次積層させた形の構造のものがある。即ち、半導
体基板に形成され一画素ごとに分離されたダイオード領
域に接続された画素電極を半導体基板上に設け、この画
素電極上に光導電膜を形成し、更に光導電膜上に透明電
極を設けている。なお光導電膜が形成される表面を平滑
化するため、半導体基板の凹凸表面上に有機絶縁物或い
は無機絶縁物からなる絶縁層を形成することがある。
An example of this type of solid-state imaging device is one in which a photoconductive film and a transparent electrode are sequentially laminated on a semiconductor substrate having a charge transfer function, such as a CCD. That is, a pixel electrode connected to a diode region formed on the semiconductor substrate and separated for each pixel is provided on the semiconductor substrate, a photoconductive film is formed on the pixel electrode, and a transparent electrode is further formed on the photoconductive film. It is set up. Note that in order to smooth the surface on which the photoconductive film is formed, an insulating layer made of an organic or inorganic insulator may be formed on the uneven surface of the semiconductor substrate.

ところでこの固体撮像装置は、光導電膜の容量が電荷転
送部の容量よりも大きくなることが多い。
Incidentally, in this solid-state imaging device, the capacitance of the photoconductive film is often larger than the capacitance of the charge transfer section.

このため、強い光が入射すると、生じた信号電荷のうち
電荷転送部で転送し得る最大電荷量以上の電荷は、過剰
電荷として電荷転送部で−あふれ出したり、蓄積部に読
み残されたりする。これによりブルーミングやハイライ
ト残像という現象が生じ。
Therefore, when strong light is incident, the generated signal charges that exceed the maximum amount of charge that can be transferred by the charge transfer section overflow as excess charges at the charge transfer section or are left unread in the storage section. . This causes phenomena called blooming and highlight afterimages.

画質に悪影響をもたらす。This will have a negative effect on image quality.

そこでこのような問題を解決するために、例えば特開昭
59−270688号に提案された固体撮像装置では、
画素電極間の間隙に対応する位置に光導電膜とオーミッ
ク接触する電荷制御電極が設けられている。そして信号
電荷が電子の場合は、電荷制御電極に例えば光導電膜内
に過剰電荷が発生し始めるときの画素電極の電位以上の
電圧を印加することにより、過剰に生成した電荷は電荷
制御電極より流出する。こうしてブルーミングやハイラ
イト残像を抑制する。
In order to solve this problem, for example, the solid-state imaging device proposed in Japanese Patent Application Laid-Open No. 59-270688,
A charge control electrode is provided in ohmic contact with the photoconductive film at a position corresponding to the gap between the pixel electrodes. If the signal charge is an electron, for example, by applying a voltage higher than the potential of the pixel electrode when excess charge begins to be generated in the photoconductive film to the charge control electrode, the excessively generated charge can be removed from the charge control electrode. leak. In this way, blooming and highlight afterimages are suppressed.

ところが電荷制御電極には直流電圧を印加しているため
、信号電荷を蓄積している期間では前述したような効果
があるが、蓄積部から電荷転送部へ信号電荷を読み出し
ている期間中は蓄積部の電位が電荷制御電極の電位より
も高い状態となっているので、この期間に入射した光に
より生じた電荷は電荷制御電極へ流出することができず
、電荷転送部や蓄積部へ蓄積されてしまう。この結果、
蓄積部から電荷転送部へ信号電荷を読み出している期間
中に発生した電荷は、電荷転送部や蓄積部に取り残され
、ブルーミングやハイライ1〜残像が発生する原因とな
る。
However, since a DC voltage is applied to the charge control electrode, the above-mentioned effect occurs during the period when signal charges are being accumulated, but during the period when signal charges are being read from the storage section to the charge transfer section, the accumulation does not occur. Since the potential of the charge control electrode is higher than that of the charge control electrode, the charge generated by the incident light during this period cannot flow to the charge control electrode and is accumulated in the charge transfer section and the storage section. I end up. As a result,
Charges generated during a period in which signal charges are read from the storage section to the charge transfer section are left behind in the charge transfer section and the storage section, causing blooming and highlight 1 to afterimages to occur.

