JPH03254169A - 多重量子細線の形成方法 - Google Patents
多重量子細線の形成方法Info
- Publication number
- JPH03254169A JPH03254169A JP5138990A JP5138990A JPH03254169A JP H03254169 A JPH03254169 A JP H03254169A JP 5138990 A JP5138990 A JP 5138990A JP 5138990 A JP5138990 A JP 5138990A JP H03254169 A JPH03254169 A JP H03254169A
- Authority
- JP
- Japan
- Prior art keywords
- layers
- compound semiconductor
- layer
- quantum
- alternately
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 29
- 239000004065 semiconductor Substances 0.000 claims abstract description 39
- 150000001875 compounds Chemical class 0.000 claims abstract description 37
- 238000005530 etching Methods 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 230000004888 barrier function Effects 0.000 claims abstract description 20
- 239000010409 thin film Substances 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 239000013078 crystal Substances 0.000 abstract description 13
- 238000010884 ion-beam technique Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 5
- 238000000927 vapour-phase epitaxy Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000000609 electron-beam lithography Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000005136 cathodoluminescence Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- -1 sulfuric acid peroxide Chemical class 0.000 description 1
- 238000003079 width control Methods 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
「産業上の利用分野」
本発明は光通信や光情報処理等に用いる超格子へテロ構
造デバイスに関するもので、特に多重量子細線の形成方
法に関するものである。 「従来技術」 近年、光システムの高度化にともない、光デバイスの高
性能化に対する要求が高まっている。このようなデバイ
スを実現する手段として例えば雑誌「アプライド・フィ
ジクス・レター1第39巻、1981年、170−18
1ページに見られる量子井戸レーザのような量子効果を
用いたデバイスが提案されている。また、量子効果は量
子井戸構造よりも量子細線構造とした方が効率よく引き
出すことができることが知られている。このような量子
細線を形成する方法として現在までに以下のものが提案
されている。
造デバイスに関するもので、特に多重量子細線の形成方
法に関するものである。 「従来技術」 近年、光システムの高度化にともない、光デバイスの高
性能化に対する要求が高まっている。このようなデバイ
スを実現する手段として例えば雑誌「アプライド・フィ
ジクス・レター1第39巻、1981年、170−18
1ページに見られる量子井戸レーザのような量子効果を
用いたデバイスが提案されている。また、量子効果は量
子井戸構造よりも量子細線構造とした方が効率よく引き
出すことができることが知られている。このような量子
細線を形成する方法として現在までに以下のものが提案
されている。
