JPH03264617A - Production of thick-walled 9%ni steel excellent in yield strength - Google Patents

Production of thick-walled 9%ni steel excellent in yield strength

Info

Publication number
JPH03264617A
JPH03264617A JP6215590A JP6215590A JPH03264617A JP H03264617 A JPH03264617 A JP H03264617A JP 6215590 A JP6215590 A JP 6215590A JP 6215590 A JP6215590 A JP 6215590A JP H03264617 A JPH03264617 A JP H03264617A
Authority
JP
Japan
Prior art keywords
steel
temperature
rolling
heating
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6215590A
Other languages
Japanese (ja)
Other versions
JPH0768576B2 (en
Inventor
Naoki Saito
直樹 斉藤
Ryota Yamaba
山場 良太
Seinosuke Yano
矢野 清之助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2062155A priority Critical patent/JPH0768576B2/en
Publication of JPH03264617A publication Critical patent/JPH03264617A/en
Publication of JPH0768576B2 publication Critical patent/JPH0768576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the steel excellent in toughness at low temp. by specifying slab heating temp. before hot rolling, cumulative reduction of area at the time of hot rolling, and hardening treatment temp. after rolling, respectively, in a hardened, intermediate hardening treated, and tempered material. CONSTITUTION:A 9%Ni steel is produced by applying hot rolling to a slab of a steel containing 7.5-10wt.% Ni and then carrying out, in succession, primary hardening consisting of heating up to a temp. not lower than the Ac3 transformation point and cooling, secondary hardening consisting of heating up to a temp. between the Ac1 and the Ac3 transformation point and cooling, and tempering consisting of heating up to a temp. not higher than the Ac1 transformation point and cooling. In the above method, slab heating temp. before hot rolling is 800-900 deg.C, and subsequently, hot rolling in which cumulative reduction of area at 700-800 deg.C is regulated to 50-70% is performed, and hardening after rolling is carried out by exerting heating up to a temp. between Ac3 and 850 deg.C. By this method, the steel of >=40mm plate thickness having high yield strength and superior toughness at low temp. hitherto impossible by conventional methods can be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は降伏強度の優れた板厚40+nm以」二の9%
Ni鋼の製造法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a method for manufacturing a steel plate having a thickness of 40+nm or more with excellent yield strength.
The present invention relates to a method for manufacturing Ni steel.

(従来の技術) エネルギー需要の増大および原子力の安全性に対する危
惧から、クリーンなエネルギー源として天然ガスの需要
が急増している。したがって、近年、L N G貯蔵用
タンクの建設が国内外で積極的に推進されており、これ
らのタンクに使用される9%Ni鋼の需要も増加してい
る。さらに、貯罵効率の増加からタンクの容量を増大さ
せる方向にあり、LNGタンク材としての9%Ni鋼に
おいても、従来製造されてきた板厚である30m1Il
を越えて40+am以上の鋼材を製造する必要が生じて
きた。
(Prior Art) Due to increasing energy demand and concerns about the safety of nuclear power, the demand for natural gas as a clean energy source is rapidly increasing. Therefore, in recent years, the construction of LNG storage tanks has been actively promoted at home and abroad, and the demand for 9% Ni steel used in these tanks is also increasing. Furthermore, there is a trend toward increasing tank capacity due to an increase in storage efficiency, and even with 9% Ni steel as LNG tank material, the plate thickness conventionally manufactured is 30 m1Il.
It has become necessary to manufacture steel materials with a strength of 40+am or more.

従来、タンクの安全性の面から、低温靭性の優れた9%
Ni鋼の製造法に関しては多くの発明がなされている。
Conventionally, from the viewpoint of tank safety, 9% has excellent low temperature toughness.
Many inventions have been made regarding methods for producing Ni steel.

その中でも、Ac1〜Ac3変態点間に加熱焼入れしそ
の後焼き戻す処理を含んだ方法は、低温靭性を極めて向
上できるために多くの方法がある。
Among these methods, there are many methods that include heating and quenching between Ac1 and Ac3 transformation points and then tempering because they can significantly improve low-temperature toughness.

たとえば、特開昭47−23317号公報のように、A
c1〜Ac3変態点間に加熱し、焼入れおよび空冷した
後、Acl変態点以rの温度で焼き戻すことを特徴とす
る厚肉9%Ni鋼の靭性向上法、あるいは特開昭58−
73717号公報、特開昭62−205227号公報等
のように、Ac3変態点以上に加熱し冷却した後、Ac
l〜Ac、変態点間に加熱し冷却する熱処j!l!(以
下、 「中間焼入れ処理」という)後、Ac、変態点以
ドの温度で焼き戻すことを特徴とする熱処理法がある。
For example, as in Japanese Patent Application Laid-Open No. 47-23317,
A method for improving the toughness of thick-walled 9% Ni steel, which is characterized by heating between c1 and Ac3 transformation points, quenching and air cooling, and then tempering at a temperature equal to or higher than the Acl transformation point, or JP-A-58-
As in JP-A No. 73717, JP-A No. 62-205227, etc., after heating to above the Ac3 transformation point and cooling, Ac
l ~ Ac, heat treatment that heats and cools between transformation points j! l! There is a heat treatment method that is characterized by tempering (hereinafter referred to as "intermediate quenching treatment") at a temperature below the Ac transformation point.

また、特開昭49−135813号公報、特開昭61−
238911号公報、特開昭60−131916号公報
、特開昭56−156715号公報等のように、熱間圧
延後、空冷以上の速さで冷却し、その後Ac〜Ac3変
態点間に加熱し冷却、次いでAc、変態点以t”の温度
で焼ト戻すことを特徴とする9%Ni鋼の製造法がある
Also, JP-A-49-135813, JP-A-61-
As in JP-A No. 238911, JP-A No. 60-131916, JP-A No. 56-156715, etc., after hot rolling, the material is cooled at a speed higher than air cooling, and then heated between the Ac and Ac3 transformation points. There is a method for producing 9% Ni steel which is characterized by cooling and then tempering in Ac at a temperature t" below the transformation point.

