JPH0529600A - Solid-state image sensor - Google Patents

Solid-state image sensor

Info

Publication number
JPH0529600A
JPH0529600A JP3185999A JP18599991A JPH0529600A JP H0529600 A JPH0529600 A JP H0529600A JP 3185999 A JP3185999 A JP 3185999A JP 18599991 A JP18599991 A JP 18599991A JP H0529600 A JPH0529600 A JP H0529600A
Authority
JP
Japan
Prior art keywords
type
photodiode
conductivity
shielding film
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3185999A
Other languages
Japanese (ja)
Other versions
JP2758739B2 (en
Inventor
Kazuhisa Nagaya
和久 永屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Kyushu Ltd
Original Assignee
NEC Kyushu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Kyushu Ltd filed Critical NEC Kyushu Ltd
Priority to JP3185999A priority Critical patent/JP2758739B2/en
Publication of JPH0529600A publication Critical patent/JPH0529600A/en
Application granted granted Critical
Publication of JP2758739B2 publication Critical patent/JP2758739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To easily control a maximum storage charge amount of a photodiode and to reduce an operating drive voltage of an electronic shutter in a solid state image sensor in which the shutter can be operated in a vertical overflow drain structure. CONSTITUTION:A P<+> type diffused layer 3 is so formed on a surface side of a photodiode 4 as not to be brought into contact with a channel stopper 9, the layer 3 is brought into direct contact with a metal light shielding film 2 through a contact hole 1, and an arbitrary bias voltage responsive to a purpose is applied externally to the shielding film to control a surface potential of the photodiode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体撮像装置に関し、特
に縦型オーバーフロードレイン構造で、電子シャッタ動
作可能な固体撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device, and more particularly to a solid-state image pickup device having a vertical overflow drain structure and capable of operating an electronic shutter.

【0002】[0002]

【従来の技術】従来の一般的な固体撮像装置の断面構造
を図6に示す。シリコンなどのN型半導体基板6の表面
側にP型ウェル7を形成し、そのさらに表面側に入射光
を光電変換し一定期間蓄積するN型光電変換領域4(以
下フォトダイオードと記す)と信号電荷を転送するN型
転送チャネル5を形成してある。なお、P型ウェル7に
はN型転送チャネル5の直下のみ選択的に高濃度P型領
域8を設けてある。またフォトダイオード4の表面には
+ 型拡散層3を設け、その一部はチャネルストッパー
9(P+ 型素子分離領域)とつながっておりP型ウェル
7,P+ 型拡散層3,チャネルストッパー9は同電位と
なっている。後述するようにP型ウェル7は0Vを印加
し電位を固定する為、P+ 型拡散層3も0Vに固定され
る。これにより表面の酸化シリコン膜11との界面は非
空乏状態となり界面からの暗電流の発生を押さえてい
る。P型ウェル7とN型半導体基板6の間には、電源1
2によりP型ウェル7側に0V,N型半導体基板6側に
プラス電圧Vsubを印加し、このVsubによりフォ
トダイオード4で蓄積可能な最大電荷量を決定するとと
もに、それ以上の過剰な電荷はN型半導体基板6へ流れ
込むといういわゆる縦型オーバーフロードレイン構造と
なっている。
2. Description of the Related Art FIG. 6 shows a sectional structure of a conventional general solid-state image pickup device. A P-type well 7 is formed on the surface side of an N-type semiconductor substrate 6 made of silicon or the like, and an N-type photoelectric conversion region 4 (hereinafter referred to as a photodiode) for photoelectrically converting incident light on the surface side and accumulating for a certain period and a signal. An N-type transfer channel 5 for transferring charges is formed. The P-type well 7 is selectively provided with a high-concentration P-type region 8 just below the N-type transfer channel 5. The photo on the surface of the diode 4 is provided with P + -type diffusion layer 3, a portion of the channel stopper 9 (P + -type element isolation region) and connected with and P-type well 7, the P + -type diffusion layer 3, the channel stopper 9 has the same potential. Since 0V is applied to the P-type well 7 to fix the potential as described later, the P + -type diffusion layer 3 is also fixed to 0V. As a result, the interface with the silicon oxide film 11 on the surface is in a non-depleted state and suppresses the generation of dark current from the interface. A power supply 1 is provided between the P-type well 7 and the N-type semiconductor substrate 6.
2 applies 0V to the P-type well 7 side and a positive voltage Vsub to the N-type semiconductor substrate 6 side to determine the maximum charge amount that can be accumulated in the photodiode 4 by this Vsub. It has a so-called vertical overflow drain structure of flowing into the semiconductor substrate 6.