【方法l】第2図(a)に示すように、通常の基板11
の表面に微細なレジストパターン12を形成する。次い
で、第2図(b)に示すようにエツチングによりこの基
板11に細線を形成する。そして、第2図(c)に示す
ように、エツチングを行った部分に井戸層13と障壁層
14を交互に成長させ、量子細線構造を形成する。
の表面に微細なレジストパターン12を形成する。次い
で、第2図(b)に示すようにエツチングによりこの基
板11に細線を形成する。そして、第2図(c)に示す
ように、エツチングを行った部分に井戸層13と障壁層
14を交互に成長させ、量子細線構造を形成する。
【方法2】第3図(a)に示すように、予め量子井戸構
造が形成された基板11aの表面に微細なレンストパタ
ーンI2を形成する。次いで、第3図(b)に示すよう
に、エツチングによりこの基板11aに細線を形成する
。そして、第3図(c)に示すように、エツチングによ
って残った部分が量子細線となるようにその周囲を障壁
層I4によって埋め込む。
造が形成された基板11aの表面に微細なレンストパタ
ーンI2を形成する。次いで、第3図(b)に示すよう
に、エツチングによりこの基板11aに細線を形成する
。そして、第3図(c)に示すように、エツチングによ
って残った部分が量子細線となるようにその周囲を障壁
層I4によって埋め込む。
【方法3】第4図(a)に示すように、通常の基板11
の表面に集束イオンビームSを用いてマスクレスの微細
加工(エツチング)を施す。次いで、第4図(b)に示
すようζこ、エツチングされた部分に井戸層13と障壁
層14を交互に形成し、量子細線構造を形成する。
の表面に集束イオンビームSを用いてマスクレスの微細
加工(エツチング)を施す。次いで、第4図(b)に示
すようζこ、エツチングされた部分に井戸層13と障壁
層14を交互に形成し、量子細線構造を形成する。
【方法4】第5図(a)に示すように、予め形成した量
子井戸構造を持つ基板11aに集束イオンビームSを用
いてマスクレスの微細加工(エツチング)を行う。次い
で、第5図(b)に示すように、エツチングによって残
った部分か量子細線となるようにその周囲を障壁層14
によって埋め込む。
子井戸構造を持つ基板11aに集束イオンビームSを用
いてマスクレスの微細加工(エツチング)を行う。次い
で、第5図(b)に示すように、エツチングによって残
った部分か量子細線となるようにその周囲を障壁層14
によって埋め込む。
【方法5】第6図(a)に示すように、通常の基板11
に対し、三角形断面かえられるように異方性選択エツチ
ングを行う。次いて、第6図(b)1こ示すように、エ
ツチングされた部分に井戸層13と障壁層14を交互に
形成し、量子細線構造を形成する。
に対し、三角形断面かえられるように異方性選択エツチ
ングを行う。次いて、第6図(b)1こ示すように、エ
ツチングされた部分に井戸層13と障壁層14を交互に
形成し、量子細線構造を形成する。
【方法6】第7図(a)に示すような予め形成した量子
井戸構造を有する基板11aに対し、第7図(b)に示
す三角形断面が得られるように異方性選択エツチングを
行う。そして、三角形の頂点が量子細線となるようにそ
の周囲を埋め込む。
井戸構造を有する基板11aに対し、第7図(b)に示
す三角形断面が得られるように異方性選択エツチングを
行う。そして、三角形の頂点が量子細線となるようにそ
の周囲を埋め込む。
【方法7】第8図Jこ示すように、結晶面から僅かにず
れた面を表面に持つ基板を用いてI原子層エピタキシャ
ル成長を行うことにより自動的に量子細線を形成する。 第8図において、20はGaAs基板、21,21.・
・・および22.22.・・・は、各々、AlAsおよ
びGaAsによる1原子層である。 「発明が解決しようとする課題] ところで、上述した従来の量子細線の形成方法は、各々
、以下説明する欠点があるため、必ずしも本来の量子細
線のもつ特性を生かしきったデバイスが得られないとい
う問題があった。
れた面を表面に持つ基板を用いてI原子層エピタキシャ
ル成長を行うことにより自動的に量子細線を形成する。 第8図において、20はGaAs基板、21,21.・
・・および22.22.・・・は、各々、AlAsおよ
びGaAsによる1原子層である。 「発明が解決しようとする課題] ところで、上述した従来の量子細線の形成方法は、各々
、以下説明する欠点があるため、必ずしも本来の量子細
線のもつ特性を生かしきったデバイスが得られないとい
う問題があった。
【方法lおよび方法2の欠点】量子細線の井戸層と障壁
層の周期は一般に数十Iのオーダーであり、通常のリソ
グラフ技術では、このような細線のパターンを得ること
