JP2001323321A - Method for producing steel excellent in toughness - Google Patents

Method for producing steel excellent in toughness

Info

Publication number
JP2001323321A
JP2001323321A JP2000142757A JP2000142757A JP2001323321A JP 2001323321 A JP2001323321 A JP 2001323321A JP 2000142757 A JP2000142757 A JP 2000142757A JP 2000142757 A JP2000142757 A JP 2000142757A JP 2001323321 A JP2001323321 A JP 2001323321A
Authority
JP
Japan
Prior art keywords
toughness
temperature
steel
particles
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000142757A
Other languages
Japanese (ja)
Other versions
JP3502809B2 (en
Inventor
Hiroyuki Shirahata
浩幸 白幡
Masanori Minagawa
昌紀 皆川
Toshihiko Koseki
敏彦 小関
Jun Otani
潤 大谷
Tomohiko Hata
知彦 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000142757A priority Critical patent/JP3502809B2/en
Publication of JP2001323321A publication Critical patent/JP2001323321A/en
Application granted granted Critical
Publication of JP3502809B2 publication Critical patent/JP3502809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently produce steel having excellent strength and toughness without the excess addition of alloys causing cost increase and deterioration in weldability, and complicated hot working or heat treating process inferior in productivity. SOLUTION: In this method, a slab in which as the grains having specified components, the grains having a grain size of 0.005 to 2.0 μm, and having a composition, containing at least Ca, Al and O, wherein, as for the elements other than O, Ca is contained in >=5% by mass, and the balance Al with inevitable impurities are contained by the grain number of 100 to 3,000 pieces/mm2 is heated to the temperature region of 1,100 to 1,300 deg.C to control the austenite grain size to <=200 μm, is thereafter rolled at 800 to 1,100 deg.C at a cumulative draft of >=40% to recrystallize austenite and to control the grain size to <=40 μm and is further cooled from >=700 to <=600 deg.C at a cooling rate of >=1 deg.C/s.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、船舶、橋梁、中高
層建築物、海洋構造物などに使用される靭性の優れた鋼
材の効率的な製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently producing a steel material having excellent toughness used for ships, bridges, middle and high-rise buildings, marine structures and the like.

【0002】[0002]

【従来の技術】近年、橋梁、中高層建築物、海洋構造物
などの大型化にともない、使用される鋼材の厚手化とと
もに靭性に対する要望も厳しさを増している。
2. Description of the Related Art In recent years, with the increase in size of bridges, middle and high-rise buildings, marine structures, and the like, demands for toughness as well as the use of thicker steel materials have increased.

【0003】靭性向上のための手段としては、TMCP
(Thermo−Mechanical Contro
l Process)がよく知られている。これは適切
な加熱、圧延、冷却、熱処理工程の組み合わせにより鋼
材の組織微細化を達成し、強靭化する方法である。
As means for improving toughness, TMCP is used.
(Thermo-Mechanical Contro
l Process) is well known. This is a method in which the microstructure of the steel material is achieved by a suitable combination of heating, rolling, cooling, and heat treatment steps, and the steel material is toughened.

【0004】強度500N/mm2級以下の鋼では主要
組織がフェライト(α)、パーライト(P)であり、靭
性は主にα粒径に支配される。α粒径の微細化方法とし
ては、従来から種々の方法が提案されている。代表的な
方法としては、例えば特公昭49−7291号公報に示
されているように、オーステナイト(γ)の未再結晶温
度域において制御圧延を行い、引き続いて加速冷却を行
うことによるγからαへの変態時にαを微細化する方法
がある。さらに、制御圧延の温度域をγ/α二相域にま
で拡大した、いわゆる二相域圧延による強度・靭性改善
技術も提案されている。例えば、特公昭58−5967
号公報に示されるように、成分や圧延条件の工夫等によ
り、靭性向上を図る方法が提案されている。
[0004] In steels having a strength of 500 N / mm 2 or less, the main structures are ferrite (α) and pearlite (P), and toughness is mainly controlled by the α grain size. Various methods have been conventionally proposed as a method for reducing the α particle size. As a typical method, as disclosed in Japanese Patent Publication No. 49-7291, for example, controlled rolling is performed in the non-recrystallization temperature range of austenite (γ), followed by accelerated cooling to reduce γ to α. There is a method of reducing α during transformation to α. Further, a technique for improving strength and toughness by so-called two-phase rolling, in which the temperature range of controlled rolling is expanded to a γ / α two-phase range, has also been proposed. For example, Japanese Patent Publication No. 58-5967
As disclosed in Japanese Patent Application Laid-Open Publication No. H11-260, a method for improving toughness by devising components and rolling conditions has been proposed.

【0005】しかしながら、鋼材に対する要求特性が厳
格化するのにともない、低温での大圧下圧延や急速冷却
が必要となる結果、温度待ちによる生産性の低下、形状
不安定による精整工程への負荷増大等の問題が生じるこ
とがあった。そこで、効率的に強靭鋼を製造するために
は変態前のγ粒微細化が必須であるが、従来の技術では
以下の欠点がある。例えば、鋳片の低温加熱によるγ粗
大化抑制は、偏析起因の材質劣化を招く可能性があり、
γ高温域での大圧下圧延による再結晶γ微細化は、おの
ずと圧延機の能力の制約を受ける。
[0005] However, as the required characteristics of steel materials become stricter, high-pressure rolling at a low temperature and rapid cooling are required, resulting in a decrease in productivity due to temperature waiting, and a load on a refining process due to shape instability. Problems such as an increase may occur. Therefore, in order to efficiently produce a tough steel, it is necessary to refine γ grains before transformation, but the conventional technique has the following disadvantages. For example, suppression of γ coarsening due to low-temperature heating of slab may cause material deterioration due to segregation,
The refinement of recrystallized γ by large rolling under the γ high temperature range is naturally limited by the capacity of the rolling mill.

【0006】また、圧延等の熱間加工によらずに熱処理
によってα粒径の微細化を図る方法も示されている。例
えば、「鉄と鋼」第77年、第1号、1991、171
〜178頁に示されているように、V、Nを通常よりも
多量に添加することによりγの微細化を図るとともに、
焼きならし処理で微細なα組織とする方法が開発されて
いる。しかし、この方法で微細なα組織を得るために
は、Vを0.1%以上、Nも0.01%以上添加する必
要があり、溶接性、溶接熱影響部靭性の劣化は避けられ
ない。
There is also disclosed a method of reducing the α grain size by heat treatment without using hot working such as rolling. For example, "Iron and Steel", 77th, No. 1, 1991, 171
~ 178 pages, V and N were added in larger amounts than usual to achieve a finer γ,
A method for producing a fine α-structure by normalizing treatment has been developed. However, in order to obtain a fine α structure by this method, it is necessary to add V in an amount of 0.1% or more and N in an amount of 0.01% or more, and deterioration of weldability and toughness of a heat affected zone is inevitable. .