[発明の目的〕 本発明はこのような従来の欠点を解決するためになされ
たもので、発生した過剰電荷を完全に除去し、ブルーミ
ング及びハイライト残像を抑えることの可能な固体撮像
装置の駆動方法の提供を目的とする。
[Object of the Invention] The present invention has been made to solve these conventional drawbacks, and provides a driving method for a solid-state imaging device that can completely remove generated excess charge and suppress blooming and highlight afterimages. The purpose is to provide a method.

〔発明の概要〕[Summary of the invention]

即ち本発明は、光電変換を行なう光導電膜で発生した信
号電荷を蓄積部で蓄積した後、信号電荷の量を光導電膜
と電気的に接続された電荷制御電極により制御し電荷転
送部で転送してなる固体撮像装置の駆動方法に関し、蓄
積部から電荷転送部へ信号電荷を読み出す信号読み出し
パルスと同期したパルス電圧を電荷制御電極に印加し、
蓄積部に蓄積された過剰電荷を電荷制御電極へ流し出す
ことを特徴とする。
That is, in the present invention, after signal charges generated in a photoconductive film that performs photoelectric conversion are accumulated in an accumulation section, the amount of signal charges is controlled by a charge control electrode electrically connected to the photoconductive film, and the signal charges are transferred in a charge transfer section. Regarding a method of driving a solid-state imaging device formed by transferring, a pulse voltage is applied to a charge control electrode in synchronization with a signal readout pulse for reading out signal charges from an accumulation section to a charge transfer section;
The feature is that the excess charge accumulated in the accumulation section is flushed out to the charge control electrode.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細を図面を参照して説明する。 The details of the present invention will be explained below with reference to the drawings.

第3図は本発明を適用する固体撮像装置の一例を示す図
である。同図において、光電変換部■は水素化非晶質シ
リコン等の光導電膜と、この光導電膜上に形成された透
明電極例えばITOとを含む。また画素を形成する金属
よりなる画素電極■が蓄積部■と電気的に接続され、光
電変換部■で発生した信号電荷は蓄積部■に蓄積される
。そして垂直電荷転送部に)が蓄積部■に隣接していて
、蓄積された信号電荷は垂直電荷転送部に)を介して水
平電荷転送部(ハ)に転送される。更にこの信号電荷は
水平電荷転送部■に接続された映像信号出方部0に達し
て、映像信号として外部に取り出される。
FIG. 3 is a diagram showing an example of a solid-state imaging device to which the present invention is applied. In the figure, the photoelectric conversion section (2) includes a photoconductive film made of hydrogenated amorphous silicon or the like, and a transparent electrode, such as ITO, formed on the photoconductive film. Further, a pixel electrode (2) made of metal forming a pixel is electrically connected to the storage section (2), and signal charges generated in the photoelectric conversion section (2) are accumulated in the storage section (2). The vertical charge transfer section () is adjacent to the storage section (2), and the accumulated signal charges are transferred to the horizontal charge transfer section (C) via the vertical charge transfer section (). Further, this signal charge reaches the video signal output section 0 connected to the horizontal charge transfer section (2) and is taken out as a video signal.

第4図は第3図に示した固体撮像装置の画素断面図であ
る。同図において、半導体基板(10)例えばP型シリ
コン基板の一面には、n÷型の埋め込みチャンネルCC
Dからなる垂直C(: D (11)と、pn接合から
なる電荷蓄積ダイオード(I2)が隣接して形成されて
いる。そして転送電極(13)を絶縁するための絶縁膜
(14)が、電荷蓄積ダイオード(12)のn十型領域
上の一部が露出するように転送電極(13)とともに形
成されている。こうして半導体基板(10)には、蓄積
部や電荷転送部が形成される。
FIG. 4 is a cross-sectional view of a pixel of the solid-state imaging device shown in FIG. 3. In the figure, on one surface of a semiconductor substrate (10), for example, a P-type silicon substrate, there is an n÷-type buried channel CC.
A vertical C (11) consisting of D and a charge storage diode (I2) consisting of a pn junction are formed adjacent to each other.An insulating film (14) for insulating the transfer electrode (13) is The charge storage diode (12) is formed together with the transfer electrode (13) so that a part of the n-type region is exposed.In this way, a storage section and a charge transfer section are formed in the semiconductor substrate (10). .