ができない。そこで、電子線リソグラフを用いることが
考えられるが、仮に電子線リソグラフを用いた場合、レ
ジストの厚さが数十n11と極めて薄くなり、パターン
精度が低下し、さらにその後の加工等を含めると、パタ
ーン精度がさらに落ちてしまい、安定して細線を得るこ
とが困難である。また、電子線リソグラフを用いた場合
、結晶へダメージが残る。
層の周期は一般に数十Iのオーダーであり、通常のリソ
グラフ技術では、このような細線のパターンを得ること
ができない。そこで、電子線リソグラフを用いることが
考えられるが、仮に電子線リソグラフを用いた場合、レ
ジストの厚さが数十n11と極めて薄くなり、パターン
精度が低下し、さらにその後の加工等を含めると、パタ
ーン精度がさらに落ちてしまい、安定して細線を得るこ
とが困難である。また、電子線リソグラフを用いた場合
、結晶へダメージが残る。
【方法3および方法4の欠点】集束イオンビームを用い
てパターニングを行う場合には、イオンビームの加速電
圧を大きくしなければイオンビームを絞り込むことがで
きない。しかし、加速電圧を大きくすると基板に与える
ダメージが極めて大きくなる。
てパターニングを行う場合には、イオンビームの加速電
圧を大きくしなければイオンビームを絞り込むことがで
きない。しかし、加速電圧を大きくすると基板に与える
ダメージが極めて大きくなる。
【方法5および方法6の欠点】三角形断面か得られるよ
うな異方性エツチングを行う方法では、量子細線を多重
化する際に量子細線間の間隔が広かってしまい、光の閉
じ込めか弱くなってしまう。
うな異方性エツチングを行う方法では、量子細線を多重
化する際に量子細線間の間隔が広かってしまい、光の閉
じ込めか弱くなってしまう。
【方法7の欠点】結晶面から僅かにずれた面を持つ基板
を用いて縦方向に自動的に量子細線を形成する方法では
、基板の方向および結晶成長の制御に対する要求が厳し
く、実現が極めて難しい。 この発明は上述した事情に鑑みてなされたものであり、
超微細加工が困難なマスク材を必要とけず、また、基板
にダメージを与える電子ビーム、イオンビームを用いる
ことなく実現することが可能な量子細線の形成方法を提
供することを目的とする。 「課題を解決するための手段」 第1の発明は、化合物半導体基板上に組成の異なる2種
類の薄膜層を交互に成長させ、前記成長した薄膜層の断
面が露出するように垂直エッチングを行った後、選択エ
ツチングにより1種類の薄膜の一部を除去し、前記該除
去された領域に井戸層と障壁層を交互に成長させて量子
細線を形成することを特徴としている。 また、第2の発明は、半導体基板上に多重量子井戸構造
を形成し、多重量子井戸構造の断面が露出するように垂
直エツチングを行った後、選択エツチングにより該多重
量子井戸構造の井戸層あるいは障壁層のいずれか一方を
除去し、該除去された領域に井戸層と障壁層を交互に成
長させて量子細線を形成することを特徴としている。 「作用」 上記第1および第2の発明によれば、上記選択エツチン
グによって得られた除去領域に井戸層および障壁層を交
互に形成するので、結晶に大きなダメージを与えること
なく、良好な形状精度で量子細線を形成することができ
る。 「実施例」 以下、第1図を参照し、この発明の一実施例による多重
量子細線の形成方法を説明する。 まず、InPによる化合物半導体基板!上に有機金属気
相成長法を用いてInPバッファ層2を1μm成長させ
、その上に、第1化合物半導体層4として組成波長1.
3μmのInGaAsPを20nmと第2化合物半導体
層5としてInP層を20nmとを交互に4層ずつ成長
させる。 そして、この上にInPクラッド層3を1μm成長させ
る。次いで、ホトリソグラフィを施した後、EGR−R
I BE(電子サイクロトロン共鳴による反応性イオン
ビームエツチング)により、第1化合物半導体層4と第
2化合物半導体層5とからなる層の垂直エツチングを行
う(第1図(a)参照)。この結果、第■化合物半導体
4および第2化合物半導体5によるストライブパターン
を有する断面STが露出する。さらに、ダメージ層を取
り除くために0.3%の臭素を含むメチルアルコール溶
液で1秒間の処理を行う。 次に上記加工を終えた基板を硫酸過酸化水溶液(Has
O4: HtOt: HtO= 3 : l:
I )中に2秒間浸漬させ、第1化合物半導体層4のみ
を深さ80nmにわたりエツチングする (第1図(b
)参照1゜そして、有機金属気相成長法を用い、障壁層
となる第3化合物半導体層7としてInP層を20nm
、井戸層となる第4化合物半導体層6としてInGaA
sを20 nm、各々、交互に成長させて多重量子細線