【0007】強度600N/mm2級以上の高強度鋼で
は、ベイナイト(B)、マルテンサイト(M)主体の組
織となる。このような鋼の母材靭性を支配する基本組織
単位は、旧γ粒径ではなく、パケットやブロックと呼ば
れる領域のサイズであるが、このパケット、ブロックの
微細化のためには、γ粒微細化が最も有効な方法であ
る。
A high-strength steel having a strength of 600 N / mm 2 or higher has a structure mainly composed of bainite (B) and martensite (M). The basic structural unit that governs the base material toughness of such steel is not the old γ grain size, but the size of the region called a packet or a block. Is the most effective method.

【0008】基本的な製造方法は焼入れ、焼戻しを含む
調質型プロセスであり、γ粒径の微細化のために圧延温
度域と圧下量を工夫するとともに、焼入れ性の確保のた
めに強度レベルに応じて合金添加量を調整する方法が代
表的である。例えば、特開昭49−37814号公報で
は、低C−Ti−B添加を特徴とした強度600N/m
2級高張力鋼が提案されている。しかし、Bを活用し
た高強度化は成分や製造条件の変動による特性不安定が
懸念されるとともに、HAZ硬さ上昇が著しいという欠
点がある。
[0008] The basic manufacturing method is a tempering process including quenching and tempering. The rolling temperature range and rolling reduction are devised to reduce the γ grain size, and the strength level is ensured to ensure hardenability. A typical method is to adjust the amount of alloy addition in accordance with the conditions. For example, JP-A-49-37814 discloses a strength of 600 N / m characterized by low C-Ti-B addition.
m 2 Class High tensile steel has been proposed. However, the use of B to increase the strength has the drawback that the properties are unstable due to variations in components and manufacturing conditions, and that the HAZ hardness is significantly increased.

【0009】B無添加の技術としては、特公昭60−9
086号公報に示されているが、実施例からこの技術の
適用板厚範囲としては30mm程度である。また、特開
昭53−119219号公報は、再加熱焼入れ焼戻しプ
ロセスにより厚手高張力鋼を提供しようとするものであ
る。これは0.02%を超えるNb添加により再加熱時
に未固溶Nb炭窒化物を残存せしめ、結晶粒の粗大化を
防止して母材靭性を改善しようとするものである。この
技術では固溶Nbによる圧延組織微細化、焼入れ性向上
効果、析出強化を十分活用できないため、Nb、Vに加
えてさらにNi、Mo添加が実質的に必須となり、合金
コストと溶接性の点で不利になってしまう。
[0009] As a technique without B addition, there is Japanese Patent Publication No. 60-9 / 1985.
Although disclosed in Japanese Patent Application Laid-Open No. 086, from the examples, the applicable plate thickness range of this technique is about 30 mm. Japanese Patent Application Laid-Open No. 53-119219 aims to provide a thick high-tensile steel by a reheating quenching and tempering process. This is intended to leave undissolved Nb carbonitride at the time of reheating by adding Nb exceeding 0.02%, to prevent coarsening of crystal grains and improve base metal toughness. This technique cannot sufficiently utilize the effect of solid-solution Nb to refine the rolling structure, improve hardenability, and strengthen precipitation. Therefore, addition of Ni and Mo in addition to Nb and V is substantially essential. At a disadvantage.

【0010】上述のように600N/mm2級以上の調
質型高張力鋼の従来技術は、その大部分がB添加による
焼入れ性確保によって達成されており、B無添加の場合
は薄手材に限定される。
As described above, most of the prior art of tempered high-strength steel of 600 N / mm 2 class or higher is achieved by securing hardenability by adding B, and when B is not added, thin material is used. Limited.

【0011】低温靭性の向上を目的とした高張力鋼の圧
延方法に関する技術として、特開平6−93332号公
報がある。これはC、Si、Mn、Nb、Ti、Bを含
み、sol.Al、Nの規制された素材鋼を制御圧延
後、直ちに所定の温度範囲まで加速冷却し、ついでその
温度範囲に一定時間等温保持、またはその温度範囲を一
定時間徐冷することで微細なベイナイト組織とする方法
が開示されているが、温度調整のための待ち時間が極め
て長くなり、圧延効率の低下、等温保持および徐冷にと
もなうコスト上昇を招き、生産性の低下は著しい。ま
た、特開平6−128638号公報では、Nb、Vを添
加した鋳片をAc3点以上に加熱し、Ar3点以上で冷却
を実施しながら熱間圧延し、引き続き放冷もしくは5℃
/s以上の冷却速度で650℃以下の温度に加速冷却す
ることを特徴とする高強度高靭性厚鋼板の製造方法が開
示されている。これによると低温靭性を改善するため
に、熱間圧延を終了する温度をAr3点近傍(700〜8
00℃)という低温にすることが示されている。その結
果、被圧延鋼の変形抵抗が大きくなり、圧延機には多大
な負荷が加わる。
Japanese Patent Application Laid-Open No. Hei 6-93332 discloses a technique relating to a method of rolling high strength steel for the purpose of improving low temperature toughness. This includes C, Si, Mn, Nb, Ti, B, sol. Immediately after the controlled rolling of Al and N regulated material steel, accelerated cooling to a predetermined temperature range and then isothermally maintaining the temperature range for a certain time or gradually cooling the temperature range for a certain time to obtain a fine bainite structure However, the waiting time for temperature adjustment becomes extremely long, which causes a reduction in rolling efficiency, an increase in cost associated with isothermal holding and slow cooling, and a significant decrease in productivity. In Japanese Patent Application Laid-Open No. Hei 6-128638, a slab to which Nb and V are added is heated to an Ac 3 point or higher, and hot-rolled while being cooled at an Ar 3 point or higher.
A method for producing a high-strength, high-toughness thick steel plate, characterized in that accelerated cooling to a temperature of 650 ° C. or less at a cooling rate of at least / s is disclosed. According to this, in order to improve low-temperature toughness, the temperature at which hot rolling is completed is set near the Ar 3 point (700 to 8).
(00 ° C.). As a result, the deformation resistance of the rolled steel increases, and a large load is applied to the rolling mill.

【0012】また、焼戻しによる強靭鋼の製造技術とし
て、特開平4−358023号公報がある。これは、焼
戻し温度よりも高温に設定した炉に鋼板を装入すること
により急速昇温し、焼入れ転位の消滅と析出物の粗大化
を抑制し、強靭化を達成する技術である。しかしなが
ら、これには厳密な温度管理が必要となる上、板内の材
質ばらつきを抑えるのは困難である。
Japanese Patent Application Laid-Open No. 4-358023 discloses a technique for producing a tough steel by tempering. This is a technique for rapidly increasing the temperature by charging a steel sheet into a furnace set at a temperature higher than the tempering temperature, suppressing quenching dislocations and suppressing coarsening of precipitates, and achieving toughness. However, this requires strict temperature control, and it is difficult to suppress material variations in the plate.