(発明が解決しようとする課題) 以上の中で、特開昭47−23317号公報は、球形タ
ンクの赤道支持帯に使用される厚肉鋼板の板厚方向の靭
性向上を目的としたものである。この発明によれば、板
厚、Z方向の靭性向上はたしかに期待できるが、厚肉に
なると当然強度の低下が懸念されるため、高強度でかつ
低温靭性を要求されるL N Gタンク用鋼板の製造法
としては適当でない。
(Problems to be Solved by the Invention) Among the above, Japanese Patent Application Laid-Open No. 47-23317 aims to improve the toughness in the thickness direction of a thick steel plate used for the equatorial support band of a spherical tank. be. According to this invention, improvement in plate thickness and toughness in the Z direction can certainly be expected, but as the thickness increases, there is naturally a concern that the strength will decrease. It is not suitable as a manufacturing method.

また、特開昭58−73717号公報および特開昭62
−205227号公報は9%Ni鋼の熱処理法として広
く利用されている。しかしながら、3 これらの発明は低温靭性の改善にのみ着目したものであ
って、構造物の性能として最も重要である強度について
は同等酊及されておらず、後で述べるように、これらの
方法では板厚40[IImという従来にない厚肉でのL
NGタンク用9%Ni鋼の製造は困難である。
Also, JP-A-58-73717 and JP-A-62
JP-205227 is widely used as a heat treatment method for 9% Ni steel. However, these inventions focused only on improving low-temperature toughness, and did not pay equal attention to strength, which is the most important aspect of structural performance.As described later, these methods L with an unprecedentedly thick plate thickness of 40 [IIm]
It is difficult to manufacture 9% Ni steel for NG tanks.

また、特開昭49−135813号公報、特開昭61’
−238911号公報、特開昭60−131916号公
報、特開昭56−156715号公報は優れた母材靭性
あるいは優れた溶接部靭性を達成している。しかしなが
ら、これらの発明はその実施例から分かるように、板厚
が32m+n以下の鋼板の低温靭性の向上を目的とする
もの、すなわち従来の既をのL N Gタンク用鋼板を
念頭においてなされたものであり、板厚40LIIIl
l1以上の厚肉鋼板についてこれらの方法を適用するこ
とはできない −・般に、鋼材の破壊靭性は板厚が厚くなれば力学的な
要因で低トするが、同時に冶金学的な要因から強度、靭
性も低にする。
Also, JP-A-49-135813, JP-A-61'
JP-A-238911, JP-A-60-131916, and JP-A-56-156715 achieve excellent base metal toughness or excellent weld zone toughness. However, as can be seen from the examples, these inventions were made with the purpose of improving the low-temperature toughness of steel plates having a thickness of 32m+n or less, that is, they were made with the existing steel plates for LNG tanks in mind. and the plate thickness is 40LIIIl
These methods cannot be applied to steel plates with a thickness of 11 or more.In general, the fracture toughness of steel materials decreases due to mechanical factors as the plate thickness increases, but at the same time, the fracture toughness of steel decreases due to metallurgical factors. , the toughness is also lowered.

4− 第1表、に板厚が42+I1mの場合の強度と脆性亀裂
伝播停止に関する破壊靭性値について従来知られている
9%Ni鋼の製造法の比較を示す。
4- Table 1 shows a comparison of conventionally known manufacturing methods for 9% Ni steel in terms of strength and fracture toughness values regarding brittle crack propagation arrest when the plate thickness is 42+I1 m.

先に述べたように、9%Ni鋼の低温靭性を着しく向上
させる熱処理法として知られている 「焼入れ一中間焼
入れ処理−焼戻し」材は、従来の一般的な製造法である
 「焼入れ一焼戻し処理」材と比較して破壊靭性は優れ
ているものの、降伏強度の低下が着しい。したがって、
従来の技術では中間焼入れ処理を利用して従来鋼板なみ
の強度と低温靭性を同時に得ることはできない。
As mentioned earlier, "quenching, intermediate quenching and tempering" is known as a heat treatment method that significantly improves the low-temperature toughness of 9% Ni steel. Although the fracture toughness is superior to that of the tempered material, the yield strength is significantly lower. therefore,
With conventional techniques, it is not possible to simultaneously obtain strength and low-temperature toughness comparable to conventional steel sheets using intermediate quenching.

(課題を解決するための手段) 本発明は以上の問題点を解決するためになされたもので
あって、その要胃は、重量%でNi: 7.5〜10%
含有する鋼スラブを用い、熱間圧延後、− Acl変態点以上に加熱して冷却する第1回目の焼入れ
処理とAc1〜Ac3変態点に加熱して冷却する第2回
目の焼入れ処理とAc、変態点以下に加熱して冷却する
焼戻し処理とを施す9%Ni鋼の製造法において、熱間
圧延前のスラブ加熱温度を800〜900℃とし、次い
で700〜800℃の累積圧下率が50〜80%の熱間
圧延を施し、圧延後前記#S1回目の焼入れ処理をAc
3〜850℃に加熱して行うことを特徴とする板厚40
 mm以上の降伏強度の優れた厚肉9%Ni鋼の製造法
、および、重量%でNi:7.5〜10%含有する鋼ス
ラブを用い、熱間圧延後直ちに10℃/s以上の冷却速
度で冷却し、次いでAc〜AC1変態点間の温度で焼入
れ処理を施し、Ac*態点以1の温度で焼戻し処理を行
う9%Ni鋼の製造法において、前記熱間圧延に当たり
、700〜850℃の温度で50〜80%の累積圧下を
施すことを特徴とする板厚40+am以上の降伏強度の
優れた厚肉9%Ni鋼の製造法である。熱間圧延後直ち
に10℃/s以上の冷却速度で冷却する場合は、熱間圧
延前のスラブ加熱温度を800〜1000℃とすること
が好ましい。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and the present invention includes Ni: 7.5 to 10% by weight.
After hot rolling using a steel slab containing A, a first quenching treatment of heating above the ACl transformation point and cooling, a second quenching treatment of heating to an Ac1 to Ac3 transformation point and cooling, and Ac, In the manufacturing method of 9% Ni steel, which involves heating to below the transformation point and tempering treatment, the slab heating temperature before hot rolling is 800 to 900°C, and then the cumulative rolling reduction rate of 700 to 800°C is 50 to 800°C. 80% hot rolling, and after rolling, the #S first quenching treatment was performed as Ac
Plate thickness 40 characterized by heating to 3 to 850°C
A method for producing a thick 9% Ni steel with an excellent yield strength of mm or more, and a steel slab containing 7.5 to 10% Ni by weight, and cooling at a rate of 10°C/s or more immediately after hot rolling. In the method for producing 9% Ni steel, the steel is cooled at a high speed, then quenched at a temperature between Ac and AC1 transformation point, and tempered at a temperature of 1 or higher than Ac This is a method for producing thick 9% Ni steel with a thickness of 40+am or more and excellent yield strength, which is characterized by applying a cumulative reduction of 50 to 80% at a temperature of 850°C. When cooling at a cooling rate of 10° C./s or more immediately after hot rolling, the slab heating temperature before hot rolling is preferably 800 to 1000° C.