を形成する〔第1図(C)参照)。 上記工程において化合物半導体層を成長させるのに用い
た有機金属気相成長法は、リソグラフを用いたパターン
幅制御やイオンビームを用いた溝形成制御よりも極めて
高い精度で膜厚を制御することが可能であり、量子細線
形成プロセスのような超精密加工に適している。また、
選択化学エツチングは、電子ビームやイオンビームと比
較して結晶に与えるダメージがきわめて小さく、光デバ
イスのような結晶のダメージを嫌うデバイスに対して有
−用である。 このようにして作製した量子細線構造を透過電子顕微鏡
で評価したところ、量子細線の細線幅は約20 nm、
厚さは約20nmであり、ばらつきのほとんどない良好
な形状特性を示した。また、得られた結晶についてその
カソードルミネッセンスを測定したところ井戸層からの
発光が認められ、結晶に与えるダメージが少ないことが
分かった。 上記実施例では組成の異なる2つの薄膜層としてInP
とInGaAsPを用いたが、組成の異なる化合物半導
体で、選択化学エツチングが可能なものを用L)ること
により、同様な方法で量子細線構造を作製することがで
きる。例えば、以下に示すような作製方法が考えられる
。 a、 第1化合物半導体層4・・・・・・InP第2化
合物半導体層5・・・・・InGaAs第3化合物半導
体層7(障壁層) −−I nPまたはInGaAsP 第4化合物半導体層6(井戸層) −−1nG aA sまたはTnGaAsPこの場合、
第2化合物半導体層5を硫酸系エツチング液により選択
エツチングし、除去された領域に第3化合物半導体層7
および第4化合物半導体層6を交互に成長させる。 b、第1化合物半導体層4・・・・・・InP第2化合
物半導体層5・・・・・・InGaAsP第3化合物半
導体層7(障壁層) −−I nPまたはInGaAsP 第4化合物半導体層6(井戸層) −−−−・・I nG aA sまたはInGaAsP
この場合、第1化合物半導体層4を塩酸系エツチング液
により選択エツチングし、除去された領域に第3化合物
半導体層7および第4化合物半導体層6を交互に成長さ
せる。 また、上記実施例では、化合物半導体基板1にバッファ
層2を形成後、第1化合物半導体層4および第2化合物
半導体層5を交互に成長させる方法について説明したが
、半導体基板に量子井戸構造を形成し、その後、上記実
施例における垂直エツチング以降の工程を行うことによ
っても、上記実施例と同様、良好な多重量子細線を得る
ことができる。 なお、上記実施例では結晶成長方法として有機金属気相
成長法を用いたが、例えば分子線エピタキシー法等、結
晶成長速度が正確に制御できる他の成長方性を用いて同
様の量子細線を形成することかできる。 「発明の効果ヨ 以上説明したように、この発明によれば、パターン精度
を低下させるマスク材を用いることなく、また、結晶に
ダメージを与える集束イオンビームや電子ビームを用い
ることなく、作製精度のきわめて高い量子細線を形成す
ることができるという効果がある。
を用いて縦方向に自動的に量子細線を形成する方法では
、基板の方向および結晶成長の制御に対する要求が厳し
く、実現が極めて難しい。 この発明は上述した事情に鑑みてなされたものであり、
超微細加工が困難なマスク材を必要とけず、また、基板
にダメージを与える電子ビーム、イオンビームを用いる
ことなく実現することが可能な量子細線の形成方法を提
供することを目的とする。 「課題を解決するための手段」 第1の発明は、化合物半導体基板上に組成の異なる2種
類の薄膜層を交互に成長させ、前記成長した薄膜層の断
面が露出するように垂直エッチングを行った後、選択エ
ツチングにより1種類の薄膜の一部を除去し、前記該除
去された領域に井戸層と障壁層を交互に成長させて量子
細線を形成することを特徴としている。 また、第2の発明は、半導体基板上に多重量子井戸構造
を形成し、多重量子井戸構造の断面が露出するように垂
直エツチングを行った後、選択エツチングにより該多重
量子井戸構造の井戸層あるいは障壁層のいずれか一方を
除去し、該除去された領域に井戸層と障壁層を交互に成
長させて量子細線を形成することを特徴としている。 「作用」 上記第1および第2の発明によれば、上記選択エツチン
グによって得られた除去領域に井戸層および障壁層を交
互に形成するので、結晶に大きなダメージを与えること
なく、良好な形状精度で量子細線を形成することができ
る。 「実施例」 以下、第1図を参照し、この発明の一実施例による多重
量子細線の形成方法を説明する。 まず、InPによる化合物半導体基板!上に有機金属気
相成長法を用いてInPバッファ層2を1μm成長させ
、その上に、第1化合物半導体層4として組成波長1.