【0013】[0013]

【発明が解決しようとする課題】コスト上昇かつ溶接性
劣化の原因となる合金の過度の添加や、生産性の良くな
い複雑な熱間加工または熱処理工程を必要とせずに、優
れた強度・靭性を有する鋼材を効率的に製造する方法を
提供するものである。
Excellent strength and toughness without the need for excessive addition of alloys which cause cost increase and deterioration of weldability, and without the need for complicated hot working or heat treatment steps which do not have good productivity. It is intended to provide a method for efficiently producing a steel material having the following.

【0014】[0014]

【課題を解決するための手段】本発明の特徴は従来の発
想とは異なり、Ca、Al、Mgの微細な酸化物を分散
させることにより、効率的かつ安価な方法で組織微細化
を達成し、靭性の優れた鋼材を実現した点にある。その
要旨とするところは以下の通りである。
The feature of the present invention is that, unlike the conventional idea, the fine oxides of Ca, Al and Mg are dispersed to achieve a finer structure by an efficient and inexpensive method. In that it has realized a steel material with excellent toughness. The summary is as follows.

【0015】(1) 質量%で、C:0.03〜0.1
8%、Si:0.01〜0.5%、Mn:0.4〜2.
0%、P:≦0.02%、S:≦0.02%、Al:
0.005〜0.04%、Ti:0.005〜0.03
%、Ca:0.0005〜0.003%、N:0.00
05〜0.006%を含有し、残部はFeおよび不可避
不純物からなり、かつ粒子径が0.005〜2.0μ
m、組成として少なくともCa、Al、Oを含み、Oを
除いた元素が質量比で、Ca:5%以上を含有し、残部
がAlおよびその他不可避不純物からなる粒子が、粒子
数100〜3000個/mm2含有する鋳片を、110
0〜1300℃の温度域に加熱してオーステナイト粒径
を200μm以下とした後、800〜1100℃で累積
圧下率40%以上の圧延を行うことによりオーステナイ
トを再結晶させ粒径40μm以下として、さらに、70
0℃以上の温度から冷却速度1℃/s以上で600℃以
下の温度まで冷却することを特徴とする靭性の優れた鋼
材の製造方法。
(1) In mass%, C: 0.03 to 0.1
8%, Si: 0.01-0.5%, Mn: 0.4-2.
0%, P: ≦ 0.02%, S: ≦ 0.02%, Al:
0.005 to 0.04%, Ti: 0.005 to 0.03
%, Ca: 0.0005 to 0.003%, N: 0.00
0.05 to 0.006%, the balance being Fe and unavoidable impurities, and having a particle size of 0.005 to 2.0 μm.
m, the composition contains at least Ca, Al, and O, and the element excluding O contains at least 5% by mass of Ca, and the balance is composed of Al and other unavoidable impurities. / Mm 2 containing 110%
After heating to a temperature range of 0 to 1300 ° C. to reduce the austenite grain size to 200 μm or less, austenite is recrystallized by rolling at 800 to 1100 ° C. at a cumulative reduction of 40% or more to further reduce the grain size to 40 μm or less. , 70
A method for producing a steel material having excellent toughness, comprising cooling from a temperature of 0 ° C. or more to a temperature of 600 ° C. or less at a cooling rate of 1 ° C./s or more.

【0016】(2) 質量%で、C:0.03〜0.1
8%、Si:0.01〜0.5%、Mn:0.40〜
2.0%、P:≦0.02%、S:≦0.02%、A
l:0.005〜0.04%、Ti:0.005〜0.
03%、Ca:0.0005〜0.003%、Mg:
0.0001〜0.002%、N:0.0005〜0.
006%を含有し、残部はFeおよび不可避不純物から
なり、かつ粒子径が0.005〜2.0μm、組成とし
て少なくともCa、Al、Mg、Oを含み、Oを除いた
元素が質量比で、Ca:5%以上、Mg:1%以上を含
有し、残部がAlおよびその他不可避不純物からなる粒
子が、粒子数100〜3000個/mm2含有する鋳片
を、1100〜1300℃の温度域に加熱してオーステ
ナイト粒径を200μm以下とした後、800〜110
0℃で累積圧下率40%以上の圧延を行うことによりオ
ーステナイトを再結晶させ粒径40μm以下として、さ
らに、700℃以上の温度から冷却速度1℃/s以上で
600℃以下の温度まで冷却することを特徴とする靭性
の優れた鋼材の製造方法。
(2) C: 0.03-0.1% by mass
8%, Si: 0.01 to 0.5%, Mn: 0.40 to
2.0%, P: ≦ 0.02%, S: ≦ 0.02%, A
l: 0.005 to 0.04%, Ti: 0.005 to 0.
03%, Ca: 0.0005 to 0.003%, Mg:
0.0001-0.002%, N: 0.0005-0.
006%, the balance being Fe and unavoidable impurities, and having a particle diameter of 0.005 to 2.0 μm, containing at least Ca, Al, Mg, and O as components and excluding O in mass ratio, A slab containing 5% or more of Ca and 1% or more of Mg and the balance of Al and other unavoidable impurities contains 100 to 3000 particles / mm 2 in a temperature range of 1100 to 1300 ° C. After heating to reduce the austenite particle size to 200 μm or less, 800 to 110
Austenite is recrystallized by rolling at 0 ° C. with a cumulative reduction ratio of 40% or more to a grain size of 40 μm or less, and further cooled from a temperature of 700 ° C. or more to a temperature of 600 ° C. or less at a cooling rate of 1 ° C./s or more. A method for producing a steel material having excellent toughness, characterized in that:

【0017】(3) 前記冷却を行った後、さらに65
0℃以下の温度で焼戻しを行うことを特徴とする前記
(1)または(2)に記載の靭性の優れた鋼材の製造方
法。
(3) After performing the cooling, an additional 65
The method for producing a steel material having excellent toughness according to the above (1) or (2), wherein tempering is performed at a temperature of 0 ° C. or lower.

【0018】(4) 質量%で、Cu:≦1.5%、N
i:≦2.0%、Nb:≦0.05%、V :≦0.1
%、Cr:≦0.6%、Mo:≦0.6%、B:0.0
002〜0.002%の1種または2種以上を含有する
ことを特徴とする前記(1)ないし(3)のいずれかに
記載の靭性の優れた鋼材の製造方法。
(4) In mass%, Cu: ≦ 1.5%, N
i: ≦ 2.0%, Nb: ≦ 0.05%, V: ≦ 0.1
%, Cr: ≦ 0.6%, Mo: ≦ 0.6%, B: 0.0
The method for producing a steel material having excellent toughness according to any one of the above (1) to (3), comprising one or more of 002 to 0.002%.