(作用) 中間焼入れ材の降伏強度低下は、焼戻し過程で生成する
安定な析出オーステナイトが多量に存在することによる
。したがって、9%Ni鋼のような析出強化元素が含ま
れていない鋼材の降伏強度を靭性を損わないで上昇させ
るためには、徹底したフェライト粒の細粒化による降伏
点上昇、あるいは転位密度の増加による強化等の手段が
必要である。本発明はその具体的な手段を提供するもの
である。
(Function) The decrease in yield strength of the intermediately hardened material is due to the presence of a large amount of stable precipitated austenite generated during the tempering process. Therefore, in order to increase the yield strength of steel materials that do not contain precipitation-strengthening elements, such as 9% Ni steel, without impairing toughness, it is necessary to raise the yield point by thoroughly reducing the ferrite grains, or increase the dislocation density. Measures such as strengthening by increasing the amount of water are necessary. The present invention provides specific means for achieving this goal.

第1図は、板厚40 mmf)C:0.05%、Mn:
0.57%、Ni:9.42%を含有する9%Ni鋼ス
ラブを横軸で表したスラブ加熱温度で加熱後、800℃
からの圧下率が50%となる圧延を施したもの(・)お
よび圧延後の仕上げ温度が900℃の圧延を施したもの
(○)をそれぞれ空冷し、その後800℃の焼入れ処理
、670℃の中間焼入れ処理、570℃の焼戻し処理を
行った後の板厚1/4を部の降伏強度を示した図である
。なお、この鋼の変態点はAc、:620℃、Ac3ニ
ア20℃で− ある。
Figure 1 shows a plate thickness of 40 mmf) C: 0.05%, Mn:
After heating a 9% Ni steel slab containing 0.57% Ni and 9.42% Ni at the slab heating temperature shown on the horizontal axis, it was heated to 800°C.
Those that have been rolled with a rolling reduction of 50% (・) and those that have been rolled with a finishing temperature of 900°C (○) are air cooled, then quenched at 800°C, and then quenched at 670°C. FIG. 3 is a diagram showing the yield strength at 1/4 of the plate thickness after intermediate quenching and tempering at 570°C. The transformation point of this steel is Ac: 620°C, Ac3 near 20°C.

スラブ加熱温度が1050〜1150℃の範囲では、同
じスラブ加熱温度で800℃からの累積圧下率が50%
の圧延を行ったものは1kgf/+n+a2程度の強度
」二昇しか得られないのに比較して、スラブ加熱温度が
900℃以下の範囲では800℃以Fの累積圧下率が5
0%の熱間圧延を施した鋼ではその降伏強度が2kgf
/lllIn2以上」二昇している。
When the slab heating temperature is in the range of 1050 to 1150℃, the cumulative reduction rate from 800℃ is 50% at the same slab heating temperature.
In contrast, when the slab heating temperature is 900°C or less, the cumulative rolling reduction rate below 800°C is 5%.
Steel with 0% hot rolling has a yield strength of 2 kgf.
/lllIn2 or more” is rising.

スラブ加熱温度を900℃以下とすることおよび800
℃以下の未再結晶温度域で50%以上の圧延をすること
により、加熱オーステナイト粒粗大化の防止と共に圧延
でのオーステナイトの微細化が達成され、圧延ままの状
態でのミクロ組織は上記の処理をしていないものに比較
して着しい細粒化が進んでいる。
Slab heating temperature should be 900℃ or less and 800℃
By rolling 50% or more in the non-recrystallization temperature range below ℃, it is possible to prevent coarsening of heated austenite grains and to refine the austenite during rolling, and the microstructure in the as-rolled state is improved by the above treatment. The particles have become finer than those without.

このように微細化された圧延よ主の組織に対し、均一な
マルテンサイト組織を得るために焼入れ処理を施す。9
%Ni鋼の場合、Ac3変態点が低く、通常s o o
 ’c程度の温度で焼入れ処理を施すが、この温度では
合金元素の拡散、オーステナイト組織の再結晶も通常の
低炭素鋼と比べ遅い。このためスラブ加熱温度の低ド、
圧延温度の制御により焼入れ処理後均一で細粒なマルテ
ンサイト組織を得ることができる。
The thus refined rolled structure is subjected to a quenching treatment in order to obtain a uniform martensitic structure. 9
%Ni steel has a low Ac3 transformation point and is usually so
Hardening treatment is carried out at a temperature of about 1000 m, but at this temperature the diffusion of alloying elements and the recrystallization of the austenite structure are slower than in ordinary low carbon steel. For this reason, the slab heating temperature is low,
By controlling the rolling temperature, a uniform, fine-grained martensitic structure can be obtained after quenching.

このようにして得られた均一なマルテンサイト組織に中
間焼入れ処理および焼戻し処理を施す。
The uniform martensitic structure thus obtained is subjected to intermediate quenching and tempering.