3μmのInGaAsPを20nmと第2化合物半導体
層5としてInP層を20nmとを交互に4層ずつ成長
させる。 そして、この上にInPクラッド層3を1μm成長させ
る。次いで、ホトリソグラフィを施した後、EGR−R
I BE(電子サイクロトロン共鳴による反応性イオン
ビームエツチング)により、第1化合物半導体層4と第
2化合物半導体層5とからなる層の垂直エツチングを行
う(第1図(a)参照)。この結果、第■化合物半導体
4および第2化合物半導体5によるストライブパターン
を有する断面STが露出する。さらに、ダメージ層を取
り除くために0.3%の臭素を含むメチルアルコール溶
液で1秒間の処理を行う。 次に上記加工を終えた基板を硫酸過酸化水溶液(Has
O4: HtOt: HtO= 3 : l:
I )中に2秒間浸漬させ、第1化合物半導体層4のみ
を深さ80nmにわたりエツチングする (第1図(b
)参照1゜そして、有機金属気相成長法を用い、障壁層
となる第3化合物半導体層7としてInP層を20nm
、井戸層となる第4化合物半導体層6としてInGaA
sを20 nm、各々、交互に成長させて多重量子細線
を形成する〔第1図(C)参照)。 上記工程において化合物半導体層を成長させるのに用い
た有機金属気相成長法は、リソグラフを用いたパターン
幅制御やイオンビームを用いた溝形成制御よりも極めて
高い精度で膜厚を制御することが可能であり、量子細線
形成プロセスのような超精密加工に適している。また、
選択化学エツチングは、電子ビームやイオンビームと比
較して結晶に与えるダメージがきわめて小さく、光デバ
イスのような結晶のダメージを嫌うデバイスに対して有
−用である。 このようにして作製した量子細線構造を透過電子顕微鏡
で評価したところ、量子細線の細線幅は約20 nm、
厚さは約20nmであり、ばらつきのほとんどない良好
な形状特性を示した。また、得られた結晶についてその
カソードルミネッセンスを測定したところ井戸層からの
発光が認められ、結晶に与えるダメージが少ないことが
分かった。 上記実施例では組成の異なる2つの薄膜層としてInP
とInGaAsPを用いたが、組成の異なる化合物半導
体で、選択化学エツチングが可能なものを用L)ること
により、同様な方法で量子細線構造を作製することがで
きる。例えば、以下に示すような作製方法が考えられる
。 a、 第1化合物半導体層4・・・・・・InP第2化
合物半導体層5・・・・・InGaAs第3化合物半導
体層7(障壁層) −−I nPまたはInGaAsP 第4化合物半導体層6(井戸層) −−1nG aA sまたはTnGaAsPこの場合、
第2化合物半導体層5を硫酸系エツチング液により選択
エツチングし、除去された領域に第3化合物半導体層7
および第4化合物半導体層6を交互に成長させる。 b、第1化合物半導体層4・・・・・・InP第2化合
物半導体層5・・・・・・InGaAsP第3化合物半
導体層7(障壁層) −−I nPまたはInGaAsP 第4化合物半導体層6(井戸層) −−−−・・I nG aA sまたはInGaAsP
この場合、第1化合物半導体層4を塩酸系エツチング液
により選択エツチングし、除去された領域に第3化合物
半導体層7および第4化合物半導体層6を交互に成長さ
せる。 また、上記実施例では、化合物半導体基板1にバッファ
層2を形成後、第1化合物半導体層4および第2化合物
半導体層5を交互に成長させる方法について説明したが
、半導体基板に量子井戸構造を形成し、その後、上記実
施例における垂直エツチング以降の工程を行うことによ
っても、上記実施例と同様、良好な多重量子細線を得る
ことができる。 なお、上記実施例では結晶成長方法として有機金属気相
成長法を用いたが、例えば分子線エピタキシー法等、結
晶成長速度が正確に制御できる他の成長方性を用いて同
様の量子細線を形成することかできる。 「発明の効果ヨ 以上説明したように、この発明によれば、パターン精度
を低下させるマスク材を用いることなく、また、結晶に
ダメージを与える集束イオンビームや電子ビームを用い
ることなく、作製精度のきわめて高い量子細線を形成す
ることができるという効果がある。
第1図はこの発明の一実施例による多重量子細線の形成
方法を説明する図、 第2図〜第8図は従来の多重量子細線の形成方法を説明
する図である。 1・・・・・・化合物半導体基板、 2・・・・・・バッファ層、 4・・・・・・第1化合物半導体層、 5・・・・・・第2化合物半導体層、 6・・・・・・第4化合物半導体層(井戸層)、7・・
・・・・第3化合物半導体層(障壁層)。
方法を説明する図、 第2図〜第8図は従来の多重量子細線の形成方法を説明
する図である。 1・・・・・・化合物半導体基板、 2・・・・・・バッファ層、 4・・・・・・第1化合物半導体層、 5・・・・・・第2化合物半導体層、 6・・・・・・第4化合物半導体層(井戸層)、7・・
・・・・第3化合物半導体層(障壁層)。
Claims (2)
- (1)化合物半導体基板上に組成の異なる2種類の薄膜
層を交互に成長させ、前記成長した薄膜層の断面が露出
するように垂直エッチングを行った後、選択エッチング