【0019】[0019]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明者らは靭性を向上させる金属組織的要因と
してスラブ再加熱時のγ粒径に着目し、酸化物を利用し
てγの整細粒化を達成することを検討した。これは再加
熱γ組織が、圧延以降の工程における材質造り込みの原
点であるとの認識に基づくものである。すなわち、再加
熱時にγが粗大化または混粒化してしまうと、いくら再
結晶温度域で圧延条件を調整してγ粒を微細化しようと
も、再加熱時から整細粒であった場合のγ粒径には到達
しないからである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The present inventors have focused on the γ grain size at the time of slab reheating as a metallographic factor for improving the toughness, and studied to achieve fine γ fineness using an oxide. This is based on the recognition that the reheated γ structure is the origin of the material fabrication in the steps after rolling. That is, if γ is coarsened or mixed during reheating, no matter how much the rolling conditions are adjusted in the recrystallization temperature range to refine γ grains, the This is because the particle size does not reach.

【0020】再結晶γが微細であると、γ/α変態を利
用したα細粒化に有利となることはもちろん、BやMを
利用した高張力鋼の靭性向上にも寄与する。一般的にγ
が細粒化すると焼入れ性は低下することが知られている
が、一方でパケット、ブロックが微細化されることに加
えて、一部生成してくる微細なαが有効結晶粒を分割す
る効果があるため、靭性は顕著に向上するのである。α
生成にともなう強度の低下については、αの成長・粗大
化が生じない限り顕著には現れない。
If the recrystallized γ is fine, it is advantageous not only for α-granulation using the γ / α transformation, but also for improving the toughness of high-tensile steel using B or M. Generally γ
It is known that the hardenability decreases as the grain size decreases, but on the other hand, in addition to the miniaturization of packets and blocks, the fine α partially generated also has the effect of dividing effective crystal grains. Therefore, the toughness is significantly improved. α
The decrease in strength due to the formation does not appear remarkably unless growth and coarsening of α occur.

【0021】再加熱γ粒を微細化するためには、高温で
のγの粒成長を抑制することが必要である。そのための
最も有効な手段として、分散粒子によりγ粒界をピンニ
ングし、粒界移動を止める方法が挙げられる。そのよう
な作用をする分散粒子の一つとしては、従来、TiやA
lの窒化物が有効であると考えられていた。しかしなが
ら、これらの窒化物は高温での安定性が酸化物に比べて
劣るため、特に1200℃超では窒化物の溶解が始ま
り、一部粗大粒が生成してしまう。これに対し、高温で
安定な酸化物をピンニング粒子として活用することによ
り、γ粒の粗大化が抑制され、圧延後の工程に負荷をか
けずに最終組織の微細化が可能となる。
In order to refine the reheated γ grains, it is necessary to suppress the growth of γ grains at a high temperature. The most effective means for that purpose is a method of pinning the γ grain boundary with dispersed particles and stopping the movement of the grain boundary. As one of the dispersed particles having such an action, conventionally, Ti or A
It was believed that 1 nitrides were effective. However, since these nitrides are inferior in stability at high temperatures to oxides, the dissolution of the nitrides is started particularly at a temperature higher than 1200 ° C., and some coarse particles are formed. On the other hand, by utilizing an oxide stable at a high temperature as pinning particles, coarsening of γ grains is suppressed, and the final structure can be refined without imposing a load on a process after rolling.

【0022】さらに、安定な酸化物の近傍は加工時に不
均一変形領域となるため、γ粒界とともに再結晶の優先
核生成サイトとなり、再結晶γの微細化を促進するとい
う効果もある。
Furthermore, since the vicinity of the stable oxide becomes a non-uniform deformation region at the time of processing, it becomes a preferential nucleation site for recrystallization together with the γ grain boundary, and has the effect of promoting the miniaturization of recrystallized γ.

【0023】分散粒子による結晶粒界のピンニング効果
は、分散粒子の体積率が大きいほど、一個の粒子径が大
きいほど大きい。ただし、分散粒子の体積率は鋼中に含
まれる粒子を構成する元素の濃度によって上限があるの
で、体積率を一定と仮定した場合には、粒子径はある程
度小さい方がピンニングには有効である。このような観
点から、本発明者らは酸化物の体積分率を大きく、かつ
適正な粒子径となるよう、種々の検討を行った。
The pinning effect of the crystal grain boundaries by the dispersed particles increases as the volume ratio of the dispersed particles increases and as the diameter of one particle increases. However, since the volume fraction of dispersed particles has an upper limit depending on the concentration of the elements constituting the particles contained in the steel, if the volume fraction is assumed to be constant, a smaller particle diameter is more effective for pinning. . From such a viewpoint, the present inventors have conducted various studies to increase the volume fraction of the oxide and to obtain an appropriate particle size.

【0024】酸化物の体積分率を大きくする手段の一つ
として、酸素量を増大させることがあるが、酸素量の増
大は材質に有害な粗大介在物をも多数生成する原因とな
るため、有効な手段ではない。そこで本発明者らは、酸
素を最大限に利用するため、酸素との溶解度積が小さい
元素を活用することを検討した。酸素との溶解度積が小
さい、すなわち強脱酸元素として、一般的にはAlが用
いられる。しかしながら、Alだけでは酸素を十分利用
することはできないため、Alよりも強い脱酸元素であ
るCaを活用することが必要で、さらにMgの活用も有
効である。脱酸元素としてCa、Mgを用いた実験を行
った結果、鋼中に生成する酸化物粒子の組成として、C
aが5%以上、Mgが1%以上含まれることで、酸化物
の体積分率すなわち酸化物量を大きくすることが可能と
なることを知見した。この結果をもとに、鋼中に含まれ
る粒子の組成を、少なくともCa、Al、Oを含み、O
を除いた元素が質量比でCa:5%以上とし、さらにC
a、Al、OのほかにMgを含む場合には、Ca:5%
以上、Mg:1%以上とした。
As one of means for increasing the volume fraction of the oxide, there is a case where the amount of oxygen is increased. However, since an increase in the amount of oxygen causes generation of a large number of coarse inclusions harmful to the material, It is not an effective means. Therefore, the present inventors have studied the use of an element having a small solubility product with oxygen in order to make maximum use of oxygen. Al is generally used as a material having a small solubility product with oxygen, that is, as a strongly deoxidizing element. However, since oxygen cannot be sufficiently utilized by Al alone, it is necessary to utilize Ca, which is a deoxidizing element stronger than Al, and utilization of Mg is also effective. As a result of conducting an experiment using Ca and Mg as deoxidizing elements, the composition of oxide particles generated in steel was C
It has been found that when the content of a is 5% or more and the content of Mg is 1% or more, the volume fraction of the oxide, that is, the amount of the oxide can be increased. On the basis of this result, the composition of the particles contained in the steel was changed to include at least Ca, Al, O, and O
Elements except for the mass ratio of Ca: 5% or more,
When Mg is contained in addition to a, Al and O, Ca: 5%
Above, Mg: 1% or more.