なお転送電極(13)には外部から所定のパルスが印加
されるようになっており、電荷読み出しパルスを転送電
極(13)に印加することにより電荷蓄積ダイオード(
12)内の電荷を垂直COD (11)に移した後、順
次一方向に転送できる。そして半導体基板(lO)上に
一部が電荷蓄積ダイオード(12)即ち蓄積部に接触す
るように、例えばアルミニウムからなる第1電極(15
)が互いに分離して形成されている。
Note that a predetermined pulse is applied to the transfer electrode (13) from the outside, and by applying a charge readout pulse to the transfer electrode (13), the charge storage diode (
After the charges in 12) are transferred to the vertical COD (11), they can be sequentially transferred in one direction. A first electrode (15) made of, for example, aluminum is placed on the semiconductor substrate (lO) so that a part of the electrode is in contact with the charge storage diode (12), that is, the storage part.
) are formed separately from each other.

また第1電極(15)上には、例えばポリイミドからな
る絶縁層(工6)が形成されて、平滑化がなされている
。この絶縁層(16)の形成は2回にわたって行なわれ
、まず1回目の形成により半導体基板(10)り の凹凸面を平滑化した後、例えばアルミニエムからなる
電荷制御電極(17)を形成し、更−に2回目の形成を
行なって、電荷制御電極(17)は絶縁層(16)内に
埋め込まれた形になっている。なお電荷制御電極(17
)は、後述する画素電極(18)間の間隙に対応する位
置に形成され、パルス電圧を印加するための外部電源(
19)につながっている。そして絶縁層(16)にコン
タクトホール(20)が設けられ、絶縁層(16)上に
所定の間隔をおいて例えばアルミニウムからなる画素電
極(18)が形成されている。なお画素電極(18)は
コンタクトホール(20)を介して第1電極(15)と
電気的に接続されている。また電荷制御電極(17)上
の一部の絶縁層(16)は除去されて。
Further, an insulating layer (6) made of polyimide, for example, is formed on the first electrode (15) to smooth it. The formation of this insulating layer (16) is carried out twice; first, after smoothing the uneven surface of the semiconductor substrate (10) in the first formation, a charge control electrode (17) made of aluminum, for example, is formed; Furthermore, by performing the second formation, the charge control electrode (17) is embedded in the insulating layer (16). Note that the charge control electrode (17
) is formed at a position corresponding to the gap between the pixel electrodes (18), which will be described later, and is connected to an external power source (
19). Contact holes (20) are provided in the insulating layer (16), and pixel electrodes (18) made of, for example, aluminum are formed on the insulating layer (16) at predetermined intervals. Note that the pixel electrode (18) is electrically connected to the first electrode (15) via a contact hole (20). Also, a part of the insulating layer (16) on the charge control electrode (17) is removed.

端部のみが絶縁層(16)内に埋め込まれるようになる
。そして画素電極(18)及び露出した電荷制御電極(
17)上には、光導電膜(21)例えばi型の水素化非
晶質シリコン、バリア層(22)例えばp型の水素化非
晶質シリコンカーバイド及び例えばITOからなる透明
電極(23)が順次形成され、電荷制御電極(17)は
光導電膜(21)と電気的に接続している。
Only the ends become embedded in the insulating layer (16). Then, the pixel electrode (18) and the exposed charge control electrode (
17) On top of the photoconductive film (21), for example, i-type hydrogenated amorphous silicon, a barrier layer (22), for example, p-type hydrogenated amorphous silicon carbide, and a transparent electrode (23), for example, made of ITO. The charge control electrode (17) is formed in sequence and is electrically connected to the photoconductive film (21).