【0003】ここで、この種の従来構造固体撮像装置に
於けるフォトダイオード最大蓄積電荷量と電子シャッタ
ー動作について説明する。図7は、図6に於けるX−Y
方向の電子のポテンシャル模式図である。上述したよう
なP型ウェル7とN型半導体基板6との間に印加する逆
バイアス電圧Vsubによってフォトダイオード4直下
のP型ウェル部は完全に空乏化しており、ポテンシャル
分布は同図の曲線Dのようになる。この時のフォトダイ
オード4直下のP型ウェル部のポテンシャルをφB1とす
ると、この時の最大蓄積電荷量は同図中の右下り斜線で
示した部分に蓄えられるQ1となる。これ以上の電荷は
P型ウェル7のポテンシャルバリアを越えて同図にaで
示すようにN型半導体基板6へ流れこむ。また印加して
いるVsub電圧をV1だけ高くすると同図の曲線Eに
示したようにP型ウェル部のポテンシャルがφB2にな
り、最大蓄積電荷量は左斜線で示したQ2となる(Q1
>Q2)。このようにフォトダイオード4に蓄積可能な
最大電荷量はP型ウェル7とN型半導体基板6間に印加
される電圧によって決定される。また電子シャッタ動作
は、図7の曲線Fに示したように印加する電圧をP型ウ
ェル部のポテンシャルバリアが無くなるような電圧Vs
ub+V2にすることによりそれまで蓄積していた信号
電荷の全てが同図bのようにN型半導体基板側へはき出
すことにより達成している。すなわち、水平ブランキン
グ期間内、もしくは垂直ブランキング期間内にパルス的
に印加電圧を大きくし、フォトダイオード内を空にした
後、再びもとのVsub値に戻し、その時点から信号電
荷の蓄積を再開することで、ほぼ任意の時間(1/60
秒〜1/∞秒)の電子シャッタ動作が可能となるのであ
る。
The maximum accumulated charge amount of the photodiode and the electronic shutter operation in this type of conventional solid-state image pickup device will be described below. FIG. 7 shows the XY in FIG.
It is a potential schematic diagram of the electron of a direction. The reverse bias voltage Vsub applied between the P-type well 7 and the N-type semiconductor substrate 6 as described above completely depletes the P-type well portion immediately below the photodiode 4, and the potential distribution shows a curve D in FIG. become that way. If the potential of the P-type well portion directly under the photodiode 4 at this time is φ B1 , the maximum accumulated charge amount at this time is Q1 accumulated in the portion shown by the diagonal line to the right of FIG. Charges larger than this flow over the potential barrier of the P-type well 7 and flow into the N-type semiconductor substrate 6 as indicated by a in the figure. Further, when the applied Vsub voltage is increased by V1, the potential of the P-type well portion becomes φ B2 as shown by the curve E in the figure, and the maximum accumulated charge amount becomes Q2 indicated by the left diagonal line (Q1
> Q2). Thus, the maximum amount of charge that can be stored in the photodiode 4 is determined by the voltage applied between the P-type well 7 and the N-type semiconductor substrate 6. Further, in the electronic shutter operation, as shown by the curve F in FIG. 7, the applied voltage is the voltage Vs that eliminates the potential barrier of the P-type well portion.
This is achieved by setting ub + V2 so that all the signal charges that have been accumulated up to that point are ejected to the N-type semiconductor substrate side as shown in FIG. That is, in the horizontal blanking period or in the vertical blanking period, the applied voltage is increased in a pulsed manner to empty the inside of the photodiode, and then the Vsub value is restored to the original value, and the signal charge is accumulated from that point. By restarting, almost any time (1/60
The electronic shutter operation for 1 second to 1 / ∞ second) is possible.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の固体撮
像装置では、フォトダイオードに蓄積可能な最大電荷量
がP型ウェルとN型半導体基板間に印加する電圧Vsu
bによって決定される訳であるが、過剰電荷の隣接画素
へのもれ込み(ブルーミング)を押さえる為にこのVs
ub電圧は一定値以下にはさげられず、その電圧で最大
蓄積電荷量が決定されてしまうという欠点があり、最大
蓄積電荷量を大きくすることに苦慮している。また、電
子シャッタ動作の時に印加するパルス電圧も非常に高い
電圧を必要とし、実装するカメラ側でその為の大規模な
昇圧回路が必要になるという欠点があった。フォトダイ
オードの最大蓄積電荷量を大きくする方法には、フォト
ダイオード部の不純物濃度を濃くし、ポテンシャルを深
くする方法があるが、そうすると上述の電子シャッタ動
作時にさらに高いパルス電圧が必要になってしまう。つ
まりフォトダイオードの最大蓄積電荷量はできるだけ大
きくしたい(高ダイナミックレンジ化)、かつ、電子シ
ャッタ動作はできるだけ低いパルス電圧で達成したい、
という要求に対し、両者がトレードオフの関係にあるた
めに、製造条件の許容幅が狭くきびしい使用条件(実装
カメラの大型化など)を余儀なくされていた。
In the above-mentioned conventional solid-state image pickup device, the maximum charge amount that can be accumulated in the photodiode is the voltage Vsu applied between the P-type well and the N-type semiconductor substrate.
Although it is determined by b, this Vs is set in order to suppress the leakage (blooming) of the excess charge into the adjacent pixel.
The ub voltage cannot be reduced to a certain value or less, and the voltage has a drawback that the maximum accumulated charge amount is determined. Therefore, it is difficult to increase the maximum accumulated charge amount. In addition, the pulse voltage applied during the electronic shutter operation also requires a very high voltage, and there is a drawback that a large-scale booster circuit for that purpose is required on the camera side to be mounted. A method of increasing the maximum accumulated charge amount of the photodiode is to increase the impurity concentration of the photodiode portion to increase the potential. However, in that case, a higher pulse voltage is required during the above-mentioned electronic shutter operation. .. In other words, we want to make the maximum accumulated charge of the photodiode as large as possible (higher dynamic range), and achieve the electronic shutter operation with the lowest possible pulse voltage.
Since there is a trade-off relationship between the two, the manufacturing conditions have been narrowed and the usage conditions have been severe (for example, the size of the mounted camera has been increased).