【0025】次にピンニングに有効な粒子の大きさにつ
いて述べる。前述したように、分散粒子による結晶粒界
のピンニング効果は、分散粒子の体積率が大きいほど、
一個の粒子径が大きいほど大きい。粒子の体積率が一定
とすると、一個の粒子の大きさが小さい方が粒子数は多
くなり、ピンニング効果が大きくなるが、あまり粒子が
小さくなると粒界に存在する粒子の割合が小さくなるた
め、その効果は低減すると考えた。そこで、酸化物粒子
の大きさを種々変化させた試験片を用いて、高温に加熱
したときのオーステナイト粒径を詳細に調査した結果、
ピンニングには0.005〜2.0μmの大きさの粒子
が効果的であることをつきとめた。また0.005μm
より小さい酸化物粒子はほとんど観察されなかった。こ
の結果より、必要な粒子径を0.005〜2.0μmと
した。
Next, the particle size effective for pinning will be described. As described above, the pinning effect of the crystal grain boundaries by the dispersed particles, the larger the volume ratio of the dispersed particles,
The larger the particle size of one particle, the larger. Assuming that the volume ratio of the particles is constant, the smaller the size of a single particle, the larger the number of particles and the larger the pinning effect.However, if the particles are too small, the proportion of the particles present at the grain boundaries will be small, The effect was thought to be reduced. Therefore, using a test piece in which the size of the oxide particles was changed variously, as a result of a detailed investigation of the austenite particle size when heated to a high temperature,
It has been determined that particles having a size of 0.005 to 2.0 μm are effective for pinning. 0.005μm
Few smaller oxide particles were observed. From these results, the required particle diameter was set to 0.005 to 2.0 μm.

【0026】さらにγ粒成長抑制に必要なピンニング粒
子の個数について検討した。粒子個数が多いほど組織単
位は微細になり、そのため靭性が向上する。鋼材に要求
される靭性は、その用途によって異なるが、最終的な組
織・材質造り込みに有利となる粒径200μm以下の再
加熱γを安定して得るためには、粒子数が100個/m
2以上必要であることを知見した。ただし、粒子数が
多くなるほど、その靭性向上効果は飽和し、必要以上に
粒子個数を多くすることは靭性に有害な粗大な粒子が生
成する可能性が高くなり、また現在の工業技術では限界
もあることを考えると、粒子数の上限は3000個/m
2が適切である。
Further, the number of pinning particles required for suppressing the growth of γ grains was examined. As the number of particles increases, the structure unit becomes finer, and thus the toughness improves. The toughness required for the steel material varies depending on the application, but in order to stably obtain a reheat γ having a particle size of 200 μm or less, which is advantageous for the final structure and material fabrication, the number of particles is 100 particles / m 2.
It was found that m 2 or more was required. However, as the number of particles increases, the effect of improving toughness saturates, and increasing the number of particles more than necessary increases the possibility of generating coarse particles that are harmful to toughness. Considering this, the upper limit of the number of particles is 3000 particles / m.
m 2 is appropriate.

【0027】該酸化物の大きさおよび個数の測定は、例
えば以下の要領で行う。鋼材から抽出レプリカを作製
し、それを電子顕微鏡にて10000倍で20視野以
上、観察面積にして1000μm2以上を観察すること
で該酸化物の大きさおよび個数を測定する。このとき鋼
材の表層部から中心部までどの部位から採取した抽出レ
プリカでもよい。また、粒子が適正に観察可能であれ
ば、観察倍率を低くしてもかまわない。
The size and number of the oxide are measured, for example, in the following manner. An extract replica is prepared from a steel material, and the size and the number of the oxide are measured by observing at least 20 fields of view at a magnification of 10000 with an electron microscope at an observation area of at least 1000 μm 2 . At this time, an extracted replica collected from any part from the surface layer to the center of the steel material may be used. If the particles can be properly observed, the observation magnification may be reduced.

【0028】酸化物粒子は、溶鋼を脱酸する際に生成す
る。これを一次酸化物と称する。さらには鋳造、凝固中
に溶鋼温度の低下とともにTi−Al−Ca酸化物は生
成する。これを二次酸化物と称する。本発明では、一次
酸化物と二次酸化物とのどちらを用いてもかまわない。
Oxide particles are generated when deoxidizing molten steel. This is called a primary oxide. Furthermore, during casting and solidification, Ti-Al-Ca oxide is generated as the temperature of the molten steel decreases. This is called a secondary oxide. In the present invention, either a primary oxide or a secondary oxide may be used.

【0029】次に本発明の基本成分範囲の限定理由につ
いて述べる。
Next, the reasons for limiting the range of the basic components of the present invention will be described.

【0030】Cは鋼の強度を向上させる有効な成分とし
て下限を0.03%とし、また過剰の添加は、鋼材の溶
接性やHAZ靭性などを著しく低下させるので、上限を
0.18%とした。
C is an effective component for improving the strength of steel, with the lower limit being 0.03%, and an excessive addition significantly reduces the weldability and HAZ toughness of the steel material, so the upper limit is 0.18%. did.

【0031】Siは溶製時の脱酸に必要な元素であり、
適量添加するとマトリクスを固溶強化するため、0.0
1%以上添加する。一方、0.5%超添加すると、HA
Zの硬化により靭性が低下するため、上限を0.5%と
した。
Si is an element necessary for deoxidation during melting,
When an appropriate amount is added, the matrix is solid-solution strengthened.
Add 1% or more. On the other hand, if over 0.5% is added, HA
Since the toughness is reduced by the hardening of Z, the upper limit is set to 0.5%.

【0032】Mnは母材の強度、靭性の確保に有効な成
分として0.4%以上の添加が必要であるが、溶接部の
靭性、割れ性などの許容できる範囲で上限を2.0%と
した。
Mn needs to be added in an amount of 0.4% or more as an effective component for securing the strength and toughness of the base material, but the upper limit is 2.0% in the allowable range of the toughness and cracking property of the welded portion. And

【0033】Pは含有量が少ないほど望ましいが、これ
を工業的に低減させるためには多大なコストがかかるこ
とから、0.02%を上限とした。
The lower the content of P is, the more desirable it is. However, in order to reduce this industrially, a large cost is required. Therefore, the upper limit is set to 0.02%.

【0034】Sは含有量が少ないほど望ましいが、これ
を工業的に低減させるためには多大なコストがかかるこ
とから、0.02%を上限とした。
The lower the content of S is, the more desirable it is. However, in order to reduce this industrially, a large cost is required. Therefore, the upper limit is set to 0.02%.