ここでバリア層(22)は、透明電極(23)からの電
荷の注入を阻止する働きをもっている。また透明電極(
23)は光導電膜(21)にバイアス電圧を与えるため
に、外部電源(24)につながっている。
Here, the barrier layer (22) has the function of blocking charge injection from the transparent electrode (23). Also, transparent electrode (
23) is connected to an external power source (24) in order to apply a bias voltage to the photoconductive film (21).

次に本発明の一実施例を第1図と第2図を用いて説明す
る。ここで第1図はこの実施例における転送電極(13
)と電荷制御電極(17)に印加するパルス波形を示す
図であり、同図(、)は転送電極(13)に印加するパ
ルスタイミング、同図(b)は電荷制御電極(17)に
印加するパルスタイミングを表わしている、また第2図
(a)〜(4))はそれぞれ第1図における期間11〜
t、での蓄積部、電荷転送部及び転送電極(13)下の
電位の変化を示す図である。
Next, one embodiment of the present invention will be described using FIGS. 1 and 2. Here, FIG. 1 shows the transfer electrode (13
) and the pulse waveform applied to the charge control electrode (17), the figure (,) is the pulse timing applied to the transfer electrode (13), and the figure (b) is the pulse waveform applied to the charge control electrode (17). Figures 2(a) to (4)) represent the pulse timings for periods 11 to 11 in Figure 1, respectively.
FIG. 4 is a diagram showing changes in the potentials under the storage section, the charge transfer section, and the transfer electrode (13) at t.

第1図(a)において、Aば転送パルス、Bは信号読み
出しパルスであり、期間1..13で蓄積部から電荷転
送部への信号電荷の読み出しが行なわれる。また第1図
(b)かられかるように、電荷制御電極(17)には信
号読み出しパルスBと同期したパルス電圧、即ち通常は
電荷転送部で転送可能な最大量の信号電荷が蓄積された
蓄積部の電位に対応する電圧vC1例えば2vであるが
期間t3tt4には信号電荷が蓄積されていない状態の
蓄積部の電位に対応する電圧Vc、例えば4vとなるパ
ルス電圧が印加されている。
In FIG. 1(a), A is a transfer pulse, B is a signal read pulse, and period 1. .. At step 13, signal charges are read from the storage section to the charge transfer section. Moreover, as can be seen from FIG. 1(b), the pulse voltage synchronized with the signal readout pulse B, that is, the maximum amount of signal charge that can normally be transferred by the charge transfer section, is accumulated in the charge control electrode (17). The voltage vC1 corresponding to the potential of the storage section is, for example, 2V, but during the period t3tt4, a pulse voltage of 4V, for example, is applied to the voltage Vc corresponding to the potential of the storage section in a state where no signal charge is stored.

いま第3図と第4図に示した固体撮像装置において、光
電変換を行なう光導電膜(21)に強い光がイオード(
12)即ち蓄積部に蓄積されるが、第2図(a)に示す
ように、光導電膜(21)と電気的に接続された電荷制
御電極(17)に電圧Vc、が印加されているため、蓄
積部の電位は強大射光があっても電位vc1で規定され
、蓄積部には電荷転送部で転送可能な最大量の電荷Q7
maxが蓄積される。次に例えば25μSeCの期間t
2には、信号読み出しパルスBがONとなるため、電荷
Q7maxが電荷転送部へと移送される。しかしこのと
き電荷Q7maxが電荷転送部へ流れ出すことにより、
蓄積部の電位が上昇して電圧Ve、より高くなるため、
この期間1s中に過大光により生じた電荷Qaは第2図
(b)に示すように電荷転送部や蓄積部に蓄積され、蓄
積部の電位は電圧Vc、まで下がる。この状態で蓄積さ
れた電荷Qaは過剰電荷となり、電荷転送部で転送しき
れなくなる。そこで例えば25μsecの期間t1にお
いて、電荷制御電極(17)に電圧Vc、を印加するこ
とにより、第2図(c)に示すように電荷QBは電位の
高い電荷制御電極(17)へ流れ出してなくなる。
In the solid-state imaging device shown in FIGS. 3 and 4, strong light is applied to the photoconductive film (21) that performs photoelectric conversion through the iode (
12) That is, the charge is accumulated in the accumulation section, but as shown in FIG. 2(a), a voltage Vc is applied to the charge control electrode (17) electrically connected to the photoconductive film (21). Therefore, the potential of the storage section is defined by the potential vc1 even if there is intense radiation, and the storage section has the maximum amount of charge Q7 that can be transferred by the charge transfer section.
max is accumulated. Next, for example, a period t of 25 μSeC
At 2, the signal read pulse B is turned ON, so that the charge Q7max is transferred to the charge transfer section. However, at this time, as the charge Q7max flows out to the charge transfer section,
Since the potential of the storage section rises and the voltage Ve becomes higher,
Charge Qa generated by excessive light during this period 1 s is accumulated in the charge transfer section and the accumulation section as shown in FIG. 2(b), and the potential of the accumulation section is lowered to voltage Vc. The charge Qa accumulated in this state becomes an excess charge and cannot be transferred completely by the charge transfer section. Therefore, by applying the voltage Vc to the charge control electrode (17) during a period t1 of, for example, 25 μsec, the charge QB flows to the charge control electrode (17) with a higher potential and disappears, as shown in FIG. 2(c). .