により1種類の薄膜の一部を除去し、前記該除去された
領域に井戸層と障壁層を交互に成長させて量子細線を形
成することを特徴とする多重量子細線の形成方法。 - (2)半導体基板上に多重量子井戸構造を形成し、多重
量子井戸構造の断面が露出するように垂直エッチングを
行った後、選択エッチングにより該多重量子井戸構造の
井戸層あるいは障壁層のいずれか一方を除去し、該除去
された領域に井戸層と障壁層を交互に成長させて量子細
線を形成することを特徴とする多重量子細線の形成方法
。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5138990A JPH03254169A (ja) | 1990-03-02 | 1990-03-02 | 多重量子細線の形成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5138990A JPH03254169A (ja) | 1990-03-02 | 1990-03-02 | 多重量子細線の形成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03254169A true JPH03254169A (ja) | 1991-11-13 |
Family
ID=12885587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5138990A Pending JPH03254169A (ja) | 1990-03-02 | 1990-03-02 | 多重量子細線の形成方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03254169A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0537091A (ja) * | 1991-08-01 | 1993-02-12 | Tokyo Inst Of Technol | 多次元量子井戸素子およびその製造方法 |
-
1990
- 1990-03-02 JP JP5138990A patent/JPH03254169A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0537091A (ja) * | 1991-08-01 | 1993-02-12 | Tokyo Inst Of Technol | 多次元量子井戸素子およびその製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2744711B2 (ja) | 量子細線構造及びその作製方法 | |
CN108418094B (zh) | 一种高速dfb半导体激光器的制备方法 | |
JP3194503B2 (ja) | 化合物半導体装置及びその製造方法 | |
JPH07221392A (ja) | 量子細線の作製方法、量子細線、量子細線レーザ、及び量子細線レーザの作製方法、回折格子の作製方法、及び分布帰還型半導体レーザ | |
JP5056347B2 (ja) | 光半導体デバイスの作製方法 | |
JP2708992B2 (ja) | AlGaInP系半導体発光装置の製造方法 | |
EP0678946B1 (en) | Quantum wire device and method of making such a device | |
CA2526794A1 (en) | Electron beam micro/nano fabrication method | |
JP3007928B2 (ja) | 光半導体素子の製造方法 | |
JP2960926B2 (ja) | レーザダイオードの製造方法 | |
JPH03254169A (ja) | 多重量子細線の形成方法 | |
JP2624450B2 (ja) | 量子細線構造の製造方法 | |
JPH0284787A (ja) | 半導体量子箱構造の製造方法 | |
JPH06275908A (ja) | 化合物半導体の微細構造形成方法 | |
JP2600588B2 (ja) | ドライエッチング用マスクの形成方法 | |
JP2944312B2 (ja) | 半導体レーザ素子の製造方法 | |
JP2000216495A (ja) | 半導体光素子の製造方法 | |
JPH04280629A (ja) | 微細階段状構造体の製造方法およびそれを用いた半導 体装置 | |
JP2810518B2 (ja) | 半導体レーザ装置およびその製造方法 | |
JP3030932B2 (ja) | 半導体微細構造の製造方法 | |
KR100267261B1 (ko) | 양자구조 형성방법 | |
JP2002319739A (ja) | リブ型光導波路分布反射型半導体レーザの製造方法 | |
JPH05283812A (ja) | 量子細線の製造方法 | |
JPH0233972A (ja) | 半導体量子細線構造 | |
JPH09171963A (ja) | 半導体微細構造の製造方法 |