【0035】Alは重要な脱酸元素であり、下限値を
0.005%とした。また、Alが多量に存在すると、
鋳片の表面品位が劣化するため、上限を0.04%とし
た。
Al is an important deoxidizing element, and the lower limit is set to 0.005%. Also, when Al is present in a large amount,
Since the surface quality of the slab deteriorates, the upper limit is set to 0.04%.

【0036】Tiは脱酸元素であると同時に、Nと結合
してTi窒化物を形成することで加熱γとHAZの細粒
化に一定の効果を及ぼすために0.005%以上添加す
る。しかし、固溶Ti量が増加するとHAZ靭性が低下
するため、0.03%を上限とした。
At the same time, Ti is a deoxidizing element and is added in an amount of 0.005% or more in order to exert a certain effect on the heating γ and the grain refinement of HAZ by forming a Ti nitride by combining with N. However, when the amount of solid solution Ti increases, the HAZ toughness decreases. Therefore, the upper limit is set to 0.03%.

【0037】CaはCa系酸化物を生成させるために
0.0005%以上の添加が必要である。しかしなが
ら、過剰の添加は粗大介在物を生成させるため、0.0
03%を上限とした。
Ca must be added in an amount of 0.0005% or more in order to generate a Ca-based oxide. However, excessive addition produces coarse inclusions,
The upper limit was 03%.

【0038】NはTiNとして析出することでHAZ靭
性の向上効果があるため、下限を0.0005%とし
た。しかしながら固溶Nが増大するとHAZ靭性の低下
を招くことから0.006%を上限とした。
N has an effect of improving HAZ toughness by precipitating as TiN, so the lower limit is made 0.0005%. However, an increase in solid solution N causes a decrease in HAZ toughness, so the upper limit was made 0.006%.

【0039】Cuは鋼材の強度を向上させるために有効
であるが、1.5%を超えるとHAZ靭性を低下させる
ことから、1.5%を上限とした。
Cu is effective for improving the strength of the steel material, but if it exceeds 1.5%, the HAZ toughness is reduced. Therefore, the upper limit is set to 1.5%.

【0040】Niは鋼材の強度および靭性を向上させる
ために有効であるが、Ni量の増加は製造コストを上昇
させるので、2.0%を上限とした。
Although Ni is effective for improving the strength and toughness of the steel material, the upper limit is 2.0% because an increase in the amount of Ni increases the production cost.

【0041】Nbは焼入れ性を向上させることにより母
材の強度および靭性を向上させるために有効な元素であ
るが、HAZ部においては過剰な添加は靭性を著しく低
下させるため0.05%を上限とした。
Nb is an element effective for improving the strength and toughness of the base material by improving the hardenability, but in the HAZ portion, an excessive addition significantly reduces the toughness, so the upper limit is 0.05%. And

【0042】V、Cr、MoについてもNbと同様な効
果を有することから、それぞれ0.1%、0.6%、
0.6%を上限とした。
Since V, Cr and Mo also have the same effect as Nb, 0.1%, 0.6%,
The upper limit was 0.6%.

【0043】BはHAZ靭性に有害な粒界フェライト、
フェライトサイドプレートの成長抑制と、BNの析出に
よるHAZの固溶Nの固定から0.0002%以上0.
002%以下とした。
B is grain boundary ferrite harmful to HAZ toughness,
0.0002% or more from the suppression of the growth of the ferrite side plate and the fixation of the solute N in the HAZ by the precipitation of BN.
002% or less.

【0044】次に本発明鋼の製造プロセスについて説明
する。上述した成分組成および酸化物組成・個数を有す
る鋳片を1100〜1300℃の温度範囲に加熱する。
加熱温度が1100℃未満では合金元素の均質化が図れ
ず、材質不安定の原因となる。一方、1300℃超では
加熱γの粗大化は起こらないものの、加熱原単位の上昇
に加え、圧延温度を適切にするために温度待ちが生じ
る。
Next, the manufacturing process of the steel of the present invention will be described. The slab having the above-described component composition and oxide composition / number is heated to a temperature range of 1100 to 1300 ° C.
When the heating temperature is lower than 1100 ° C., homogenization of alloy elements cannot be achieved, which causes material instability. On the other hand, if the heating temperature exceeds 1300 ° C., the heating γ does not become coarse, but in addition to the increase in the heating intensity, a temperature wait occurs in order to make the rolling temperature appropriate.

【0045】鋳片を加熱後、800〜1100℃の温度
で累積圧下率40%以上の圧延を施すのは、再結晶γを
40μm以下程度に細粒化するためである。800℃未
満の圧延では脆化の原因となる加工αが生成する可能性
があり、生産性も著しく低下する。1100℃超の圧延
では再結晶γ粒が粗大化する懸念がある。圧下率が40
%未満であると、γ粒が40μm以下にまで細粒化され
ず、最終組織の微細化・靭性向上も達成されない。
After the slab is heated, the slab is rolled at a temperature of 800 to 1100 ° C. with a cumulative reduction of 40% or more in order to reduce the recrystallization γ to about 40 μm or less. If the rolling is performed at a temperature lower than 800 ° C., there is a possibility that a process α that causes embrittlement is generated, and the productivity is significantly reduced. If the rolling temperature exceeds 1100 ° C., there is a concern that the recrystallized γ grains may become coarse. Reduction rate of 40
%, The γ grains are not refined to 40 μm or less, and the refinement of the final structure and improvement in toughness are not achieved.

【0046】γ域での圧延終了後、700℃以上の温度
から冷却速度1℃/s以上で600℃以下の温度まで冷
却するのは最終組織の微細化のためである。冷却開始が
700℃よりも低くなると、冷却前にαが生成・粗大化
する可能性がある。冷却速度が1℃/s未満、あるいは
冷却停止温度が600℃超であると、十分な強度が確保
できない。
After the completion of the rolling in the γ region, the cooling from a temperature of 700 ° C. or more to a temperature of 600 ° C. or less at a cooling rate of 1 ° C./s or more is for refining the final structure. If the cooling start is lower than 700 ° C., α may be generated and coarsened before cooling. If the cooling rate is lower than 1 ° C./s or the cooling stop temperature is higher than 600 ° C., sufficient strength cannot be secured.

【0047】上述の冷却後に、650℃以下の温度で焼
戻しを実施してもよい。650℃超の焼戻しは顕著な強
度低下をもたらすために避ける必要がある。
After the above cooling, tempering may be performed at a temperature of 650 ° C. or less. Tempering above 650 ° C. must be avoided because it results in significant strength reduction.

【0048】以上のように、所定の酸化物組成・個数を
有する鋳片を用いて、所定の条件で製造することによ
り、組織微細化が達成され、図1に示すように顕著な靭
性向上が可能となる。
As described above, by fabricating under a predetermined condition using a slab having a predetermined oxide composition and a predetermined number, a fine structure can be achieved, and as shown in FIG. It becomes possible.

【0049】[0049]

【実施例】表1に示した化学成分で試作を実施した。番
号1〜8が本発明例、9〜14が比較例である。試作鋼
は転炉溶製し、RHにて真空脱ガス処理時に脱酸を行っ
ている。Ti投入前に溶鋼の溶存酸素をSiで調整し、
その後Ti、Al、Ca、もしくは、Ti、Al、M
g、Caを順に添加して脱酸を行ない、連続鋳造した。
それから、加熱、圧延、冷却、熱処理工程を経て、種々
の板厚の鋼板とした。
EXAMPLES Trial production was carried out using the chemical components shown in Table 1. Numbers 1 to 8 are inventive examples, and 9 to 14 are comparative examples. The prototype steel is melted from a converter and deoxidized at RH during vacuum degassing. Adjust the dissolved oxygen of molten steel with Si before adding Ti,
Thereafter, Ti, Al, Ca or Ti, Al, M
g and Ca were sequentially added to perform deoxidation, and continuous casting was performed.
Then, through heating, rolling, cooling and heat treatment steps, steel plates of various thicknesses were obtained.

【0050】[0050]

【表1】 [Table 1]

【0051】表2には、酸化物粒子の組成、粒子径0.
005〜2.0μmの粒子数、鋼板の製造条件、母材の
機械的性質を示す。各鋼板の降伏強度(YPまたはY
S)、引張強度(TS)については、JIS4号引張試
験片を用いて評価し、破面遷移温度(vTrs)はJI
S4号衝撃試験片を用いて、2mmVノッチシャルピー
試験から求めた。なお、試験片は板厚中心部から圧延方
向と直角な方向に採取した。
Table 2 shows the composition of the oxide particles and the particle diameter of the oxide particles.
The number of particles of 005 to 2.0 μm, the manufacturing conditions of the steel sheet, and the mechanical properties of the base material are shown. Yield strength of each steel plate (YP or Y
S) and tensile strength (TS) were evaluated using a JIS No. 4 tensile test piece, and the fracture surface transition temperature (vTrs) was determined by JI.
It was determined from a 2 mm V notch Charpy test using an S4 impact test piece. The test piece was sampled from the center of the thickness in a direction perpendicular to the rolling direction.

【0052】[0052]

【表2】 [Table 2]

【0053】表2から明らかなように、1〜8の本発明
例は、粒子径が0.005〜2.0μmで、Ca、M
g、Alを所定の組成で含む酸化物の粒子数が100〜
3000個/mm2の範囲にあるため、再加熱γおよび
圧延γが微細化しており、板厚中心部の靭性が極めて優
れている。
As is clear from Table 2, Examples 1 to 8 of the present invention have a particle diameter of 0.005 to 2.0 μm, Ca, M
g, the number of particles of the oxide containing Al in a predetermined composition is 100 to
Since it is in the range of 3000 pieces / mm 2 , the reheating γ and the rolling γ are finer, and the toughness at the center of the sheet thickness is extremely excellent.

【0054】一方、比較例の9〜14は、いずれも遷移
温度−40℃以上で靭性が劣っている。これらの原因
は、12は本発明の所定の酸化物組成になっておらず酸
化物が少なかったため、その他は酸化物粒子数が所定の
個数より少なかったために、再加熱γが粗大化・混粒化
し、最終組織の微細化が達成できなかったことによる。
On the other hand, all of Comparative Examples 9 to 14 are inferior in toughness at a transition temperature of −40 ° C. or higher. These were caused by the fact that 12 did not have the prescribed oxide composition of the present invention and had a small amount of oxide, and the others had a smaller number of oxide particles than the prescribed number. And the fine structure of the final structure could not be achieved.

【0055】[0055]