【0005】[0005]

【課題を解決するための手段】本発明は、半導体基板表
面部の第1導電型ウェルに、第2導電型光電変換領域を
複数個列状に配置し、前記第2導電型光電変換領域に隣
接して第2導電型電荷転送チャネルを配置してなる画素
列を複数列有し、前記各画素列間に第1導電型素子分離
領域を配置し、前記第2導電型電荷転送チャネル上に絶
縁膜を介して転送電極群を配置し、前記第2導電型光電
変換領域に対応する開口を有する金属遮光膜を前記転送
電極群上に他の絶縁膜を介して配置してなる固体撮像装
置において、前記光電変換領域の表面部に第1導電型拡
散層を前記第1導電型素子分離領域とは分離して形成
し、かつ前記第1導電型拡散層は前記金属遮光膜と一部
で直接接触しているというものである。
According to the present invention, a plurality of second-conductivity-type photoelectric conversion regions are arranged in a row in a first-conductivity-type well on a surface portion of a semiconductor substrate, and the second-conductivity-type photoelectric conversion regions are provided in the well. There are a plurality of pixel columns in which the second conductivity type charge transfer channels are arranged adjacent to each other, the first conductivity type element isolation region is arranged between the pixel columns, and the second conductivity type charge transfer channels are arranged on the second conductivity type charge transfer channels. A solid-state imaging device in which a transfer electrode group is arranged via an insulating film, and a metal light-shielding film having an opening corresponding to the second conductivity type photoelectric conversion region is arranged on the transfer electrode group via another insulating film. In, the first conductive type diffusion layer is formed on the surface portion of the photoelectric conversion region separately from the first conductive type element isolation region, and the first conductive type diffusion layer is partly formed with the metal light shielding film. They are in direct contact.