中間焼入れ処理は先に述べた多くの例と同様に、二相域
加熱することにより部分的に生成するオーステナイトへ
の合金元素、不純物元素の濃化を促進させ、これを急冷
することにより高純なフェライトと成分元素濃度の高い
マルテンサイトの混合組織を生成させることを目的とし
て行われるものであって、次に行われる焼戻し処理時に
安定な析出オーステナイトを生成させ低温靭性を着しく
向上させる。この場合、9%Ni鋼のAe、変態点は7
20℃程度であるため、中間焼入れ処理の過程において
も先に述べた理由から熱処理後の結晶粒の大きさは熱処
理前のミクロ組織に依存する。
As with many of the examples mentioned above, the intermediate quenching process promotes the concentration of alloying elements and impurity elements in partially formed austenite by heating in the two-phase region, and then quickly cools it to achieve high purity. The purpose of this process is to generate a mixed structure of ferrite and martensite with a high concentration of component elements, and during the subsequent tempering process, stable precipitated austenite is generated and the low-temperature toughness is significantly improved. In this case, the Ae of 9% Ni steel, the transformation point is 7
Since the temperature is about 20° C., the size of the crystal grains after the heat treatment also depends on the microstructure before the heat treatment for the reasons mentioned above even in the process of the intermediate quenching treatment.

以上の理由から、第1図に示したようにスラブ加熱−圧
延での効果が焼入れ処理−中間焼入れ処0 理−焼戻し処理という調質処理後の材質に大きく影響す
る。
For the above reasons, as shown in FIG. 1, the effects of slab heating and rolling greatly influence the quality of the material after the heat treatment of quenching, intermediate quenching, and tempering.

一方、この圧延での効果をより高める方法として、圧延
後直接焼入れ処理を利用する方法が考えられる。
On the other hand, as a method to further enhance the effect of this rolling, it is possible to use a direct quenching treatment after rolling.

第2図は、同じ化学成分を有する9%Ni鋼スラブを横
軸で表したスラブ加熱温度で加熱後、850℃から50
%の累積圧下率で板厚4011で圧延し、ただちに12
℃/sの冷却速度で室温まで冷却後、670℃での中間
焼入れ処理、570℃での焼戻し処理を施した鋼(○)
、および圧延の仕」二げ温度を950℃とした圧延を施
し、前記した条件で冷却、熱処理を実施した同板厚の鋼
(・)の板厚1/4を部での降伏強度を示した図である
Figure 2 shows a 9% Ni steel slab with the same chemical composition heated at the slab heating temperature shown on the horizontal axis, then heated to 50°C from 850°C.
% cumulative reduction rate to a plate thickness of 4011, and immediately
Steel that was cooled to room temperature at a cooling rate of °C/s, then subjected to intermediate quenching at 670 °C and tempering at 570 °C (○)
, and the yield strength at 1/4 of the plate thickness of steel (・) of the same plate thickness, which was rolled at a finishing temperature of 950°C, cooled and heat treated under the above conditions. This is a diagram.

圧延仕上げ温度が950℃の鋼板の降伏強度が60kg
f/m+n2程度なのに比較して、同じスラブ加熱温度
で加熱後、850’C以ドでの累積圧下率を50%に制
御して製造した鋼板の降伏強度は2 kgf 7mm2
以上高い値を示す。さらに、同じスラブを1000 ’
CCトド温度に加熱後、やはり850℃以ドの累積圧下
率が50%の圧延を行った鋼板では、4 kgf/mm
2以上の優れた降伏強度の上昇を示す。
The yield strength of a steel plate with a finishing rolling temperature of 950℃ is 60kg.
Compared to this, the yield strength of a steel plate manufactured by controlling the cumulative reduction rate to 50% at 850'C or higher after heating at the same slab heating temperature is 2 kgf 7 mm2.
It shows a higher value than above. Furthermore, the same slab is 1000'
After heating to the CC temperature, a steel plate rolled at a cumulative reduction rate of 50% below 850°C has a rolling reduction rate of 4 kgf/mm.
Shows an excellent increase in yield strength of 2 or more.

これは、熱間圧延の温度、圧下率を規制することによる
圧延中のオーステナイト結晶粒の細粒化が圧延後の冷却
で得られるマルテンサイトの細粒化に大きく影響してい
ると同時に、圧延後の冷却は850℃以−ドの低温圧延
中に導入された加工転位をマルテンサイト中にも導入す
る効果もあるためである。
This is because the refinement of austenite crystal grains during rolling by regulating the hot rolling temperature and rolling reduction has a large effect on the refinement of martensite obtained by cooling after rolling. This is because the subsequent cooling also has the effect of introducing into the martensite the working dislocations introduced during low-temperature rolling at 850°C or higher.

このようにして得られた高転位密度を有する微細なマル
テンサイト組織に中間焼入れ、焼戻し処理を施す。中間
焼入れ処理は先に述べたように低温靭性の向上のために
行われるが、その加熱中では高転位密度を有するマルテ
ンサイトが7エライトーオーステナイトの混合組織に変
化する。その時、部分的に変態するオーステナイトへの
合金元素の濃化する程度は、合金元素のフェライト中で
の拡散挙動により支配されるが、7エライトの前組織で
あるマルテンサイトの転位密度が歯い場合には、転位密
度が低い場合と比較して転位の回復1 もおくれ、そのために残っている転位が合金元素の商運
拡散路になると考えられる。この現象により、結局オー
ステナイトへの合金元素の濃縮は前組織であるマルテン
サイトの転位密度にも影響され、高い合金元素を含んだ
オーステナイトが生成し、これが中間焼入れ処理後に合
金元素の濃縮がより進んだ微細なマルテンサイトに変態
する。
The thus obtained fine martensitic structure having a high dislocation density is subjected to intermediate quenching and tempering treatments. As mentioned above, the intermediate quenching treatment is performed to improve low-temperature toughness, and during the heating, martensite having a high dislocation density changes to a mixed structure of hepteraite and austenite. At that time, the degree of concentration of alloying elements into partially transformed austenite is controlled by the diffusion behavior of alloying elements in ferrite, but if the dislocation density of martensite, which is the precursor structure of 7-erite, is In this case, the recovery of dislocations is delayed compared to when the dislocation density is low, and therefore the remaining dislocations are thought to become channels for commercial diffusion of alloying elements. As a result of this phenomenon, the concentration of alloying elements into austenite is also affected by the dislocation density of the previous structure, martensite, resulting in austenite containing high alloying elements, which becomes more concentrated after intermediate quenching. It metamorphoses into fine martensite.