【発明の効果】本発明は、船舶、橋梁、中高層建築物、
海洋構造物などに適用される、厳しい靭性要求を満足す
る鋼材の効率的な製造方法であり、この種の産業分野に
もたらす効果は極めて大きく、さらに構造物の安全性の
観点から社会に対する貢献も非常に大きい。
According to the present invention, ships, bridges, middle and high-rise buildings,
This is an efficient method for producing steel that meets strict toughness requirements and is applied to marine structures, etc., and has a great effect on this kind of industrial field, and also contributes to society from the viewpoint of structural safety. Very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】所定の粒径、組成を有する粒子の個数と破面遷
移温度との関係を示す図である。
FIG. 1 is a diagram showing a relationship between the number of particles having a predetermined particle size and composition and a fracture surface transition temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小関 敏彦 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 大谷 潤 大分市大字西ノ州1番地 新日本製鐵株式 会社大分製鐵所内 (72)発明者 秦 知彦 大分市大字西ノ州1番地 新日本製鐵株式 会社大分製鐵所内 Fターム(参考) 4K032 AA00 AA01 AA02 AA04 AA05 AA08 AA11 AA14 AA15 AA16 AA19 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 BA01 CA02 CA03 CB01 CB02 CC03 CC04 CD02 CF01 CF02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshihiko Koseki 20-1 Shintomi, Futtsu-shi Nippon Steel Corporation Technology Development Headquarters (72) Inventor Jun Otani 1-chome, Nishinoshu, Oita City Nippon Steel Corporation Inside the Oita Works (72) Inventor Tomohiko Hata 1st in Nishinoshi, Oita City Nippon Steel Corporation F-term inside the Oita Works (reference) AA23 AA24 AA27 AA29 AA31 AA35 AA36 BA01 CA02 CA03 CB01 CB02 CC03 CC04 CD02 CF01 CF02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.03〜0.18%、
Si:0.01〜0.5%、Mn:0.4〜2.0%、
P:≦0.02%、S:≦0.02%、Al:0.00
5〜0.04%、Ti:0.005〜0.03%、C
a:0.0005〜0.003%、N:0.0005〜
0.006%を含有し、残部はFeおよび不可避不純物
からなり、かつ粒子径が0.005〜2.0μm、組成
として少なくともCa、Al、Oを含み、Oを除いた元
素が質量比で、Ca:5%以上を含有し、残部がAlお
よびその他不可避不純物からなる粒子が、粒子数100
〜3000個/mm2含有する鋳片を、1100〜13
00℃の温度域に加熱してオーステナイト粒径を200
μm以下とした後、800〜1100℃で累積圧下率4
0%以上の圧延を行うことによりオーステナイトを再結
晶させ粒径40μm以下として、さらに、700℃以上
の温度から冷却速度1℃/s以上で600℃以下の温度
まで冷却することを特徴とする靭性の優れた鋼材の製造
方法。
C: 0.03 to 0.18% by mass%,
Si: 0.01 to 0.5%, Mn: 0.4 to 2.0%,
P: 0.02%, S: 0.02%, Al: 0.00
5 to 0.04%, Ti: 0.005 to 0.03%, C
a: 0.0005 to 0.003%, N: 0.0005 to 0.005%
0.006%, the balance being Fe and unavoidable impurities, and having a particle size of 0.005 to 2.0 μm, containing at least Ca, Al, O as a composition, and excluding O in mass ratio. Particles containing 5% or more of Ca, the balance being Al and other unavoidable impurities, having a particle number of 100
Slabs containing 3000 pieces / mm 2 , 1100-13
Heat to a temperature range of 00 ° C to reduce the austenite grain size to 200
μm or less, and at 800-1100 ° C., the cumulative rolling reduction 4
The toughness is characterized in that austenite is recrystallized by rolling at 0% or more to reduce the grain size to 40 μm or less, and further cooled from a temperature of 700 ° C. or more to a temperature of 600 ° C. or less at a cooling rate of 1 ° C./s or more. Method of manufacturing excellent steel products.
【請求項2】 質量%で、C:0.03〜0.18%、
Si:0.01〜0.5%、Mn:0.4〜2.0%、
P:≦0.02%、S:≦0.02%、Al:0.00
5〜0.04%、Ti:0.005〜0.03%、C
a:0.0005〜0.003%、Mg:0.0001
〜0.002%、N:0.0005〜0.006%を含
有し、残部はFeおよび不可避不純物からなり、かつ粒
子径が0.005〜2.0μm、組成として少なくとも
Ca、Al、Mg、Oを含み、Oを除いた元素が質量比
で、Ca:5%以上、Mg:1%以上を含有し、残部が
Alおよびその他不可避不純物からなる粒子が、粒子数
100〜3000個/mm2含有する鋳片を、1100
〜1300℃の温度域に加熱してオーステナイト粒径を
200μm以下とした後、800〜1100℃で累積圧
下率40%以上の圧延を行うことによりオーステナイト
を再結晶させ粒径40μm以下として、さらに、700
℃以上の温度から冷却速度1℃/s以上で600℃以下
の温度まで冷却することを特徴とする靭性の優れた鋼材
の製造方法。
2. C: 0.03 to 0.18% by mass%
Si: 0.01 to 0.5%, Mn: 0.4 to 2.0%,
P: 0.02%, S: 0.02%, Al: 0.00
5 to 0.04%, Ti: 0.005 to 0.03%, C
a: 0.0005% to 0.003%, Mg: 0.0001
0.000.002%, N: 0.0005 to 0.006%, the balance being Fe and unavoidable impurities, and having a particle size of 0.005 to 2.0 μm and a composition of at least Ca, Al, Mg, Particles containing O and containing elements other than O in a mass ratio of Ca: 5% or more and Mg: 1% or more, with the balance being Al and other unavoidable impurities, are 100 to 3000 particles / mm 2. 1100
After heating to a temperature range of 11300 ° C. to reduce the austenite grain size to 200 μm or less, austenite is recrystallized by rolling at 800 to 1100 ° C. with a cumulative reduction ratio of 40% or more to further reduce the grain size to 40 μm or less. 700
A method for producing a steel material having excellent toughness, characterized in that the steel is cooled from a temperature of at least 1 ° C to a temperature of at most 600 ° C at a cooling rate of at least 1 ° C / s.
【請求項3】 前記冷却を行った後、さらに650℃以
下の温度で焼戻しを行うことを特徴とする請求項1また
は2に記載の靭性の優れた鋼材の製造方法。
3. The method for producing a steel material having excellent toughness according to claim 1, wherein after the cooling, tempering is further performed at a temperature of 650 ° C. or less.
【請求項4】 質量%で、Cu:≦1.5%、Ni:≦
2.0%、Nb:≦0.05%、V :≦0.1%、C
r:≦0.6%、Mo:≦0.6%、B:0.0002
〜0.002%の1種または2種以上を含有することを
特徴とする請求項1ないし3のいずれかに記載の靭性の
優れた鋼材の製造方法。
4. In mass%, Cu: ≦ 1.5%, Ni: ≦
2.0%, Nb: ≦ 0.05%, V: ≦ 0.1%, C
r: ≦ 0.6%, Mo: ≦ 0.6%, B: 0.0002
The method for producing a steel material having excellent toughness according to any one of claims 1 to 3, comprising one or more of 0.002% to 0.002%.
JP2000142757A 2000-05-16 2000-05-16 Method of manufacturing steel with excellent toughness Expired - Fee Related JP3502809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000142757A JP3502809B2 (en) 2000-05-16 2000-05-16 Method of manufacturing steel with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000142757A JP3502809B2 (en) 2000-05-16 2000-05-16 Method of manufacturing steel with excellent toughness

Publications (2)

Publication Number Publication Date
JP2001323321A true JP2001323321A (en) 2001-11-22
JP3502809B2 JP3502809B2 (en) 2004-03-02

Family

ID=18649666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000142757A Expired - Fee Related JP3502809B2 (en) 2000-05-16 2000-05-16 Method of manufacturing steel with excellent toughness

Country Status (1)

Country Link
JP (1) JP3502809B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174332A (en) * 2009-01-29 2010-08-12 Jfe Steel Corp Non-heat-treated low yield ratio high tensile thick steel plate, and method for producing the same
JP2017179424A (en) * 2016-03-29 2017-10-05 新日鐵住金株式会社 Abrasion proof steel sheet and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174332A (en) * 2009-01-29 2010-08-12 Jfe Steel Corp Non-heat-treated low yield ratio high tensile thick steel plate, and method for producing the same
JP2017179424A (en) * 2016-03-29 2017-10-05 新日鐵住金株式会社 Abrasion proof steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JP3502809B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP4529549B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent ductility and hole-expansion workability
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP2913426B2 (en) Manufacturing method of thick high strength steel sheet with excellent low temperature toughness
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP4405026B2 (en) Method for producing high-tensile strength steel with fine grain
JPH09143557A (en) Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength
JP2000008123A (en) Production of high tensile strength steel excellent in low temperature toughness
JP3369435B2 (en) Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness
JP2776174B2 (en) Manufacturing method of high tensile strength and high toughness fine bainite steel
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPH09256037A (en) Production of thick high tensile strength steel plate for stress relieving annealing treatment
JPH1171615A (en) Production of thick steel plate excellent in low temperature toughness
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP2000104116A (en) Production of steel excellent in strength and toughness
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JPH10183239A (en) Production of quenched and tempered 600n/mm2 class high tensile strength steel excellent in weld cracking sensitivity and low temperature toughness
JP3502850B2 (en) High-efficiency manufacturing method for steel with excellent toughness
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
JPH09256038A (en) Heat treatment before stress relieving annealing treatment for thick steel plate
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JPH07233414A (en) Production of low yield ratio high tensile strength steel plate excellent in uniform elongation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031208

R151 Written notification of patent or utility model registration

Ref document number: 3502809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees