JPS6148307B2 - - Google Patents
Info
- Publication number
- JPS6148307B2 JPS6148307B2 JP51070057A JP7005776A JPS6148307B2 JP S6148307 B2 JPS6148307 B2 JP S6148307B2 JP 51070057 A JP51070057 A JP 51070057A JP 7005776 A JP7005776 A JP 7005776A JP S6148307 B2 JPS6148307 B2 JP S6148307B2
- Authority
- JP
- Japan
- Prior art keywords
- charge
- imaging device
- potential
- junction
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003384 imaging method Methods 0.000 claims description 35
- 238000009825 accumulation Methods 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Description
【発明の詳細な説明】
本発明は電荷転送装置を用いた撮像装置の光電
変換特性を制御する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling photoelectric conversion characteristics of an imaging device using a charge transfer device.
一般に撮像装置においてダイナミツクレンズを
大きくするために光電変換のガンマ特性を変化さ
せる方法は信号処理または光学素子等を用いて行
なわれている。 Generally, in an imaging device, a method of changing the gamma characteristic of photoelectric conversion in order to increase the size of the dynamic lens is carried out using signal processing, optical elements, or the like.
従来電荷転送装置特に電荷結合素子(CCD)
を用いた撮像装置の光電変換特性制御方法につい
ては特開昭50―76918号、或いは1976年アイイー
イーイ インターナシヨナル ソリツドステート
サーキツト カンフアレンス(IEEE
International Solid―State Circuits
Conference)のダイジエスト オブテクニカル
ペーパー(Digest of Technical Papers)第38
頁乃至第39頁(Method for Varying Gamma in
Charge―Coupled Imagers)に見られるように
CCD撮像装置の光情報を蓄積する電荷蓄積電極
のバイアス電圧を電荷蓄積期間の初期より終点時
の電極電位を大きくすることにより電荷転送撮像
装置のダイナミツクレンジを広げる方式が提案さ
れている。しかしこの従来の方式において蓄積期
間における最大蓄積電荷量は蓄積電極電位によつ
て決まり、最大蓄積電荷量以上の電荷が発生した
場合、その電荷は基板内に掃き出される。しかし
この掃き出された過剰電荷は基板内を拡散して飽
和した絵素近傍の電位井戸へ吸収される。これは
当業者において知られているブルーミング現象で
撮像装置としては好ましくない。蓄積期間の終点
近くで蓄積電極の電位を大きくするとすでに飽和
している電位井戸は再び電荷蓄積をする。従つて
従来の撮像方式による撮像画面を観察すると光強
度の高い入射像ではブルーミング現象(完全に飽
和はしていない)の上に光の強い部分の画像が現
れるため見苦しい撮像画面になる欠点があつた。 Conventional charge transfer devices, especially charge-coupled devices (CCDs)
Regarding the method of controlling the photoelectric conversion characteristics of an imaging device using
International Solid-State Circuits
Conference Digest of Technical Papers No. 38
Pages 39 to 39 (Method for Varying Gamma in
Charge—Coupled Imagers)
A method has been proposed in which the dynamic range of a charge transfer imaging device is widened by increasing the bias voltage of a charge storage electrode that stores optical information in a CCD imaging device so that the electrode potential at the end of the charge storage period is higher than that at the beginning of the charge storage period. However, in this conventional method, the maximum amount of accumulated charge during the accumulation period is determined by the storage electrode potential, and if a charge greater than the maximum amount of accumulated charge is generated, that charge is swept out into the substrate. However, this swept-out excess charge diffuses within the substrate and is absorbed into potential wells near the saturated picture elements. This is a blooming phenomenon known to those skilled in the art and is not desirable for an imaging device. When the potential of the storage electrode is increased near the end of the storage period, the already saturated potential well accumulates charge again. Therefore, when observing an imaging screen using a conventional imaging method, an incident image with high light intensity shows a blooming phenomenon (not completely saturated) and an image of a strong light area appears, resulting in an unsightly imaging screen. Ta.
本発明の目的はかかる欠点を除いた新規の電荷
転送撮像装置の光電変換特性制御方法を提供する
ことにある。 An object of the present invention is to provide a novel method for controlling photoelectric conversion characteristics of a charge transfer imaging device that eliminates such drawbacks.
本発明によれば、電荷転送撮像装置で、撮像領
域の各チヤネルを分離するチヤネルストツプ領域
内に各絵素を構成する電位井戸に蓄積できうる最
大電荷以上の過剰電荷を吸収するようなオーバー
フロードレインを設けて成る電荷転送撮像デバイ
スにおいて電荷蓄積期の初期におけるチヤネルス
トツプ領域の電位障壁の高さが電荷蓄積期間の最
終時点より低く制御することを特徴とする電荷転
送撮像装置の光電変換特性制御方法が得られる。
さらに具体的にはオーバーフロードレインの電圧
を蓄積期間の初期より終点時の方が低くなるよう
な電圧を印加することにより光電変換特性が制御
される、さらには電荷蓄積の期間にオーバーフロ
ードレインの電位を順次2回以上変化させ階段状
に電位を低くすることにより電荷転送撮像装置の
光電変換特性が制御される。 According to the present invention, in a charge transfer imaging device, an overflow drain is provided in a channel stop region that separates each channel of an imaging region to absorb excess charge exceeding the maximum charge that can be accumulated in a potential well constituting each picture element. Provided is a method for controlling photoelectric conversion characteristics of a charge transfer imaging device, characterized in that the height of the potential barrier in a channel stop region at the beginning of a charge accumulation period is controlled to be lower than at the end of the charge accumulation period in the charge transfer imaging device provided. It will be done.
More specifically, the photoelectric conversion characteristics are controlled by applying a voltage to the overflow drain that is lower at the end of the accumulation period than at the beginning. The photoelectric conversion characteristics of the charge transfer imaging device are controlled by sequentially changing the potential twice or more and lowering the potential stepwise.
次に本発明の電荷転送撮像装置の光電変換特性
の制御方法について図面を用いて詳細に説明す
る。 Next, a method for controlling the photoelectric conversion characteristics of the charge transfer imaging device of the present invention will be described in detail with reference to the drawings.
第1図は当業者においてすでに知られている電
荷転送装置を用いた撮像装置の一方式でフレーム
転送方式と呼ばれている装置の平面図を示す。第
1図では例としてNチヤネル3相駆動方式で、3
×3絵素のフレーム転送方式撮像装置についての
例であるが実際には任意のm×n絵素の撮像装置
においても基本動作は変らない。 FIG. 1 shows a plan view of an image pickup device using a charge transfer device known to those skilled in the art, which is called a frame transfer method. In Figure 1, as an example, the N-channel three-phase drive system is used.
Although this is an example of a frame transfer type imaging device with ×3 picture elements, the basic operation is actually the same in any imaging device with m×n picture elements.
第1図の撮像装置の基本動作を説明する。 The basic operation of the imaging device shown in FIG. 1 will be explained.
半導体単結晶基板の主表面に絶縁層を介して、
一連の電極群が配置されている。電極群は感光ア
レイ、蓄積アレイ、読み出しアレイに分かれてお
り、感光アレイ部の電極12a―12cは線路
A1に電極13a―13cは線路A2に14a―1
4cは線路A3に、また蓄積アレイ部の電極15
a―15cは線路B1に、電極16a―16cは
線路B2に電極17a―17cは線路B3に、さら
に読み出しアレイ部の電極18a―18cは線路
C1に、電極19a―19cは線路C2に、電極2
0a―20cは線路C3にそれぞれ接続され、線
路A1,A2,A3と線路B1,B2,B3と線路C1,C2,
C3はそれぞれ3相パルスが印加され3相駆動電
荷転送装置を形成しいる。さらに第1図において
破線で示す領域121は例えば基板半導体の不純
物濃度を高くしたり、絶縁層を厚くすることによ
り各垂直チヤネル21,22,23を分離したり
装置の活性領域を規定するチヤネルストツプ領域
である。 Through an insulating layer on the main surface of a semiconductor single crystal substrate,
A series of electrode groups are arranged. The electrode group is divided into a photosensitive array, a storage array, and a readout array, and the electrodes 12a to 12c in the photosensitive array are wire lines.
Electrodes 13a-13c are connected to A 1 , and electrodes 14a-1 are connected to line A 2 .
4c is connected to the line A3 and also to the electrode 15 of the storage array section.
a-15c is connected to the line B1 , electrodes 16a-16c are connected to the line B2 , electrodes 17a-17c are connected to the line B3 , and electrodes 18a-18c of the readout array section are connected to the line B2.
C1 , electrodes 19a-19c are connected to line C2 , electrode 2
0a-20c are connected to the line C 3 respectively, and the lines A 1 , A 2 , A 3 and the lines B 1 , B 2 , B 3 and the lines C 1 , C 2 ,
Three-phase pulses are applied to each C3 to form a three-phase drive charge transfer device. Furthermore, a region 121 indicated by a broken line in FIG. 1 is a channel stop region that defines the active region of the device, for example, by increasing the impurity concentration of the substrate semiconductor or by increasing the thickness of the insulating layer to separate the vertical channels 21, 22, and 23. It is.
感光アレイ部のチヤネルストツプ領域内の各絵
素を構成する電位井戸に蓄積しうる最大電荷量以
上の電荷が発生した場合、その過剰電荷を吸収す
る逆バイアスされたP―N接合(オーバーフロー
ドレイン)24が設けられている。 When a charge exceeding the maximum charge that can be accumulated in the potential well constituting each picture element in the channel stop region of the photosensitive array section is generated, a reverse biased PN junction (overflow drain) 24 absorbs the excess charge. is provided.
第1図の撮像装置の動作について簡単に説明す
ると、感光アレイの例えばA2線路に正電圧を、
A1,A3を接地電位にするとA2の接続される電極
群13a―13c直下の半導体表面(斜線部)に
電位井戸が形成される。この状態で半導体表面に
光情報パターンを照射すると光の明暗に応じた電
荷(この場合は少数電荷である電子)が各電位井
戸に蓄積される。そして電荷蓄積期が終了したら
線路A1,A2,A3,B1,B2,B3に3相のクロツク
パルスを印加し感光アレイに蓄積した信号電荷を
蓄積アレイに順次転送させる。このとき電極13
c直下の信号電荷が蓄積アレイの17c直下に転
送されるまでパルスを印加する。感光アレイの信
号電荷が蓄積アレイに転送された後、再び感光ア
レイの線路A2に正のパルス電圧を印加して光情
報による電荷を蓄積する。 To briefly explain the operation of the imaging device shown in Fig. 1, a positive voltage is applied to, for example, the A2 line of the photosensitive array.
When A 1 and A 3 are set to the ground potential, a potential well is formed on the semiconductor surface (shaded area) directly under the electrode group 13a to 13c to which A 2 is connected. When the semiconductor surface is irradiated with an optical information pattern in this state, charges (electrons, which are minority charges in this case) corresponding to the brightness of the light are accumulated in each potential well. When the charge accumulation period ends, three-phase clock pulses are applied to the lines A 1 , A 2 , A 3 , B 1 , B 2 , and B 3 to sequentially transfer the signal charges accumulated in the photosensitive array to the storage array. At this time, the electrode 13
A pulse is applied until the signal charge immediately below c is transferred to immediately below 17c of the storage array. After the signal charge of the photosensitive array is transferred to the storage array, a positive pulse voltage is again applied to the line A2 of the photosensitive array to accumulate the charge due to the optical information.
一方蓄積部に転送された信号電荷は、読み出し
アレイのクロツクに同期して読み出しアレイの信
号電荷がすべて出力部に取り出される1水平期間
中に1クロツク(3電極転送)分のパルスを印加
する。すなわち、蓄積アレイの下の方から垂直転
送チヤネルの信号電荷を並列に読み出しアレイに
転送し読み出しアレイの信号電荷を線路C1,
C2,C3に高速3相パルスを印加することにより
読み出しアレイ中の電荷を出力部25に時系列の
信号として読み出す。 On the other hand, the signal charges transferred to the storage section are synchronized with the clock of the readout array, and a pulse equivalent to one clock (three electrode transfer) is applied during one horizontal period in which all the signal charges of the readout array are taken out to the output section. That is, the signal charges of the vertical transfer channel are transferred from the bottom of the storage array to the readout array in parallel, and the signal charges of the readout array are transferred to the lines C 1 ,
By applying high-speed three-phase pulses to C 2 and C 3 , the charges in the readout array are read out to the output section 25 as time-series signals.
この方法を順次くり返し蓄積アレイの電荷像を
通常のテレビジヨン方式に準じた映像信号として
取り出す既知の方法である。このようなフレーム
転送の動作のとき、オーバーフロードレイン24
のP―N接合は一定の逆バイアスされた状態に保
たれている。 This is a known method in which this method is sequentially repeated to extract the charge image of the storage array as a video signal in accordance with a normal television system. During such frame transfer operation, the overflow drain 24
The PN junction of is maintained at a constant reverse bias.
第2図は上述の動作を説明する本発明に最も関
係の深い感光アレイ領域の各線路のパルス電圧波
形及びオーバーフロードレインを示すものであ
る。このとき感光アレイ部の蓄積期間中に蓄積電
極下に蓄積できうる最大電荷量は蓄積期間のパル
ス電圧の高さV1で決定される。 FIG. 2 shows the pulse voltage waveform and overflow drain of each line in the photosensitive array area, which are most relevant to the present invention and explain the above-mentioned operation. At this time, the maximum amount of charge that can be stored under the storage electrode during the storage period of the photosensitive array section is determined by the height V1 of the pulse voltage during the storage period.
次に本発明の上述した電荷転送装置を用いた撮
像装置の光電変換特性の制御方法について実施例
を用いて説明する。 Next, a method for controlling the photoelectric conversion characteristics of an imaging device using the above-described charge transfer device of the present invention will be described using an example.
第3図a,bは本発明を説明する図で、それぞ
れ第1図に示す感光アレイ部の蓄積電極部(A2
線路に接続されている電極13a―13c)の電
荷の転送方向と垂直方向の概略断面と、その電極
直下の表面電位分布を模式的に示した図で、第1
図と同一部分は同一記号を用いてある。例えばP
型半導体基板27の主表面に絶縁層28を介して
電極13が配置されている。絵素の信号電荷を垂
直方向に転送するチヤネル部分26は例えば基板
P型不純物濃度を高くしたチヤネルストツプ領域
21で隣接する垂直チヤネルと分離している。各
チヤネルストツプ拡散領域21内には過剰電荷を
吸収するN型領域のオーバーフロードレイン24
が設けられている。 Figures 3a and 3b are diagrams for explaining the present invention, each showing the storage electrode section (A 2
This is a diagram schematically showing a schematic cross section in the direction perpendicular to the charge transfer direction of the electrodes 13a-13c) connected to the line and the surface potential distribution directly under the electrode.
The same symbols are used for the same parts as in the figures. For example, P
Electrode 13 is arranged on the main surface of type semiconductor substrate 27 with insulating layer 28 interposed therebetween. A channel portion 26 for vertically transferring the signal charge of a picture element is separated from an adjacent vertical channel by a channel stop region 21 having a high substrate P-type impurity concentration, for example. Within each channel stop diffusion region 21 is an overflow drain 24 of an N-type region that absorbs excess charge.
is provided.
第3図bは第3図aにおいて電荷蓄積状態すな
わち電極13に正のパルスバイアス、隣接する電
極(第1図における線路A1,A3)に接続される電
極を接地状態にし、オーバーフロードレインを逆
バイアスしたときの表面電位分布29を模式的に
示したものである。曲線30は比較のために隣接
する電極直下の表面電位分布を示してある。 FIG. 3b shows a charge accumulation state in FIG. 3a, that is, a positive pulse bias is applied to the electrode 13, and the electrodes connected to the adjacent electrodes (lines A 1 and A 3 in FIG. 1) are grounded, and the overflow drain is closed. It schematically shows the surface potential distribution 29 when reverse bias is applied. Curve 30 shows the surface potential distribution directly under the adjacent electrode for comparison.
第3図を用いて感光部での光電変換について説
明する。蓄積期間中に蓄積電極下の電位井戸に蓄
積できる最大電荷量は前に述べたように蓄積電極
のパルス電圧によつて決まる。しかし第3図に示
すようなオーバーフロードレインのある撮像装置
では、各絵素が隣接する電極直下の表面電位φp
と蓄積電極直下のチヤネルストツプ領域の表面電
位φcで囲まれる電位井戸のうちそれぞれの表面
電位がφc>φpの関係になるようにチヤネルスト
ツプ領域の不純物濃度分布を制御し、過剰電荷は
すべてチヤネルストツプ領域の障壁φcを越して
オーバーフロードレインに吸収させることにより
前に述べたブルーミングを抑制する。すなわち、
オーバーフロードレインのある電荷転送撮像装置
の各絵素に蓄積できる最大電荷量QTは蓄積電極
のパルス電圧印加したときの表面電位をφsとす
ると次式で表わされる。 Photoelectric conversion in the photosensitive section will be explained using FIG. 3. The maximum amount of charge that can be stored in the potential well below the storage electrode during the storage period is determined by the pulsed voltage of the storage electrode, as described above. However, in an imaging device with an overflow drain as shown in Fig. 3, each picture element has a surface potential φ p directly under the adjacent electrode.
The impurity concentration distribution in the channel stop region is controlled so that the surface potential of each of the potential wells surrounded by the surface potential φ c of the channel stop region immediately below the storage electrode is in the relationship φ c > φ p , and all excess charges are removed from the channel stop region. Blooming as described above is suppressed by absorbing it into the overflow drain across the barrier φ c of the region. That is,
The maximum amount of charge Q T that can be stored in each picture element of a charge transfer imaging device with an overflow drain is expressed by the following equation, where φ s is the surface potential of the storage electrode when a pulse voltage is applied.
QT=Cpx(φs−φc) …(1) ここでCpxは酸化膜容量である。 Q T =C px (φ s −φ c ) (1) where C px is the oxide film capacitance.
また蓄積時間を一定として入射光量に対して各
電位井戸内に発生蓄積される電荷は比例する。す
なわちガンマは1であることも知られている。 Further, assuming that the accumulation time is constant, the charge generated and accumulated in each potential well is proportional to the amount of incident light. That is, it is also known that gamma is 1.
また第3図においてオーバーフロードレインの
電圧を高くする(逆バイアス電圧を大きくする)
とオーバーフロードレインのフリンジング電界に
よつてチヤネルストツプ領域の表面電位φcが変
調され第3図bの曲線31のような表面電位にな
りチヤネルストツプ領域の表面電位はφc〜φc′
に変化する。言いかえるとオーバーフロードレイ
ンの電圧によつてφcが変化するため(1)式から理
解できるように蓄積最大電荷量を制御できる。 Also, in Figure 3, increase the overflow drain voltage (increase the reverse bias voltage).
The surface potential φ c of the channel stop region is modulated by the fringing electric field of the overflow drain, resulting in a surface potential as shown by curve 31 in FIG. 3b, and the surface potential of the channel stop region becomes φ c ~φ c ′.
Changes to In other words, since φ c changes depending on the voltage of the overflow drain, the maximum amount of accumulated charge can be controlled, as can be understood from equation (1).
次に第4図のパルス波形を用いて本発明の光電
変換特性制御について説明する。電荷蓄積電極1
2は電荷蓄積期間中一定のV1の電位に保つてお
きオーバーフロードレインの電位を蓄積期の初期
は高くVD1に保持する。このときのチヤネルスト
ツプ領域の表面電位をφc′とすると蓄積初期にお
ける蓄積最大電荷量QT′はCpx・(φs−φc′)で
ありそれ以上発生した電荷はオーバーフロードレ
インに吸収される。また蓄積期間t0〜t1の任意の
点t1からオーバーフロードレインの電位をVD2に
変化させるとチヤネルストツプ領域の表面電位が
φc′→φcと小さくなり(隔壁電位は大きくな
る)最大蓄積電荷量は(1)式からCpx(φc−φ
c′)だけ大きくなる。従つて蓄積初期期間t0〜t1
間ですでに飽和電荷量に達していた絵素も再び光
情報によつて発生する信号電荷を蓄積できる。こ
のときの入射光量に対する蓄積電荷量の変化を示
し光電変換特性を第5図の実線に示してある。比
較のために従来の光電変換特性を破線で示した。 Next, the photoelectric conversion characteristic control of the present invention will be explained using the pulse waveform shown in FIG. Charge storage electrode 1
2 is kept at a constant potential of V 1 during the charge accumulation period, and the potential of the overflow drain is kept high at V D1 at the beginning of the accumulation period. If the surface potential of the channel stop region at this time is φ c ', the maximum amount of accumulated charge Q T ' at the initial stage of accumulation is C px・(φ s - φ c '), and any additional charges generated are absorbed by the overflow drain. . Furthermore, when the overflow drain potential is changed to V D2 from any point t 1 during the accumulation period t 0 to t 1 , the surface potential of the channel stop region decreases from φ c ′ to φ c (the barrier wall potential increases), and the maximum accumulation is reached. From equation (1), the amount of charge is C px (φ c −φ
c ′). Therefore, the initial period of accumulation t 0 to t 1
The picture elements that have already reached the saturation charge amount during the period can again accumulate signal charges generated by optical information. The solid line in FIG. 5 shows the change in the amount of accumulated charge with respect to the amount of incident light and the photoelectric conversion characteristics at this time. For comparison, the conventional photoelectric conversion characteristics are shown with a broken line.
第5図から撮像可能な入射光範囲が本発明によ
る上述の方法によつて拡大されることが理解でき
る。 It can be seen from FIG. 5 that the range of incident light that can be imaged is expanded by the above-described method according to the present invention.
第6図は本発明の他の実施例を説明するオーバ
ーフロードレインの蓄積期間中のパルス波形で蓄
積期間t0〜t3中にオーバーフロードレインの電位
をt1,t2と2回変化させると光電変換特性は第7
図に示すように3点の折れ曲がり点ができ、さら
に撮像可能な入射光範囲を拡大することができ
る。また第4図,第6図に示すオーバーフロード
レインの電圧を変化させることによつて輝度の高
い画面のコントラストも調整できる。 FIG. 6 shows a pulse waveform during the accumulation period of the overflow drain to explain another embodiment of the present invention, and when the potential of the overflow drain is changed twice at t 1 and t 2 during the accumulation period t 0 to t 3 , a photovoltaic effect occurs. The conversion characteristic is the seventh
As shown in the figure, three bending points are formed, and the range of incident light that can be imaged can be further expanded. Furthermore, by changing the voltage of the overflow drain shown in FIGS. 4 and 6, the contrast of a screen with high brightness can also be adjusted.
以上説明したように本発明によれば過剰電荷を
吸収するオーバーフロードレインを設けた電荷転
送撮像装置において蓄積期間中オーバーフロード
レインの電圧を蓄積期の初期より蓄積期間終点の
電圧を小さくすることによりブルーミング現象の
ない撮像装置の光電変換特性を任意に制御でき
る。 As explained above, according to the present invention, in a charge transfer imaging device equipped with an overflow drain that absorbs excess charge, the voltage of the overflow drain during the accumulation period is made smaller at the end of the accumulation period than at the beginning of the accumulation period, thereby causing the blooming phenomenon. It is possible to arbitrarily control the photoelectric conversion characteristics of an imaging device without
なお、本実施例では二次元のフレーム転送方式
撮像装置について説明したが他の方式の二次元撮
像装置または一次元電荷転送撮像装置にも適用で
きることは明らかである。 In this embodiment, a two-dimensional frame transfer imaging device has been described, but it is obvious that the present invention can also be applied to other types of two-dimensional imaging device or one-dimensional charge transfer imaging device.
第1図は本発明を適用する撮像装置の一実施
例、第2図は第1図に示す実施例に用いる感光部
のパルス波形、第3図は、第1図に示す感光アレ
イ中の電荷蓄積領域の水平方向一部断面図aとそ
の直下の表面電位分布を示す、第4図,第6図は
本発明に用いるオーバーフロードレインのパルス
波形、第5図,第7図は本発明により得られる撮
像装置の光電変換特性を示すものである。
FIG. 1 shows an embodiment of an imaging device to which the present invention is applied, FIG. 2 shows a pulse waveform of a photosensitive section used in the embodiment shown in FIG. 1, and FIG. 3 shows charges in the photosensitive array shown in FIG. 1. 4 and 6 show the pulse waveforms of the overflow drain used in the present invention, and FIGS. 5 and 7 show the horizontal partial cross-sectional view a of the storage region and the surface potential distribution immediately below it. This shows the photoelectric conversion characteristics of the imaging device used.
Claims (1)
の転送チヤネルを分離する基板半導体と同一導電
型で前記基板半導体の不純物濃度より高いチヤネ
ル分離領域内に前記基板半導体と反対の導電型領
域を設けてP―N接合を形成し、前記撮像装置の
絵素を構成する電位井戸に蓄積できる最大電荷量
以上の過剰電荷を前記P―N接合に吸収する電荷
転送撮像装置において、電荷蓄積期間に前記P―
N接合に印加する逆バイアス電圧を前記電荷蓄積
期間の初期より前記蓄積期間の終期に低くするこ
とを特徴とする電荷転送撮像装置の光電変換特性
制御方法。1. In an imaging device using a charge transfer element, a region of a conductivity type opposite to that of the substrate semiconductor is provided in a channel separation region that has the same conductivity type as the substrate semiconductor that separates transfer channels in the imaging region and has a higher impurity concentration than the substrate semiconductor. In a charge transfer imaging device in which a P-N junction is formed by the P-N junction and an excess charge greater than the maximum amount of charge that can be accumulated in a potential well constituting a picture element of the imaging device is absorbed into the P-N junction, the P-
A method for controlling photoelectric conversion characteristics of a charge transfer imaging device, characterized in that the reverse bias voltage applied to the N junction is lowered at the end of the charge accumulation period than at the beginning of the charge accumulation period.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7005776A JPS52152111A (en) | 1976-06-14 | 1976-06-14 | Photoelectric conversion controller of charge transfer pickup device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7005776A JPS52152111A (en) | 1976-06-14 | 1976-06-14 | Photoelectric conversion controller of charge transfer pickup device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS52152111A JPS52152111A (en) | 1977-12-17 |
JPS6148307B2 true JPS6148307B2 (en) | 1986-10-23 |
Family
ID=13420530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7005776A Granted JPS52152111A (en) | 1976-06-14 | 1976-06-14 | Photoelectric conversion controller of charge transfer pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS52152111A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5726971A (en) * | 1980-07-24 | 1982-02-13 | Sanyo Electric Co Ltd | Solidstate image sensor |
JPS586682A (en) * | 1981-07-06 | 1983-01-14 | Sony Corp | Solid-state image pickup device |
JPS59104550U (en) * | 1982-12-29 | 1984-07-13 | ソニー株式会社 | solid-state image sensor |
JPS6039257U (en) * | 1983-08-25 | 1985-03-19 | ソニー株式会社 | solid state sensor |
-
1976
- 1976-06-14 JP JP7005776A patent/JPS52152111A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS52152111A (en) | 1977-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4485315A (en) | Blooming suppression in a CCD imaging device | |
US4322753A (en) | Smear and/or blooming in a solid state charge transfer image pickup device | |
EP0186162B1 (en) | Solid state image sensor | |
US4302779A (en) | Methods of reducing blooming in the drive of charge-coupled image sensors | |
JPH05137072A (en) | Solid-state image pickup device | |
US5757427A (en) | Image pick-up apparatus having a charge coupled device with multiple electrodes, a buffer layer located below some of the electrodes | |
GB2128052A (en) | Flicker reduction in field-interlaced three-phase clocked ccd imagers | |
JP2914496B2 (en) | Solid-state imaging device | |
JPH05199465A (en) | Charge-coupled image sensing device and camera having such image sensing device | |
JPS6148307B2 (en) | ||
US5382978A (en) | Method for driving two-dimensional CCD imaging device | |
JPH0446504B2 (en) | ||
Hynecek | Design and performance of a high-resolution image sensor for color TV applications | |
JPH0425714B2 (en) | ||
JP2894235B2 (en) | Solid-state imaging device | |
JPH0150156B2 (en) | ||
JP2825075B2 (en) | Solid-state imaging device and driving method thereof | |
JPH0130306B2 (en) | ||
JP2001177769A (en) | Drive method for solid-state image sensing device | |
JPH0377711B2 (en) | ||
US4661830A (en) | Solid state imager | |
JP2904180B2 (en) | Driving method of charge transfer device | |
JPS60244064A (en) | Solid-state image pickup device | |
JPS60233986A (en) | Drive method of solid-state image pickup device | |
JPS5985187A (en) | Solid-state image pickup device |