即ち蓄積部の電位はVc、で規定され、電荷転送部には
最大転送電荷量である電荷(17maxが残る。次に例
えば25μsecの期間t4には、信号読み出しパルス
BがOFFとなって電荷Q7maxの転送が開始され。
That is, the potential of the storage section is defined by Vc, and the maximum transfer charge amount (17max) remains in the charge transfer section.Next, for example, during a period t4 of 25 μsec, the signal read pulse B is turned off and the charge Q7max remains. transfer has started.

出しパルスと同期したパルス電圧を印加することにより
、蓄積部に蓄積される信号電荷の量を電荷転送部で転送
可能な範囲に制御することができるのみならず、信号電
荷が蓄積部から電荷転送部へ読み出される期間に生じた
過剰電荷さえも除去することかできる。この結果、過剰
電荷が電荷転送部であふれ出すことに起因して発生する
ブルーミング、及び電荷が蓄積部に取り残されることに
起因して発生するハイライト残像を抑制することができ
る。
By applying a pulse voltage synchronized with the output pulse, it is possible not only to control the amount of signal charge accumulated in the storage section within a range that can be transferred by the charge transfer section, but also to control the amount of signal charge that can be transferred from the storage section. It is possible to remove even the excess charge generated during the period of readout to the memory cell. As a result, it is possible to suppress blooming caused by excess charges overflowing in the charge transfer section and highlight afterimages caused by charges left behind in the accumulation section.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の固体撮像装置の駆動方法は
、信号読み出しパルスと同期したパルスを電荷制御電極
へ印加することにより、信号読み出し期間に生じた過剰
電荷を除去でき、強い入射光があった場合でもブルーミ
ングやハイライト残像がない良好な画像が得られる。
As explained above, in the driving method of the solid-state imaging device of the present invention, by applying a pulse synchronized with the signal readout pulse to the charge control electrode, excess charge generated during the signal readout period can be removed, and strong incident light can be removed. Good images with no blooming or highlight afterimages can be obtained even when

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における転送電極と電荷制御
電極に印加するパルス波形を示す図、第2図は本発明の
一実施例における蓄積部と電荷転送部の電位の変化を示
す図、第3図は本発明を適用する固体撮像装置の一例を
示す構成図、第4図は第3図に示した固体撮像装置の画
素断面図である。 (11)・・・垂直CCD (12)・・・電荷蓄積ダイオード (13)・・・転送電極 (17)・・・電荷制御電極 (21)・・・光導電膜 (23)・・・透明電極 代理人 弁理士 則 近 憲 佑 同  大胡典夫 第  1 図 第2図 第  4 図
FIG. 1 is a diagram showing pulse waveforms applied to a transfer electrode and a charge control electrode in an embodiment of the present invention, and FIG. 2 is a diagram illustrating changes in potential of an accumulation section and a charge transfer section in an embodiment of the present invention. , FIG. 3 is a configuration diagram showing an example of a solid-state imaging device to which the present invention is applied, and FIG. 4 is a pixel sectional view of the solid-state imaging device shown in FIG. 3. (11) Vertical CCD (12) Charge storage diode (13) Transfer electrode (17) Charge control electrode (21) Photoconductive film (23) Transparent Electrode agent Patent attorney Norio Ken Chika Yudo Norio Ogo Figure 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 光電変換を行なう光導電膜と、この光導電膜上に形成さ
れた透明電極と、前記光導電膜で発生した信号電荷を蓄
積する蓄積部と、この蓄積部で蓄積された信号電荷を転
送する電荷転送部と、前記光導電膜と電気的に接続され
且つ前記光導電膜内の電荷量を制御する電荷制御電極と
を備えた固体撮像装置の駆動方法において、前記蓄積部
から前記電荷転送部へ前記信号電荷を読み出す信号読み
出しパルスと同期したパルス電圧を前記電荷制御電極に
印加することを特徴とする固体撮像装置の駆動方法。
A photoconductive film that performs photoelectric conversion, a transparent electrode formed on this photoconductive film, an accumulation section that accumulates signal charges generated in the photoconductive film, and a storage section that transfers the signal charges accumulated in this accumulation section. In a method for driving a solid-state imaging device comprising a charge transfer section and a charge control electrode electrically connected to the photoconductive film and controlling the amount of charge in the photoconductive film, the charge transfer section is moved from the storage section to the charge transfer section. A method for driving a solid-state imaging device, characterized in that a pulse voltage synchronized with a signal read pulse for reading out the signal charge is applied to the charge control electrode.
JP60224655A 1984-12-24 1985-10-11 Driving method for solid-state image pickup device Pending JPS6285579A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60224655A JPS6285579A (en) 1985-10-11 1985-10-11 Driving method for solid-state image pickup device
EP85116384A EP0186162B1 (en) 1984-12-24 1985-12-20 Solid state image sensor
DE8585116384T DE3570806D1 (en) 1984-12-24 1985-12-20 Solid state image sensor
US06/813,466 US4688098A (en) 1984-12-24 1985-12-24 Solid state image sensor with means for removing excess photocharges

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60224655A JPS6285579A (en) 1985-10-11 1985-10-11 Driving method for solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS6285579A true JPS6285579A (en) 1987-04-20

Family

ID=16817125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60224655A Pending JPS6285579A (en) 1984-12-24 1985-10-11 Driving method for solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS6285579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164598A (en) * 2007-12-28 2009-07-23 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164598A (en) * 2007-12-28 2009-07-23 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5401952A (en) Signal processor having avalanche photodiodes
US4485315A (en) Blooming suppression in a CCD imaging device
EP0365000B1 (en) CCD image sensor with vertical overflow drain
JPH0410785B2 (en)
US4688098A (en) Solid state image sensor with means for removing excess photocharges
US4462047A (en) Solid state imager with blooming suppression
US6778214B1 (en) Charge generation of solid state image pickup device
KR960004467B1 (en) Solid state imager device
JPH0965217A (en) Solid-state image pickup device and its drive method
JPH08139303A (en) Method of driving solid-state image pickup
JP3285928B2 (en) Solid-state imaging device
JPS6285579A (en) Driving method for solid-state image pickup device
US4758894A (en) Solid-state image sensing device with bias carrier injection
JPS6160592B2 (en)
US4837629A (en) Image pickup method using a CCD-type solid state image pickup device with charge dissipation
US4599637A (en) Solid state imaging device with photoconductive layer
JP2790096B2 (en) Driving method and device for infrared solid-state imaging device
JPS62128173A (en) Solid-state image pickup device
JPS60233986A (en) Drive method of solid-state image pickup device
JPS6048907B2 (en) Charge storage method in charge coupled devices
US6686963B1 (en) Method for driving solid-state image device
JP2001177769A (en) Drive method for solid-state image sensing device
JPS6040232B2 (en) solid-state imaging device
JPH0529600A (en) Solid-state image sensor
JPS62193372A (en) Driving method for solid-state image pickup device