【0006】[0006]

【作用】上述した本発明の固体撮像装置では、金属遮光
膜に外部から任意のバイアス電圧を印加することにより
第1導電型拡散層の電位を制御することができる。すな
わちフォトダイオード表面の電位を制御することができ
るもので、フォトダイオードに蓄積可能な最大電荷量の
制御、さらには、電子シャッタ動作を、適当な負のパル
ス電圧を印加する事により極めて低いVsubパルス電
圧で達成させる事ができる。
In the above-described solid-state image pickup device of the present invention, the potential of the first conductivity type diffusion layer can be controlled by externally applying an arbitrary bias voltage to the metal light shielding film. That is, the potential of the surface of the photodiode can be controlled, and the maximum charge amount that can be accumulated in the photodiode is controlled, and further, the electronic shutter operation is performed by applying an appropriate negative pulse voltage to obtain an extremely low Vsub pulse. It can be achieved with voltage.

【0007】[0007]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0008】図1は本発明の一実施例の固体撮像装置の
断面図である。
FIG. 1 is a sectional view of a solid-state image pickup device according to an embodiment of the present invention.

【0009】N型半導体基板6の表面側にP型ウェル7
を形成し、さらにその表面側に入射光を光電変換し蓄積
するN型のフォトダイオード4(N型光電変換領域)と
信号電荷を転送するN型転送チャネル5を形成する。9
はP+ 型のチャネルストッパー(P+ 型素子分離領域)
で、11は酸化シリコン膜(絶縁膜)であり、その上に
信号電荷の読み出しと転送を兼ねる転送電極10が配置
されている。ここまでは前述した従来構造の固体撮像装
置と何ら変わりは無い。従来構造との違いはフォトダイ
オード4の表面に形成するP+ 型拡散層3と金属遮光膜
2であり、P+ 型拡散層3はチャネルストッパー9とは
分離して配置し、リソグラフィー技術とエッチング技術
を用いてP+ 型拡散層3上の酸化シリコン膜11の転送
電極10寄りの箇所にコンタクトホール1を開け、その
後にスパッタリング技術を用いて金属遮光膜2(例えば
アルミニウム,タングステン)を形成する際P+ 型拡散
層3と金属遮光膜2がコンタクトホール1の部分で直接
接触し、本発明の構造の固体撮像装置が得られる。なお
+ 型拡散層3の不純物濃度は1019〜1021個/cm
3 を選ぶので金属遮光膜との接触はオーミックコンタク
トとなる。
A P-type well 7 is formed on the front surface side of the N-type semiconductor substrate 6.
And an N-type photodiode 4 (N-type photoelectric conversion region) for photoelectrically converting and storing incident light and an N-type transfer channel 5 for transferring a signal charge are formed on the surface side. 9
Is a P + type channel stopper (P + type element isolation region)
Reference numeral 11 denotes a silicon oxide film (insulating film), on which the transfer electrode 10 for reading and transferring signal charges is arranged. Up to this point, there is no difference from the above-described conventional solid-state imaging device. The difference from the conventional structure is the P + type diffusion layer 3 and the metal light shielding film 2 formed on the surface of the photodiode 4. The P + type diffusion layer 3 is arranged separately from the channel stopper 9, and the lithography technique and etching are used. A contact hole 1 is formed in the silicon oxide film 11 on the P + type diffusion layer 3 near the transfer electrode 10 by using a technique, and then a metal light-shielding film 2 (eg, aluminum, tungsten) is formed by using a sputtering technique. At this time, the P + type diffusion layer 3 and the metal light-shielding film 2 are in direct contact with each other at the contact hole 1, and the solid-state imaging device having the structure of the present invention is obtained. The impurity concentration of the P + type diffusion layer 3 is 10 19 to 10 21 pieces / cm 3.
Since 3 is selected, the contact with the metal light-shielding film becomes ohmic contact.