さらに、こうして得られた7エライトーマルテンサイト
の混合組織を焼静戻すと合金元素のより濃縮したオース
テナイトが生成することになる。
Furthermore, when the thus obtained mixed structure of 7 erites and martensite is annealed, austenite containing more concentrated alloying elements is produced.

このように合金元素がより濃縮したオーステナイトの強
度はそうでないものに比較して高く、フェライト−オー
ステナイトの混合組織としての強度も1−昇する。
The strength of austenite in which the alloying elements are more concentrated is higher than that in other austenite, and the strength as a mixed structure of ferrite and austenite is also increased by 1.

以−ヒの理由から、低温圧延で加工転位を導入すること
により、焼戻し後のオーステナイトへの合金元素の濃化
を促進させることができ、その結果、中間焼入れ処理を
実施した後でもより商い強度を有する鋼板の製造が可能
になる。
For the following reasons, by introducing work dislocations during low-temperature rolling, it is possible to promote the enrichment of alloying elements in the austenite after tempering, and as a result, even after performing intermediate quenching, the strength is higher. It becomes possible to manufacture steel sheets with

このような観点から考えると、先に引用した多12 くの例は、すべて低温靭性の優れた鋼板の製造法を提供
するものの、より板厚の厚い9%Ni鋼板の製造には有
効ではない。
Considering this point of view, although the numerous examples cited above all provide methods for producing steel plates with excellent low-temperature toughness, they are not effective for producing thicker 9% Ni steel plates. .

次に、本発明における成分の限定理由であるが、Niは
靭性の向」二、オーステナイトの安定化に着しく効果が
あり、LNG温度での靭性を確保するためには7.5%
以上の添加が必要であるが、多量に添加してもその効果
が飽和するため10%を上限とする。Ni以外の成分は
特に限定する必要はなし・が、所定の強度を確保するこ
とならびに靭性低下を防止するため、C:0.04〜0
.10%、Si:0.10〜0.50%、Mn:0.4
−1.0%、sol、 AI:0.005−0.10%
、P :0.015%以下、S :0.010%以ドと
することが好ましい。
Next, regarding the reason for limiting the components in the present invention, Ni is very effective in improving toughness and stabilizing austenite, and in order to ensure toughness at LNG temperature, 7.5% Ni is required.
Although it is necessary to add more than 10%, the effect is saturated even if added in a large amount, so the upper limit is set at 10%. There is no need to specifically limit the components other than Ni. However, in order to ensure a predetermined strength and prevent a decrease in toughness, C: 0.04 to 0.
.. 10%, Si: 0.10-0.50%, Mn: 0.4
-1.0%, sol, AI: 0.005-0.10%
, P: 0.015% or less, and S: 0.010% or less.

以上のような元素を含有している鋼を電気炉、転炉で溶
製した後、連続鋳造機あるいは造塊分塊法によりスラブ
を製造する。そしてこのスラブを熱間圧延前のスラブ加
熱温度を800〜900 ’Cとし、次いで700〜8
00℃の累積圧F率が50〜80%の熱間圧延を施し、
AC3変態点〜850℃に加熱して水冷す14− る焼入れ処理と、Ac1〜Ac3変態点に加熱して冷却
する中間焼入れ処理と、Acl変態点以下に加熱して冷
却する焼戻し処理を施すか、あるいは熱間圧延において
700〜850℃の温度で50〜80%の累積圧Fを施
した後、直ちに10℃/s以上の冷却速度で室温まで冷
却し、次いでAc1〜Ac3変態点間に加熱し冷却する
中間焼入れ処理と、Ac3変vA7α以ドの温度での焼
戻し処理とを行う。
After steel containing the above-mentioned elements is melted in an electric furnace or a converter, a slab is manufactured using a continuous caster or an agglomeration method. The slab heating temperature before hot rolling was 800-900'C, and then 700-8'C.
Hot rolling with a cumulative pressure F ratio of 50 to 80% at 00°C,
A quenching treatment in which the material is heated to an AC3 transformation point to 850°C and cooled in water, an intermediate quenching treatment in which it is heated to an Ac1 to Ac3 transformation point and then cooled, and a tempering treatment in which it is heated to a temperature below the ACl transformation point and then cooled. , or after applying a cumulative pressure F of 50 to 80% at a temperature of 700 to 850 °C in hot rolling, immediately cool to room temperature at a cooling rate of 10 °C / s or more, and then heated between Ac1 and Ac3 transformation points. An intermediate quenching process in which the material is cooled and a tempering process at a temperature of Ac3 vA7α or higher are performed.

圧延に先立つスラブ加熱温度の規制は、加熱オーステナ
イト粒の細粒化を得るために設けられたものであって、
第1図に示したように900℃以下の温度で降伏点の上
昇に着しく効果があるが、800℃未満になると熱間圧
延時の変形抵抗が着しく大きくなり、鋼板の形状が悪化
する。なお、850℃以下の累積圧F率が50%以上の
圧延後直ちに10℃/s以」二の速度で冷却し、次いで
Ac1〜Ac3変態点間に加熱し冷却する中間焼入れ処
理とAc2変態点以下の温度での焼戻し処理とを行う場
合、第2図に示したように通常行われている1250℃
以下スラブ加熱の範囲でも高い降伏強度を示すので圧延
温度の規制は必要ないが、好ましくは800〜1000
 ’Cのスラブ加熱温度を選択すると降伏点上昇はより
顕著になる。この場合のスラブ加熱温度の下限値は先に
述べたものと同一の理由による。
The regulation of the slab heating temperature prior to rolling was established to obtain finer grain size of the heated austenite grains, and
As shown in Figure 1, a temperature of 900°C or lower is effective in increasing the yield point, but if the temperature is lower than 800°C, the deformation resistance during hot rolling increases considerably and the shape of the steel sheet deteriorates. . In addition, after rolling at 850°C or less with a cumulative pressure F ratio of 50% or more, the intermediate quenching treatment involves immediately cooling at a rate of 10°C/s or more, and then heating and cooling between the Ac1 and Ac3 transformation points, and the Ac2 transformation point. When performing tempering treatment at the following temperatures, as shown in Figure 2, the temperature is usually 1250℃.
Since it shows high yield strength even in the range of slab heating, there is no need to regulate the rolling temperature, but preferably 800 to 1000.
When a slab heating temperature of 'C is selected, the increase in yield point becomes more significant. The lower limit value of the slab heating temperature in this case is based on the same reason as mentioned above.

