JPS5985187A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS5985187A
JPS5985187A JP57194639A JP19463982A JPS5985187A JP S5985187 A JPS5985187 A JP S5985187A JP 57194639 A JP57194639 A JP 57194639A JP 19463982 A JP19463982 A JP 19463982A JP S5985187 A JPS5985187 A JP S5985187A
Authority
JP
Japan
Prior art keywords
electrode
solid
charge storage
storage section
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57194639A
Other languages
Japanese (ja)
Inventor
Tsuneichi Yoshino
吉野 常一
Motoji Kajimura
梶村 元二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57194639A priority Critical patent/JPS5985187A/en
Publication of JPS5985187A publication Critical patent/JPS5985187A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Abstract

PURPOSE:To obtain a solid-state image pickup device with high resolution by impressing respectively a voltage with a charge storage section and a pair of electrodes provided on a photo conductor having a rectifying characteristic, splitting the electrode formed at unit element into two for signal readout. CONSTITUTION:A voltage is impressed to one of electrodes 18, 19, e.g., 18 only or the electrode is brought into a ground potential at the 1st frame period, and the other electrode 19 is floated. A reading pulse is impressed to a gate electrode 14 in this state. When an incident light 20 enters the photo conductor 17, electron and positive hole pairs are produced, the electrons are collected on the electrode 16 and the positive holes are collected on the electrode 18 and the diode potential is decreased. In this case, since the other electrode 19 is floated, the incident light 20 to this part is not used at all, and only the part corresponding to the 18 of the electrode 16 becomes one picture element. At the next frame period, a voltage is impressed to the other electrode 19 or the electrode is connected to ground, the other electrode 18 is floated, then the unit picture element corresponding to the electrode is doubled for attaining high resolution.

Description

【発明の詳細な説明】 〔発明の技術分野) 本発明は固体撮像装置に係り、特に電荷転送機能を有す
る半導体基板上に受光素子として光導電体を形成した高
解像度の固体撮像装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a solid-state imaging device, and particularly relates to a high-resolution solid-state imaging device in which a photoconductor is formed as a light receiving element on a semiconductor substrate having a charge transfer function. be.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、ホトダイオードを光検知部として、このホトダイ
オードに蓄積された電荷を転送する電荷転送素子(以下
CCDと云う)を用いた固体撮像装置があるが、これら
の多くはホトダイオードと電荷転送用の市極部とを同一
基板面に構成する必要があるため、その単位面積当りの
光利用効率はたかだか20〜30%となっていた。また
ブルーミングの抑制のためオーバフロードレインを形成
すると、光利用効率は更に低下する。この問題点を除去
するだめに光検知部のホトダイオードの代シに光導電体
に光感度をもたせこれをCCDと組合せた固体撮像装置
が提案されている。
Conventionally, there are solid-state imaging devices that use a photodiode as a photodetector and a charge transfer device (hereinafter referred to as CCD) that transfers the charge accumulated in the photodiode, but most of these devices have a photodiode and a charge transfer device that transfers the charge accumulated in the photodiode. Since it is necessary to configure both parts on the same substrate surface, the light utilization efficiency per unit area has been 20 to 30% at most. Furthermore, if an overflow drain is formed to suppress blooming, the light utilization efficiency will further decrease. In order to eliminate this problem, a solid-state imaging device has been proposed in which a photoconductor has photosensitivity instead of a photodiode in the photodetector section and is combined with a CCD.

このような固体撮像装置は一部に開化部を有するように
半導体基板上に設けられた絶縁層と、開孔部を介して電
荷蓄積部と′電気的に結合する第1電極が単位要素毎に
絶縁層上に形成されている。
Such a solid-state imaging device includes an insulating layer provided on a semiconductor substrate so as to partially have an opening, and a first electrode that is electrically coupled to a charge storage section through an opening for each unit element. is formed on an insulating layer.

従って光利用率を50〜75%とすることができる。Therefore, the light utilization rate can be set to 50 to 75%.

しかし現在カラーカメラは2/3吋乃至1/2吋サイズ
の小型化へと進展している。この場合、放送用にも開用
できる充分な解像夏を得ようとすると、水平約800絵
素、垂直約500絵素、即ち、全面で約40万個が必要
とされている。従って単位絵素のサイズとしては2/3
吋で計算して、水平約11μm1垂直約13μmとなる
However, color cameras are currently becoming smaller in size from 2/3 inch to 1/2 inch. In this case, in order to obtain a resolution high enough to be used for broadcasting, approximately 800 picture elements horizontally and approximately 500 picture elements vertically, that is, approximately 400,000 picture elements on the entire surface, are required. Therefore, the size of the unit picture element is 2/3
Calculated in terms of 11 μm horizontally and 13 μm vertically.

そしてこの大きさの単位絵素の中にインタライン転送型
CCDのようにダイオード部、読み込みゲート部、およ
び転送部を設けると、現在の集積回路技術では製作不可
能である。とりわけ転送部は4〜5μmより幅を狭くす
るとナローチャンネル(Narrow channel
)効果により十分な電荷量の転送ができなくなるため、
5μmより幅を小さくすることはできない。
If a diode section, a read gate section, and a transfer section are provided in a unit pixel of this size as in an interline transfer type CCD, it is impossible to manufacture using current integrated circuit technology. In particular, when the width of the transfer section is narrower than 4 to 5 μm, it becomes a narrow channel.
) effect makes it impossible to transfer a sufficient amount of charge,
The width cannot be made smaller than 5 μm.

〔発明の目的) 本発明は上述した問題点に鑑みなされたものであり、整
流特性を有する光導体上に設けられた1対の第2電極に
交互に電荷蓄積部との間に電圧を印加し、単位要素毎に
形成された第1電極をさらに2分割して信号読み出しを
することにより高解像度の固体撮像装置を提供すること
を目的としている。
[Object of the Invention] The present invention has been made in view of the above-mentioned problems, and involves applying a voltage alternately between a pair of second electrodes provided on a photoconductor having rectifying characteristics and a charge storage section. However, it is an object of the present invention to provide a high-resolution solid-state imaging device by further dividing the first electrode formed for each unit element into two and reading out signals.

〔発明の概要〕[Summary of the invention]

即ち、本発明は電荷蓄積部おまひこの電荷蓄積部に蓄積
された電荷を転送する電荷転送部を有する半導体基板と
、電荷蓄積部の一部に開孔部を有するように半導体基板
上に設けられた絶縁層と、開化部を介して電荷蓄積部と
電気的に結合するように絶縁層上に単位要素毎に形成さ
れた第1電極と、この第1電極および絶縁層を覆うよう
に形成された第2電極としての櫛歯状に配設された1対
の透明電極とからなり、それぞれの第1電極上に対応す
る領域に透明電極のそれぞれの櫛歯が設けられ、かつ1
対の透明電極は交互に電荷蓄積部との間に電圧を印加し
、単位要素毎に形成された第1屯極の領域をさらに2分
割した領域よりの信号を交互に読み出し得るようになさ
れていることを特徴とする固体撮像装置であり、櫛歯が
走査線方向に対して垂直であるものと、1対の櫛歯状の
透明電極の一方のみに対応して縦方向のG、B、Rまた
はG、Cy、Mgのストライプフィルターを組合せ、色
出信号を得るようになされていることを実施態様として
いる。
That is, the present invention provides a semiconductor substrate having a charge transfer section for transferring the charges accumulated in the charge accumulation section of the charge accumulation section, and a semiconductor substrate provided with an opening in a part of the charge accumulation section. a first electrode formed for each unit element on the insulating layer so as to be electrically coupled to the charge storage part through the opening, and a first electrode formed to cover the first electrode and the insulating layer. a pair of transparent electrodes arranged in a comb-like shape as a second electrode, and each comb-teeth of the transparent electrode is provided in a region corresponding to the first electrode;
A voltage is alternately applied between the pair of transparent electrodes and the charge storage section, so that signals from regions obtained by further dividing the first electrode region formed for each unit element into two can be read out alternately. The solid-state imaging device is characterized in that the comb teeth are perpendicular to the scanning line direction, and the vertical G, B, In this embodiment, R, G, Cy, and Mg stripe filters are combined to obtain a color output signal.

〔発明の実施例) 次に本発明の各実施例を図に従って説明する。[Embodiments of the invention] Next, each embodiment of the present invention will be described according to the drawings.

第1図(a)、(b)は各実施例の一単位の断面構造を
示したものであり、第1図(a)は電荷蓄積部がダイオ
ードで電荷転送部が表面チャンネルCCDの場合である
が、これに限定されるものではなく、第1図(b)に示
すように例えば電荷蓄積部はゲート電極(9)によりポ
テンシャル井戸(8)を形成してもよく、また電荷転送
部は埋込みチャンネルCCDあるいはBBDでもよい。
Figures 1(a) and (b) show the cross-sectional structure of one unit of each embodiment, and Figure 1(a) shows the case where the charge storage section is a diode and the charge transfer section is a surface channel CCD. However, the present invention is not limited to this, and as shown in FIG. 1(b), for example, the charge storage section may form a potential well (8) using the gate electrode (9), and the charge transfer section may form a potential well (8). It may also be a buried channel CCD or BBD.

即ち、まずP型半導体基板(10)にn+型領域(11
)を形成しダイオードを設ける。(12)は電荷転送の
ための転送ゲート電極であり、これにより半々体基板(
10)中に空乏層(13)が形成される。(14)はダ
イオード(11)に蓄積された電荷を転送部(13)に
読み込むための第1ゲート電極であり、(15)は絶縁
層である。(16)はダイオード(11)と電気的に結
合し、かつ各絵素部に分離している第1電極(17)は
光導電体層である。(18)(19)は第2電極で、絵
素を構成する第1電極(16)上に対応して1対形成さ
れ、それぞれに交互に所定時間電圧が印加される。(2
0)は入射光である。
That is, first, an n+ type region (11) is formed on a P type semiconductor substrate (10).
) and provide a diode. (12) is a transfer gate electrode for charge transfer, which allows the half-substrate (
A depletion layer (13) is formed in 10). (14) is a first gate electrode for reading the charge accumulated in the diode (11) into the transfer section (13), and (15) is an insulating layer. The first electrode (16) electrically coupled to the diode (11) and separated into each picture element portion is a photoconductor layer. A pair of second electrodes (18) and (19) are formed corresponding to the first electrode (16) constituting a picture element, and a voltage is alternately applied to each of them for a predetermined period of time. (2
0) is the incident light.

第2図に第1電極(16′)、(16″)に対する第2
電極(18)(19)の配置を2次元に形成した場合の
全体構成の1例を示す。即ち第2電極(18)(19)
として櫛歯状に配設された1対の透明電極を使用してい
る。
Figure 2 shows the second electrode for the first electrode (16'), (16'').
An example of the overall configuration when the electrodes (18) and (19) are arranged two-dimensionally is shown. That is, the second electrode (18) (19)
A pair of transparent electrodes arranged in a comb-like shape are used as the electrodes.

次に第1図と第2図を用いて各実施例の読み込み動作を
説明する。
Next, the reading operation of each embodiment will be explained using FIGS. 1 and 2.

最初のフレーム期間は、第2電極(18)(19)の一
方、例えば(18)のみに電圧を印加または接地電位に
し、他方(19)はフローティングとしておく、この状
態で第1ゲート電極(14)に読み込みパルス(VCH
)を印加することによりダイオード(11)の電位は(
VCH−VT)となる。ここで(VT)はしきい値電圧
である。
During the first frame period, one of the second electrodes (18) and (19), for example, only (18) is applied with a voltage or set to the ground potential, while the other (19) is left floating. In this state, the first gate electrode (14) is left floating. ) is read pulse (VCH
), the potential of the diode (11) becomes (
VCH-VT). Here (VT) is the threshold voltage.

入射光(20)が光導電体(17)に入ると、電子、正
孔対を生成し、電子は、第1電極(16)に収集され、
正孔は第2電極(18)に収集され、ダイオード電位を
低下させる。この場合第2電極の他方(19)はフロー
ティングになっているため、この部分の入射光(20)
は何ら利用されず第1電極(16)上の第2電極の一方
(18)に対応する部分のみが1個の絵素となる。この
ようにして得られた光信号をインターレース方式の場合
、2フィールド読み出して1フレームとした後、次のフ
レーム期間は第2電極の他方(19)のみに電圧を印加
または接地電位に接続し、第2電極の一方(18)をフ
ローティングとすれば第1電極に対応する単位絵素をさ
らに2倍とした高解像度動作が可能になる。
When the incident light (20) enters the photoconductor (17), it creates electron-hole pairs, and the electrons are collected at the first electrode (16);
The holes are collected at the second electrode (18), lowering the diode potential. In this case, since the other side of the second electrode (19) is floating, the incident light (20) on this part
is not used at all, and only the portion on the first electrode (16) corresponding to one side (18) of the second electrode becomes one picture element. In the case of the interlaced method, the optical signal obtained in this way is read out in two fields to form one frame, and in the next frame period, a voltage is applied only to the other side of the second electrode (19) or connected to the ground potential, If one of the second electrodes (18) is made floating, high-resolution operation with double the number of unit pixels corresponding to the first electrode becomes possible.

各実施例によると、水平約800絵素を得るためには2
/3吋で水平22μ程度が単位絵素となり、現在の集積
回路技術で容易に製作できることになり、その工業的価
値は非常に大きい。
According to each example, in order to obtain approximately 800 pixels horizontally, 2
The unit picture element is approximately 22 μ horizontally in 3 inches, and can be easily manufactured using current integrated circuit technology, and its industrial value is extremely large.

また実施例の固体撮像装置をカラー用に使用することも
可能であり、例えば1対の第2の電極(18)(19)
の一方のみに対応して縦方向のG、B.Rの繰返し、ま
たはG.Cy.Mgの繰返しのカラーストライプフィル
ターを組合せることにより信号処理の容易な色信号が借
られることは云うまでもない。
It is also possible to use the solid-state imaging device of the embodiment for color imaging; for example, a pair of second electrodes (18) (19)
G, B. in the vertical direction corresponding to only one of them. repeating R, or G. Cy. It goes without saying that color signals that are easy to process can be obtained by combining Mg repeating color stripe filters.

更に実施例の固体撮像装置と同一基板に隣接して同一単
位要素数の蓄積部を1個以上形成して1/60〜1/1
20秒毎に信号読み出しを行い、1/30秒蓄積に相当
する標準のテレビジョン信号として合成することも可能
であることは勿論である。
Further, one or more storage sections having the same number of unit elements are formed adjacent to the same substrate as the solid-state imaging device of the embodiment, so that the area is 1/60 to 1/1.
Of course, it is also possible to read signals every 20 seconds and synthesize them as a standard television signal corresponding to 1/30 second accumulation.

次に実施例の固体撮像板の製造方法の一例を説明すると
、まずp型Si基板(10)にn+型領域(11)をイ
オン打込み方法により形成する。次に絶縁酸化した半導
体基板(10)上にポリSiにより転送ゲート電極(1
2)を形成して絶縁分離したのち、第1ゲート電極(1
4)を形成する。次に絶縁層(15)としてSiO2を
CVD法により形成し、n+型領域(11)に位置する
ようにコンタクトホールを設けた後、Ti、MoやTa
等により第1電極(16)を形成し、単位絵素毎に分離
する。
Next, an example of a method for manufacturing the solid-state imaging plate of the embodiment will be described. First, an n+ type region (11) is formed in a p-type Si substrate (10) by an ion implantation method. Next, a transfer gate electrode (1
After forming and insulating the first gate electrode (2), the first gate electrode (1
4) Form. Next, SiO2 is formed as an insulating layer (15) by the CVD method, and a contact hole is formed so as to be located in the n+ type region (11).
The first electrode (16) is formed by etching and separated into unit picture elements.

この第1電極(16)上に整流特性を有する光導電体層
(17)としてマグネトロンスパッタ蒸着法によりα−
Si:Hを1〜4μ形成し、さらにP層としてα−Si
C:Hを100〜500A形成する。更にその上に第2
電極(18)(19)としての透明電極をI.T.O(
IndumTin Oxide)ターゲットを使用し5
00〜2000Aマグネトロンスパッタ蒸着法により形
成したのち、第2図に示したように櫛形にエツチングす
ることにより実を角例の固体撮像装置が構成する。
α-
Form 1 to 4μ of Si:H, and then add α-Si as a P layer.
Form C:H at 100-500A. Furthermore, the second
Transparent electrodes as electrodes (18) and (19) were used as I. T. O(
5 using IndumTin Oxide) target.
After forming by 00 to 2000A magnetron sputter deposition method, the fruit is etched into a comb shape as shown in FIG. 2, thereby constructing a solid-state imaging device.

前述した実施例及びその製造方法は代表的なものであり
、他にも種々の構造や製造方法が考えられることは勿論
である。
The embodiments and manufacturing methods described above are representative, and it goes without saying that various other structures and manufacturing methods can be considered.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明によれば整流特性を有する光導電体
上に設けられた1対の第2電極に交互に電荷蓄積部との
間に電圧を印加し、単位要素毎に形成された第1電極を
さらに2分割して信号読み出しをすることにより高解像
度の固体撮像装置が得られるのでその工業的価値は極め
て大である。
As described above, according to the present invention, a voltage is alternately applied between the pair of second electrodes provided on the photoconductor having rectifying characteristics and the charge storage portion, and the second electrodes formed for each unit element are Since a high-resolution solid-state imaging device can be obtained by further dividing one electrode into two and reading signals, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の各実施例を示す図であり、
第1図(a)、(b)は各実施例の一単位の断面図、第
2図(a)(b)は各実施例における第1電極と第2電
極との関係を示す説明図である。 10・・・P型半導体基板 11・・・n+型領域12
・・・転送ゲート電極 13・・・空乏層14・・・第
1ゲート電極 15・・・絶縁層16、16′、16″
・・・第1電極 17・・光導電体層18、19・・・
第2電極 20・・・入射光代理人 弁理人 井上一男 第1図 ((1) (b> 第2図 (Q)
FIG. 1 and FIG. 2 are diagrams showing each embodiment of the present invention,
Figures 1 (a) and (b) are cross-sectional views of one unit of each example, and Figures 2 (a) and (b) are explanatory diagrams showing the relationship between the first electrode and the second electrode in each example. be. 10...P type semiconductor substrate 11...n+ type region 12
...Transfer gate electrode 13...Depletion layer 14...First gate electrode 15...Insulating layer 16, 16', 16''
...First electrode 17...Photoconductor layer 18, 19...
Second electrode 20...Incoming light agent Patent attorney Kazuo Inoue Figure 1 ((1) (b> Figure 2 (Q)

Claims (3)

【特許請求の範囲】[Claims] (1)電荷蓄積部およびこの電荷蓄積部に蓄積された電
荷を転送する電荷転送部を有する半導体基板と、前記電
荷蓄積部の一部に開孔部を有するように前記半導体基板
上に設けられた絶縁層と、前記開孔部を介して前記電荷
蓄積部と電気的に結合するように前記絶縁層上に単位要
素毎に形成された第1電極と、この第1電極および前記
絶縁層を覆うように形成された整流特性を有する光導電
体と、この光導電体上に形成された第2電極としての櫛
歯状に配設された1対の透明電極とからなり、前記それ
ぞれの第1電極上に対応する領域に前記1対の透明電極
のそれぞれの櫛歯が設けられ、かつ前記1対の透明電極
は交互に前記電荷蓄積部との間に電圧を印加し、前記単
位要素毎に形成された前記第1の電極の領域をさらに2
分割した領域よりの信号を交互に読み出し得るようにな
されていることを特徴とする固体撮像装置。
(1) A semiconductor substrate having a charge storage section and a charge transfer section that transfers the charges accumulated in the charge storage section, and a semiconductor substrate provided on the semiconductor substrate so as to have an opening in a part of the charge storage section. a first electrode formed for each unit element on the insulating layer so as to be electrically coupled to the charge storage section through the opening, and the first electrode and the insulating layer It consists of a photoconductor having rectifying properties formed to cover the photoconductor, and a pair of transparent electrodes arranged in a comb-like shape as a second electrode formed on the photoconductor, and each of the above-mentioned Comb teeth of each of the pair of transparent electrodes are provided in a corresponding area on one electrode, and a voltage is alternately applied between the pair of transparent electrodes and the charge storage section, and each of the unit elements is The area of the first electrode formed in
A solid-state imaging device characterized in that signals from divided regions can be read out alternately.
(2)櫛歯が走査線方向に対して垂直であることを特徴
とする特許請求の範囲第1項記載の固体撮像装置。
(2) The solid-state imaging device according to claim 1, wherein the comb teeth are perpendicular to the scanning line direction.
(3)1対の櫛歯状の透明電極の一方のみに対応して縦
方向のG.B.RまたはG.Cy.Mgのストライプフ
ィルターを組合せ色出カ信号を得るようになされている
ことを特徴とする特許請求の範囲第1項記載の固体撮像
装置。
(3) G in the vertical direction corresponding to only one of the pair of comb-shaped transparent electrodes. B. R or G. Cy. 2. The solid-state imaging device according to claim 1, wherein a color output signal is obtained by combining Mg stripe filters.
JP57194639A 1982-11-08 1982-11-08 Solid-state image pickup device Pending JPS5985187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57194639A JPS5985187A (en) 1982-11-08 1982-11-08 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57194639A JPS5985187A (en) 1982-11-08 1982-11-08 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS5985187A true JPS5985187A (en) 1984-05-17

Family

ID=16327855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57194639A Pending JPS5985187A (en) 1982-11-08 1982-11-08 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS5985187A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135606A (en) * 1993-11-11 1995-05-23 Nec Corp Image sensor and its driving method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135606A (en) * 1993-11-11 1995-05-23 Nec Corp Image sensor and its driving method

Similar Documents

Publication Publication Date Title
US5510285A (en) Method for fabricating CCD image sensors
JPS58138187A (en) Solid-state image sensor
JPH07120779B2 (en) Overflow drain structure of solid-state imaging device and manufacturing method thereof
US5289022A (en) CCD shift register having a plurality of storage regions and transfer regions therein
JPH08181300A (en) Image pickup device
JPH0518465B2 (en)
JP2845216B2 (en) Solid-state imaging device and method of manufacturing the same
US6760073B1 (en) Solid-state image sensor
KR960001182B1 (en) Solid state image pick-up device
JP3052560B2 (en) Charge transfer imaging device and method of manufacturing the same
JP2002151673A (en) Solid-state image pickup element
JPS5985187A (en) Solid-state image pickup device
US5075747A (en) Charge transfer device with meander channel
JPH0425714B2 (en)
JP3028823B2 (en) Charge coupled device and solid-state imaging device using the same
JP2894235B2 (en) Solid-state imaging device
JP2897689B2 (en) Solid-state imaging device
KR950002194B1 (en) Frame transfer style ccd image sensor
JP2825075B2 (en) Solid-state imaging device and driving method thereof
JPS6148307B2 (en)
JPS604381A (en) Solid-state image pickup device
JP2980196B2 (en) Solid-state imaging device
JPH07226497A (en) Solid-state image pickup element
JP2903008B2 (en) Driving method of solid-state imaging device
JP2671151B2 (en) Semiconductor device