【0010】次にこの実施例の動作について説明する。
図2は図1に於けるX−Y方向の電子ポテンシャル模式
図である。同図は、P型ウェル7とN型半導体基板6間
の電圧を一定値Vsub(V)に固定し、金属遮光膜2
に印加する電圧を0(V),+V3(V),−V4
(V)と変化させた時のポテンシャル分布の変化の様子
を示したものである。印加電圧が0Vの時は同図の曲線
Aのような分布となり、+V3(V),例えば1V〜3
Vを印加すると曲線Bのような分布になり、0Vの時よ
りもフォトダイオード4の表面側でポテンシャルが深く
なり、その分最大蓄積電荷量Qmaxを増大させること
ができる。逆に、印加電圧を−V4(V),例えば−1
V〜−3Vにすると曲線Cのようなフォトダイオード4
の表面でポテンシャルが浅くなった分布となり、最大蓄
積電荷量は減少する。図3にフォトダイオードの最大蓄
積電荷量Qmaxと金属遮光膜2への印加電圧の関係の
一例を示す。
Next, the operation of this embodiment will be described.
FIG. 2 is a schematic diagram of electron potentials in the XY directions in FIG. In the figure, the voltage between the P-type well 7 and the N-type semiconductor substrate 6 is fixed to a constant value Vsub (V), and the metal light shielding film 2
Applied voltage to 0 (V), + V3 (V), -V4
It shows how the potential distribution changes when it is changed to (V). When the applied voltage is 0V, the distribution is as shown by the curve A in the figure, and + V3 (V), for example, 1V to 3
When V is applied, the distribution becomes as shown by the curve B, the potential becomes deeper on the surface side of the photodiode 4 than when it is 0 V, and the maximum accumulated charge amount Qmax can be increased accordingly. On the contrary, the applied voltage is -V4 (V), for example, -1.
When set to V to -3V, the photodiode 4 like the curve C
The distribution has a shallower potential on the surface of, and the maximum accumulated charge amount decreases. FIG. 3 shows an example of the relationship between the maximum accumulated charge amount Qmax of the photodiode and the voltage applied to the metal light-shielding film 2.

【0011】このように、金属遮光膜2に印加する電圧
によってフォトダイオード4に蓄積可能な最大電荷量を
制御することが可能で、大きくしたければ正の電圧を、
小さくしたければ負の電圧を印加すればよい。ただし、
正の電圧を印加する場合は、ブルーミングを防止するた
めにP+ 型拡散層3の表面電位がP型ウェル7のポテン
シャルバリアφB よりも大きくならないような電圧の範
囲内で行なわなければならない。本例では4〜5Vが最
大電圧である。
As described above, it is possible to control the maximum amount of charge that can be accumulated in the photodiode 4 by the voltage applied to the metal light-shielding film 2.
If it is desired to reduce it, a negative voltage may be applied. However,
In order to prevent blooming, the positive voltage must be applied within a voltage range in which the surface potential of the P + type diffusion layer 3 does not exceed the potential barrier φ B of the P type well 7. In this example, 4-5V is the maximum voltage.

【0012】続いて、電子シャッタ動作について説明す
る。図4は電子シャッタ動作のタイミングチャートであ
る。同図のパルス幅は説明の便宜上任意の幅にとってあ
る。前述の従来構造固体撮像装置の電子シャッタ動作で
説明したように任意の水平ブランキング期間または垂直
ブランキング期間にN型半導体基板6に通常印加電圧V
subよりもΔVsub高い電圧のパルスを入力(図4
(a))し、フォトダイオード内にそれまで蓄積されて
いた信号電荷をN型半導体基板側へ全て引き抜く訳であ
るが、本実施例では、上述のN型半導体基板入力パルス
に加えて金属遮光膜に図4(d)のような通常印加電圧
VpsよりもΔVpsだけ低い電圧をΔt時間だけ遅ら
せて入力する。なお、上述のパルスの幅(同図中のt
1,t2)およびΔtについては詳細な説明は省略する
が、波形のなまりを考慮するとt1,t2は広いほどよ
いが、ノイズ等を考慮して本実施例の場合t1は6〜8
μsec,t2=4〜6μsec,Δt=2μsecと
している。このように金属遮光膜にマイナスのパルス電
圧を同時に印加するのは、図2のポテンシャル模式図で
示したようにフォトダイオードの表面電位を瞬間的に引
き上げる事になるので、フォトダイオード内の電荷をよ
り低いVsub電圧で引き抜く事が可能となる。なお、
金属遮光膜に印加するパルスタイミングをN型半導体基
板に印加するパルスタイミングに対しΔtだけ遅らせる
のはブルーミングを防止するためである。
Next, the electronic shutter operation will be described. FIG. 4 is a timing chart of the electronic shutter operation. The pulse width in the figure is set to an arbitrary width for convenience of description. As described in the electronic shutter operation of the conventional solid-state imaging device, the normal applied voltage V is applied to the N-type semiconductor substrate 6 during any horizontal blanking period or vertical blanking period.
Input a pulse with a voltage higher by ΔVsub than sub (see FIG. 4).
(A)) Then, all the signal charges accumulated up to that time in the photodiode are extracted to the N-type semiconductor substrate side. However, in this embodiment, in addition to the above-mentioned N-type semiconductor substrate input pulse, metal light shielding is performed. A voltage lower by ΔVps than the normal applied voltage Vps as shown in FIG. 4D is input to the film with a delay of Δt time. The width of the above-mentioned pulse (t in the figure)
1, t2) and Δt will not be described in detail, it is better that t1 and t2 are wider in consideration of the rounding of the waveform, but in the case of this embodiment, t1 is 6 to 8 in consideration of noise.
μsec, t2 = 4 to 6 μsec, and Δt = 2 μsec. The simultaneous application of the negative pulse voltage to the metal light-shielding film as described above instantaneously raises the surface potential of the photodiode as shown in the potential schematic diagram of FIG. It is possible to pull out with a lower Vsub voltage. In addition,
The reason for delaying the pulse timing applied to the metal light-shielding film by Δt with respect to the pulse timing applied to the N-type semiconductor substrate is to prevent blooming.

【0013】図5に電子シャッタ動作における基板印加
パルス(ΔVsub)と金属遮光膜印加パルス(−ΔV
ps)の関係の一例を示す。従来のN型半導体基板のみ
にパルス電圧を印加する方式では、ΔVsubが20〜
25V必要(同図のΔVps=0Vに相当)であったが
本発明によると例えばΔVps=−5Vとした場合、Δ
Vsubは約8Vでよく、飛躍的に低電圧化できる事が
わかる。
FIG. 5 shows a substrate application pulse (ΔVsub) and a metal light-shielding film application pulse (-ΔV) in the electronic shutter operation.
An example of the relationship of (ps) is shown. In the conventional method of applying the pulse voltage only to the N-type semiconductor substrate, ΔVsub is 20 to
Although 25V was required (corresponding to ΔVps = 0V in the figure), according to the present invention, for example, when ΔVps = −5V, Δ
Vsub may be about 8V, and it can be seen that the voltage can be dramatically reduced.