このように加熱されたスラブを熱間圧延するが、圧延後
焼入れ、中間焼入れ、焼戻しの各処理を行う場合には7
00〜800℃の累積圧下率が50〜80%の圧延を、
熱間圧延後直ちに10℃/sの冷却速度で冷却する場合
には700〜850℃の累積圧下率が50〜80%の圧
延を行う。
The thus heated slab is hot rolled, but if it is subjected to quenching, intermediate quenching, and tempering treatments after rolling,
Rolling at 00 to 800°C with a cumulative reduction rate of 50 to 80%,
When cooling immediately after hot rolling at a cooling rate of 10° C./s, rolling is performed at a cumulative reduction rate of 50 to 80% at 700 to 850° C.

この熱間圧延の制約は、圧延後の組織の細粒化と同時に
、加工による転位密度の増加を得るために行われる。し
たがって、そのためには圧延後焼入れ処理を施す場合は
、800℃以下から50%以上の圧下率で、また圧延後
10℃/s以上の冷却速度で冷却する場合は、850℃
以下の温度から50%以上の圧i′率で圧延する必要が
ある。
This hot rolling restriction is carried out in order to obtain refinement of the structure after rolling and an increase in dislocation density due to working. Therefore, in order to achieve this, when performing quenching treatment after rolling, the reduction rate is 50% or more from 800°C or less, and when cooling at a cooling rate of 10°C/s or more after rolling, 850°C
It is necessary to roll at a rolling ratio i' of 50% or more from the following temperature.

しかしながら、700℃未満の温度で圧延を行うと圧延
時に鋼板に曲がりが生じ、製品の形状が悪化するため、
700℃以上の温度で圧延を施すべきであ5− る。また、前記した理由で圧計“率については50%以
上必要であるが、80%を越えると圧延集合組線の発達
により靭性値の異方性が生じ、LNGタンク用鋼として
好ましくない。
However, if rolling is carried out at a temperature below 700°C, the steel plate will bend during rolling, deteriorating the shape of the product.
Rolling should be performed at a temperature of 700°C or higher. Further, for the above-mentioned reasons, the pressure gauge ratio is required to be 50% or more, but if it exceeds 80%, anisotropy in the toughness value will occur due to the development of rolled set wires, which is not preferable as steel for LNG tanks.

このように圧延された鋼板を冷却後、A C3’&態点
〜850℃に加熱して冷却する焼入れ処理、Ac1〜A
c3変態点に加熱して冷却する中間焼入れ処理、Ac、
変態魚具1に加熱して冷却する焼戻し処理を施すか、あ
るいは熱間圧延後直ちに10℃/s以上の冷却速度で冷
却し、次いでAcl〜Ac3変態点間の温度での中間焼
入れ処理、Acl′Ji態点以下の温点以下焼戻し処理
を行う。なお、本発明においてAcl変態点とは、熱膨
張曲線において急激に収縮を開始する点をいう。
After cooling the steel plate rolled in this way, a quenching treatment is performed in which the steel plate is heated to A C3'& temperature ~850°C and then cooled, Ac1~A
Intermediate quenching treatment of heating to c3 transformation point and cooling, Ac,
The transformed fish gear 1 is subjected to a tempering treatment by heating and cooling, or immediately after hot rolling, it is cooled at a cooling rate of 10° C./s or more, and then an intermediate quenching treatment is performed at a temperature between ACl and Ac3 transformation points, ACl 'Perform tempering treatment below the temperature point below the Ji state point. In the present invention, the ACl transformation point refers to the point at which contraction starts abruptly in the thermal expansion curve.

焼入れ処理を施す理由は、前記したように中間焼入れ処
理を施す前組織として微細なマルテンサイトを得るため
であって、Ac3変態点以上に加熱する必要があるが、
その温度が鳥すぎると再結晶挙動により熱間圧延で達成
された結晶粒の細粒化効果が消滅してしまうため、85
0℃以rの温度で実16 施する。この微細なマルテンサイト組織は熱間圧延後直
ちしこ急冷しても得られる。この場合、板厚中心部の平
均冷却速度が10℃/s以上でないと好ましいマルテン
サイト組織が得られない。
The reason for performing the quenching treatment is to obtain fine martensite as a structure before performing the intermediate quenching treatment, as described above, and it is necessary to heat the material above the Ac3 transformation point.
If the temperature is too high, the grain refining effect achieved by hot rolling will disappear due to recrystallization behavior.
The test is carried out at a temperature of 0° C. or lower. This fine martensitic structure can also be obtained by rapid cooling immediately after hot rolling. In this case, a preferable martensitic structure cannot be obtained unless the average cooling rate at the center of the plate thickness is 10° C./s or more.

以上の圧延後の焼入れ処理あるいは圧延後直ちに10℃
/s以上の冷却速度で冷却した鋼板に、A c +〜A
e3変態点に加熱し焼入れする中間焼入れ処理、続いて
Ac+変態点以魚具温度で加熱し冷却する焼戻し処理を
施す。
Quenching treatment after rolling or immediately at 10°C after rolling
A steel plate cooled at a cooling rate of /s or more has A c + ~ A
An intermediate quenching process is performed in which the material is heated to the e3 transformation point and then quenched, followed by a tempering process in which it is heated at a temperature higher than the Ac+transformation point and then cooled.

中間焼入れ処理は前記したように7ヱライトと微細なマ
ルテンサイトの混合組織を得るために行われるのであっ
て、したがって加熱時にフェライトと微細なオーステナ
イトの混合組織を生成させる必要がある。そのため加熱
温度はAct−Acz変態点間の温度に制約されると同
時に、加熱後は水冷される必要がある。
As described above, the intermediate quenching treatment is performed to obtain a mixed structure of 7-erite and fine martensite, and therefore, it is necessary to generate a mixed structure of ferrite and fine austenite during heating. Therefore, the heating temperature is limited to a temperature between the Act-Acz transformation points, and at the same time, it is necessary to water-cool the material after heating.

焼戻し処理は、中間焼入れ処理で得られたマルテンサイ
ト組織の転位密度を下げると同時に加熱時に安定なオー
ステナイトを多量−二析出し、低温靭性を着しく改善す
るために行われる。したがっ=17 て、その温度は通常行われるようなA c l*態点魚
具の温度域である。
The tempering treatment is performed in order to lower the dislocation density of the martensitic structure obtained in the intermediate quenching treatment, and at the same time precipitate a large amount of stable austenite during heating, thereby significantly improving the low-temperature toughness. Therefore, the temperature is in the temperature range of the A c l * state fish gear as is normally carried out.

本発明は、中間焼入れ処理による低温靭性の優れた9%
Ni鋼の強度を向上させ、従来製造できなかった板厚4
0II1m以上の低温靭性、強度いずれも優れた鋼材の
製造を可能にするものである。
The present invention has excellent low-temperature toughness of 9% due to intermediate quenching treatment.
By improving the strength of Ni steel, we have created a plate thickness of 4, which was previously impossible to manufacture.
This makes it possible to manufacture steel materials with excellent low-temperature toughness and strength of 0II1m or more.

(実施例) 供試鋼の化学成分を第2表に示す。(Example) The chemical composition of the test steel is shown in Table 2.

ここで、A鋼はNi含有量の要件を満たすが、B鋼はN
i含有量が少ない鋼である。
Here, steel A satisfies the requirement for Ni content, but steel B satisfies the requirement for Ni content.
It is a steel with low i content.

また、t!S3表は第2表に示した化学成分を有するス
ラブを第3表中の加熱、圧延、熱処理条件で製造したと
きの引張試験結果およびDT試験結果を示す。
Also, t! Table S3 shows the tensile test results and DT test results when slabs having the chemical components shown in Table 2 were manufactured under the heating, rolling, and heat treatment conditions shown in Table 3.

本発明法により製造された鋼A1〜A5は61k Hz
 f / m m 2以上の降伏強度を示すと同時にD
Tエネルギーで示される畠い脆性亀裂停止性能を有する
Steels A1 to A5 manufactured by the method of the present invention have a frequency of 61kHz
exhibiting a yield strength of f/mm m2 or more and at the same time D
It has a strong brittle crack arrest performance indicated by T energy.

これに対し、鋼A6、A7、Allは圧延後焼入れ処理
、中間焼入れ処理、焼戻し処理する場合の比較例である
On the other hand, steels A6, A7, and All are comparative examples in which the steels are subjected to quenching treatment, intermediate quenching treatment, and tempering treatment after rolling.

鋼へ6はスラブ加熱温度が1000℃と^く、鋼A7は
圧延の噛み込み温度が850℃と商いため、その後適切
な焼入れ処理、中間焼入れ処理、焼戻し処理を実施して
も59〜60kgf/mm2程度の低い降伏強度を示し
た。
The slab heating temperature for Steel 6 is 1000℃, and the rolling bite temperature for Steel A7 is 850℃, so even if appropriate quenching, intermediate quenching, and tempering are performed afterwards, the heating temperature is 59 to 60 kgf/ It showed a low yield strength of about mm2.

鋼Allはスラブ加熱、圧延条件は適切であるが、焼入
れ温度が860℃と高く、そのため降伏強度が実施例に
比べて低い。
Although the slab heating and rolling conditions for All steel were appropriate, the quenching temperature was as high as 860°C, and therefore the yield strength was lower than that of the examples.

鋼A8、A9、AIOは圧延後直ちに10℃/s以上で
冷却する場合の比較例である。
Steels A8, A9, and AIO are comparative examples in which they are cooled at 10° C./s or more immediately after rolling.

鋼A8は圧延の噛み込み温度が900℃と畠く、鋼A9
は850℃以ドの累積圧下率が30%と低い。
Steel A8 has a rolling biting temperature of 900℃, and steel A9
The cumulative rolling reduction rate below 850°C is as low as 30%.

また、鋼AIOは圧延後の冷却速度が5℃/sと遅い。Moreover, the cooling rate of steel AIO after rolling is as slow as 5° C./s.

したがって、鋼へ8、A9の降伏強度は60k g f
 / tn tn 2以下であり、実施例と比較して低
く、鋼A10は降伏強度は62 、3 kgf/mm2
と高いが、DTエネルギー値が実施例と比較して124
kgf−mと低I/)。
Therefore, the yield strength of steel 8, A9 is 60 kg g f
/ tn tn 2 or less, which is lower than the example, and the yield strength of steel A10 is 62 and 3 kgf/mm2.
However, the DT energy value is 124 compared to the example.
kgf-m and low I/).

鋼Bl、B2はNi量が7.12wt%と低い。そのた
め加熱圧延、熱処理条件が適切であってもDTエネルギ
ーが実施例と比較して着しく低い。
Steels B1 and B2 have a low Ni content of 7.12 wt%. Therefore, even if the hot rolling and heat treatment conditions are appropriate, the DT energy is significantly lower than in the example.