【0014】[0014]

【発明の効果】以上説明したように本発明の固体撮像装
置は、フォトダイオード表面の第1導電型拡散層をチャ
ネルストッパーとは分離して形成し金属遮光膜と一部分
で直接接触させた事により、金属遮光膜へ印加するバイ
アス電圧で、フォトダイオードの表面電位を制御でき、
目的に応じてバイアス電圧を選択することでフォトダイ
オードの最大蓄積電荷量の制御、特に従来から苦慮して
いた最大蓄積電荷量の増大という事を容易にし、また、
電子シャッタ動作を飛躍的に低電圧化できる為、実装す
るカメラ側で、従来のような特殊な昇圧回路を設ける必
要がなく、カメラの小型化に対しても有利であり、効果
は著るしい。
As described above, according to the solid-state image pickup device of the present invention, the first conductivity type diffusion layer on the surface of the photodiode is formed separately from the channel stopper, and is partially in direct contact with the metal light shielding film. , The surface potential of the photodiode can be controlled by the bias voltage applied to the metal light-shielding film,
By selecting the bias voltage according to the purpose, it facilitates the control of the maximum accumulated charge amount of the photodiode, especially the increase of the maximum accumulated charge amount, which has been difficult from the past.
Since the electronic shutter operation can be dramatically reduced in voltage, there is no need to install a special booster circuit on the mounted camera side, which is advantageous for downsizing the camera, and the effect is remarkable. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】一実施例における光電変換部の深さ方向の電子
の一次元ポテンシャル模式図である。
FIG. 2 is a schematic diagram of a one-dimensional potential of electrons in a depth direction of a photoelectric conversion unit in one example.

【図3】一実施例における金属遮光膜2への印加電圧と
フォトダイオード4の最大蓄積電荷量の関係を示す特性
図である。
FIG. 3 is a characteristic diagram showing the relationship between the voltage applied to the metal light-shielding film 2 and the maximum accumulated charge amount of the photodiode 4 in one example.

【図4】一実施例における電子シャッタ動作のタイミン
グチャートである。
FIG. 4 is a timing chart of an electronic shutter operation in one embodiment.

【図5】一実施例における電子シャッタ動作の説明に使
用するΔVsubとΔVpsの関係を示す特性図であ
る。
FIG. 5 is a characteristic diagram showing a relationship between ΔVsub and ΔVps used for explaining an electronic shutter operation in one embodiment.

【図6】従来の固体撮像装置を示す断面図である。FIG. 6 is a cross-sectional view showing a conventional solid-state imaging device.

【図7】図6のA−B方向の電子の一次元ポテンシャル
模式図である。
7 is a schematic diagram of one-dimensional potentials of electrons in the AB direction of FIG.

【符号の説明】[Explanation of symbols]

1 コンタクトホール 2 金属遮光膜 3 P+ 型拡散層 4 光電変換領域(フォトダイオード) 5 N型電荷転送チャネル 6 N型半導体基板 7 P型ウェル 8 P型ウェル7の高濃度領域 9 P+ 型のチャネルストッパー 10 電荷転送電極(電荷読出し電極を兼ねている) 11,11a 酸化シリコン膜DESCRIPTION OF SYMBOLS 1 Contact hole 2 Metal light-shielding film 3 P + type diffusion layer 4 Photoelectric conversion region (photodiode) 5 N type charge transfer channel 6 N type semiconductor substrate 7 P type well 8 High concentration region of P type well 7 P + type Channel stopper 10 Charge transfer electrode (also serves as charge read electrode) 11, 11a Silicon oxide film

Claims (1)

【特許請求の範囲】 【請求項1】 半導体基板表面部の第1導電型ウェル
に、第2導電型光電変換領域を複数個列状に配置し、前
記第2導電型光電変換領域に隣接して第2導電型電荷転
送チャネルを配置してなる画素列を複数列有し、前記各
画素列間に第1導電型素子分離領域を配置し、前記第2
導電型電荷転送チャネル上に絶縁膜を介して転送電極群
を配置し、前記第2導電型光電変換領域に対応する開口
を有する金属遮光膜を前記転送電極群上に他の絶縁膜を
介して配置してなる固体撮像装置において、前記光電変
換領域の表面部に第1導電型拡散層を前記第1導電型素
子分離領域とは分離して形成し、かつ前記第1導電型拡
散層は前記金属遮光膜と一部で直接接触している事を特
徴とする固体撮像装置。
Claim: What is claimed is: 1. A plurality of second-conductivity-type photoelectric conversion regions are arranged in a row in a first-conductivity-type well on a surface portion of a semiconductor substrate and are adjacent to the second-conductivity-type photoelectric conversion regions. A plurality of pixel columns in which the second conductivity type charge transfer channels are arranged, and the first conductivity type element isolation region is arranged between the pixel columns.
A transfer electrode group is arranged on the conductive type charge transfer channel via an insulating film, and a metal light shielding film having an opening corresponding to the second conductive type photoelectric conversion region is provided on the transfer electrode group via another insulating film. In the arranged solid-state imaging device, a first conductivity type diffusion layer is formed on the surface portion of the photoelectric conversion region separately from the first conductivity type element isolation region, and the first conductivity type diffusion layer is formed as described above. A solid-state imaging device characterized in that it is in partial contact with a metal light-shielding film.
JP3185999A 1991-07-25 1991-07-25 Driving method of solid-state imaging device Expired - Lifetime JP2758739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3185999A JP2758739B2 (en) 1991-07-25 1991-07-25 Driving method of solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3185999A JP2758739B2 (en) 1991-07-25 1991-07-25 Driving method of solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH0529600A true JPH0529600A (en) 1993-02-05
JP2758739B2 JP2758739B2 (en) 1998-05-28

Family

ID=16180603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3185999A Expired - Lifetime JP2758739B2 (en) 1991-07-25 1991-07-25 Driving method of solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2758739B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9585634B2 (en) 2009-01-09 2017-03-07 Volcano Corporation Ultrasound catheter with rotatable transducer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152663A (en) * 1987-12-09 1989-06-15 Oki Electric Ind Co Ltd Solid-state image sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152663A (en) * 1987-12-09 1989-06-15 Oki Electric Ind Co Ltd Solid-state image sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9585634B2 (en) 2009-01-09 2017-03-07 Volcano Corporation Ultrasound catheter with rotatable transducer

Also Published As

Publication number Publication date
JP2758739B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
US9729810B2 (en) Image sensor pixel with memory node having buried channel and diode portions
US8427564B2 (en) Driving method for solid-state imaging apparatus, and image system
US8896737B2 (en) Imaging apparatus with element that selectively transfers charge accumulated in first semiconductor region of accumulating element to floating diffusion region and method
US5401952A (en) Signal processor having avalanche photodiodes
US9083901B2 (en) Solid-state image pickup device and method of resetting the same
EP0854516B1 (en) Partially pinned photodiode for solid state image sensors
US8736734B2 (en) Driving method of solid-state imaging apparatus and solid-state imaging apparatus
US7465602B2 (en) Anti-blooming storage pixel
JP3697769B2 (en) Photoelectric conversion element and photoelectric conversion device
JP5016941B2 (en) Solid-state imaging device
CN101292514A (en) Efficient charge transferring in cmos imagers
US4688098A (en) Solid state image sensor with means for removing excess photocharges
KR960004467B1 (en) Solid state imager device
EP0022323B1 (en) Solid-state imaging device
JP4155568B2 (en) Solid-state imaging device and camera
JPH0965217A (en) Solid-state image pickup device and its drive method
JP3833027B2 (en) Solid-state imaging device and image input device
JPH0453149B2 (en)
US7642580B2 (en) Imager pixel structure and circuit
JP2758739B2 (en) Driving method of solid-state imaging device
US4837629A (en) Image pickup method using a CCD-type solid state image pickup device with charge dissipation
JP2020080377A (en) Solid-state imaging device
JP2000059695A (en) Solid-state image pickup device and drive method therefor
JPH04274367A (en) Solid-state image sensing device
JP4593751B2 (en) Linear sensor and driving method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980210