(発明の効果) 以上のように、本発明法により、従来法では得られなか
った商い降伏強度および優れた低温靭性な有する板厚4
0mm以上の9%Ni鋼の製造が可能になり、LNG用
貯蔵タンク等の安全性向上に対して大きく寄与すること
は明らかである。
(Effects of the Invention) As described above, the method of the present invention has a plate thickness of 4.5 mm, which has a high yield strength and excellent low-temperature toughness that could not be obtained with the conventional method.
It is clear that this makes it possible to manufacture 9% Ni steel with a thickness of 0 mm or more, and greatly contributes to improving the safety of LNG storage tanks and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスラブ加熱温度と0.2%PSとの関係を圧延
条件で整理して示した図、 第2図はスラブ加熱温度と0.2%PSとの関係を圧延
後水冷した材料について圧延条件で整理して示した図で
ある。
Figure 1 shows the relationship between slab heating temperature and 0.2% PS organized by rolling conditions. Figure 2 shows the relationship between slab heating temperature and 0.2% PS for materials water-cooled after rolling. It is a figure organized and shown by rolling conditions.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%でNi:7.5〜10%含有する鋼スラブ
を用い、熱間圧延後、Ac_3変態点以上に加熱して冷
却する第1回目の焼入れ処理とAc_1〜Ac_3変態
点に加熱して冷却する第2回目の焼入れ処理とAc_1
変態点以下に加熱して冷却する焼戻し処理とを施す9%
Ni鋼の製造法において、 熱間圧延前のスラブ加熱温度を800〜900℃とし、
次いで700〜800℃の累積圧下率が50〜80%の
熱間圧延を施し、圧延後前記第1回目の焼入れ処理をA
c_3〜850℃に加熱して行うことを特徴とする板厚
40mm以上の降伏強度の優れた厚肉9%Ni鋼の製造
法。
(1) Using a steel slab containing Ni: 7.5 to 10% by weight, after hot rolling, the first quenching treatment involves heating to Ac_3 transformation point or higher and cooling, and heating to Ac_1 to Ac_3 transformation point. Second quenching treatment and Ac_1
9% subjected to tempering treatment by heating below the transformation point and cooling
In the Ni steel manufacturing method, the slab heating temperature before hot rolling is 800 to 900°C,
Next, hot rolling is performed at 700 to 800°C with a cumulative reduction rate of 50 to 80%, and after rolling, the first quenching treatment is performed as A.
c_A method for producing thick-walled 9% Ni steel having an excellent yield strength and having a thickness of 40 mm or more, which is carried out by heating to 3 to 850°C.
(2)重量%でNi:7.5〜10%含有する鋼スラブ
を用い、熱間圧延後直ちに10℃/s以上の冷却速度で
冷却し、次いでAc_1〜Ac_3変態点間の温度で焼
入れ処理を施し、Ac_1変態点以下の温度で焼戻し処
理を行う9%Ni鋼の製造法において、前記熱間圧延に
当たり、700〜850℃の温度で50〜80%の累積
圧下を施すことを特徴とする板厚40mm以上の降伏強
度の優れた厚肉9%Ni鋼の製造法。
(2) Using a steel slab containing Ni: 7.5 to 10% by weight, immediately after hot rolling, it is cooled at a cooling rate of 10°C/s or more, and then quenched at a temperature between Ac_1 and Ac_3 transformation points. A method for producing 9% Ni steel in which the steel is subjected to a tempering treatment at a temperature below the Ac_1 transformation point, characterized in that during the hot rolling, a cumulative reduction of 50 to 80% is applied at a temperature of 700 to 850 ° C. A method for manufacturing thick-walled 9% Ni steel with excellent yield strength when the plate thickness is 40 mm or more.
(3)熱間圧延前のスラブ加熱温度を800〜1000
℃とすることを特徴とする請求項2記載の板厚40mm
以上の降伏強度の優れた厚肉9%Ni鋼の製造法。
(3) Slab heating temperature before hot rolling is 800-1000
The thickness of the plate according to claim 2 is 40 mm.
The above method for producing thick 9% Ni steel with excellent yield strength.
JP2062155A 1990-03-13 1990-03-13 Manufacturing method of thick-walled 9% Ni steel with excellent yield strength Expired - Fee Related JPH0768576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2062155A JPH0768576B2 (en) 1990-03-13 1990-03-13 Manufacturing method of thick-walled 9% Ni steel with excellent yield strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2062155A JPH0768576B2 (en) 1990-03-13 1990-03-13 Manufacturing method of thick-walled 9% Ni steel with excellent yield strength

Publications (2)

Publication Number Publication Date
JPH03264617A true JPH03264617A (en) 1991-11-25
JPH0768576B2 JPH0768576B2 (en) 1995-07-26

Family

ID=13191939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2062155A Expired - Fee Related JPH0768576B2 (en) 1990-03-13 1990-03-13 Manufacturing method of thick-walled 9% Ni steel with excellent yield strength

Country Status (1)

Country Link
JP (1) JPH0768576B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034576A1 (en) * 2005-09-21 2007-03-29 Sumitomo Metal Industries, Ltd. Steel product usable at low temperature and method for production thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127813A (en) * 1984-11-22 1986-06-16 Nippon Steel Corp Production of high arrest refined steel containing ni

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127813A (en) * 1984-11-22 1986-06-16 Nippon Steel Corp Production of high arrest refined steel containing ni

Also Published As

Publication number Publication date
JPH0768576B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
JPH029650B2 (en)
JP2913426B2 (en) Manufacturing method of thick high strength steel sheet with excellent low temperature toughness
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
JPH11279637A (en) Production of high tensile strength steel plate small in difference in material in thickness direction
JPH09143557A (en) Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JPH05195058A (en) Production of thick steel plate having high toughness and high tensile strength
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPS6156235A (en) Manufacture of high toughness nontemper steel
JPH03264617A (en) Production of thick-walled 9%ni steel excellent in yield strength
JPS6144123B2 (en)
JPH04371520A (en) Production of thick 9% ni steel having excellent ctod characteristic of base material and weld heat-affected zone
JPH07173534A (en) Production of ni-containing steel sheet excellent in toughness and workability
JPS6320414A (en) Production of high-toughness high-tensile steel plate
JPS6358906B2 (en)
JPS63140034A (en) Production of low yield ratio high tensile steel having excellent low-temperature toughness
JPS62139816A (en) Manufacture of high tension and toughness steel plate
JPS59182915A (en) Production of high tensile steel
JPS6324012A (en) Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method
JPS61127814A (en) Manufacture of high tension steel plate having excellent low-temperature toughness
JPS639005B2 (en)
JPS59113120A (en) Production of low carbon equivalent high tensile steel having excellent weldability and low temperature toughness
JPH05271861A (en) Structural steel for welding excellent in brittle fracture propagation arresting characteristic
JPS6124454B2 (en)
JP2001323321A (en) Method for producing steel excellent in toughness

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070726

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees