JPH03241706A - Manufacture of superconducting coil - Google Patents

Manufacture of superconducting coil

Info

Publication number
JPH03241706A
JPH03241706A JP3714690A JP3714690A JPH03241706A JP H03241706 A JPH03241706 A JP H03241706A JP 3714690 A JP3714690 A JP 3714690A JP 3714690 A JP3714690 A JP 3714690A JP H03241706 A JPH03241706 A JP H03241706A
Authority
JP
Japan
Prior art keywords
coil
linear expansion
superconducting
cylinder
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3714690A
Other languages
Japanese (ja)
Inventor
Mamoru Ishihara
守 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP3714690A priority Critical patent/JPH03241706A/en
Publication of JPH03241706A publication Critical patent/JPH03241706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a high performance coil by heating a combined cylinder held between an internal frame cylinder and an external cylinder both specified in their linear expansion coefficients. CONSTITUTION:A superconducting coil is manufactured by pressurizing a coil 2 formed with a superconducting wire material by heating a combined cylinder held between an internal frame cylinder 1 having a linear expansion coefficient greater than that of the coil 2 and an external cylinder 3 having a linear expansion coefficient smaller than that of the coil 2. Namely, by heating the combined cylinder held between the internal and external frame cylinders 3, the coil 2 is compressed by the internal and external frame cylinders, etc., pressurized simultaneously with the heating, owing to a difference between the linear expansion coefficients of the internal frame cylinder 1, coil 2, and external cylinder 3. Accordingly, superconducting ceramics in the superconducting coil is densified, and crystal grain are oriented in the direction where a current is liable to flow. Hereby, a high performance superconducting coil is yielded.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、臨界電流密度の高い、安定して作動する超電
導コイルの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a superconducting coil that has a high critical current density and operates stably.

(従来の技術) 従来、超電導コイルに用いる酸化物超電導線材の製造方
法としては、金属シース法、ドクターブレード法、溶射
法、薄膜法などの製法が開発されている。そして、これ
らの方法により作られた超電導線材を用いて、ソレノイ
ドコイル、パンケーキコイル、ビッタ−コイル等の各種
超電導コイルが作られている。酸化物超電導線材は超電
導原料粉末を溶融または焼結することによって作られ、
変形能が低く、割れが発生し易い。また、曲げ歪によっ
て臨界電流密度(以下Jcと記す)は著しく低下するこ
とが知られている。そこで、これらの線材を用いてコイ
ルを作る場合には、まず熱処理前、または後の線材をコ
イル形吠に加工し、その後に最終的な熱処理を行なうワ
インドアンドリアクト法という手法が一般に使われる。
(Prior Art) Conventionally, methods for producing oxide superconducting wire used in superconducting coils include metal sheath method, doctor blade method, thermal spray method, thin film method, and the like. Using superconducting wires made by these methods, various superconducting coils such as solenoid coils, pancake coils, and bitter coils are made. Oxide superconducting wire is made by melting or sintering superconducting raw material powder.
It has low deformability and cracks easily. Furthermore, it is known that the critical current density (hereinafter referred to as Jc) is significantly reduced by bending strain. Therefore, when making a coil using these wires, a method called the wind-and-react method is generally used, in which the wire is first processed into a coil shape before or after heat treatment, and then the final heat treatment is performed.

ところが、ワインドアンドリアクト法で作ったコイルも
、単に熱処理するだけでは流すことができる電流値が低
く、さらにJcを上げるために、熱処理後の線材をプレ
ス加圧または圧延により加圧して、線材内部のセラミッ
クスの組織を緻密化し、同時に結晶粒を電流の流れ易い
方位に配向させる必要がある。そこで、現在、巻線後に
熱処理された線材の加圧方法として、CIP(冷間静水
圧加圧)等が実施され始めている。
However, even with coils made by the wind-and-react method, the current value that can be passed through simply heat treatment is low.In order to further increase Jc, the wire after heat treatment is pressurized by pressing or rolling, and the inside of the wire is It is necessary to densify the structure of the ceramic and at the same time orient the crystal grains in a direction that facilitates the flow of current. Therefore, CIP (cold isostatic pressing) and the like are currently being implemented as a method for pressurizing wire rods that have been heat-treated after winding.

(発明が解決しようとする問題点) 上記のワインドアンドリアクト法において行なわれてい
る、CIPなどの従来の加圧方法では圧力が低く、線材
内セラミックスを十分に緻密化することができない。ま
た、熱処理や加圧などの工程の際に線材の位置が移動し
、線材が変形したり、ゆるんだりすることがあるなどの
欠点を有している。
(Problems to be Solved by the Invention) Conventional pressurization methods such as CIP used in the wind-and-react method described above use low pressure and cannot sufficiently densify the ceramics within the wire. Further, the wire rods have the disadvantage that the position of the wire rods moves during processes such as heat treatment and pressurization, and the wire rods may become deformed or loosened.

本発明は、酸化物超電導線材でコイルを製造する際に、
巻線後の線材をプレスする方法、巻線後の線材の固定方
法などの問題を解決することにより、従来より性能の高
いコイルを得ることを目的とするものである。
In the present invention, when manufacturing a coil using an oxide superconducting wire,
The purpose is to obtain a coil with higher performance than conventional ones by solving problems such as how to press the wire after winding and how to fix the wire after winding.

[発明の構成] (問題点を解決するための手段) 上記問題点を解決するために、超電導線材により形成さ
れたコイルを、前記コイルの線膨張係数以上の線膨張係
数を有する内枠筒体と、前記コイルの線膨張係数より小
さい線膨張係数を有する外枠筒体の中間に挟んだ組合せ
筒体を加熱することにより、コイルを加圧して超電導コ
イルを製造する。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, a coil formed of a superconducting wire is formed into an inner frame cylindrical body having a coefficient of linear expansion greater than or equal to the coefficient of linear expansion of the coil. A superconducting coil is manufactured by pressurizing the coil by heating the combination cylinder sandwiched between the outer frame cylinder and the outer frame cylinder having a coefficient of linear expansion smaller than that of the coil.

(作用) コイルの線膨張係数より小さい線膨張係数を有する外枠
筒体の中間に挟んだ組合せ筒体を加熱することにより、
内枠筒体、コイル、外枠筒体のそれぞれの線膨張係数の
差から、コイルは内枠および外枠筒体により圧縮され、
加熱処理と同時に加圧処理が行なわれる。
(Function) By heating the combined cylindrical body sandwiched between the outer frame cylindrical body having a linear expansion coefficient smaller than that of the coil,
Due to the difference in the linear expansion coefficients of the inner frame, coil, and outer frame, the coil is compressed by the inner frame and outer frame, and
Pressure treatment is performed simultaneously with heat treatment.

本発明で使用する内枠筒体および外枠筒体は上記の線膨
張係数の条件の外に強度が必要とされる。
The inner frame cylinder and the outer frame cylinder used in the present invention are required to have strength in addition to the above-mentioned linear expansion coefficient condition.

セラミックスは適当な材料の一つである。例えば、81
3N4、S i C,A l 203、Z r 02 
(含むY20a)、MgO等が使用可能である。これら
の材 3− −4 = 料の線膨張係数の順を下記の不等式に示す。
Ceramics are one suitable material. For example, 81
3N4, S i C, A l 203, Z r 02
(including Y20a), MgO, etc. can be used. The order of linear expansion coefficients of these materials is shown in the following inequality.

S 1aN4<S i C<A 1203<Zr02(
Y2O2を含む)<MgO・・・・・・(1) これらの材料を、コイルの線膨張係数に応じて組み合わ
せて用いればよい。
S 1aN4<S i C<A 1203<Zr02(
(including Y2O2)<MgO (1) These materials may be used in combination depending on the linear expansion coefficient of the coil.

(実施例) 以下に本発明の超電導コイル製造方法の一実施例を図面
に基づいて説明する。
(Example) An example of the superconducting coil manufacturing method of the present invention will be described below based on the drawings.

■第1図に示すように、巻枠の内枠円筒体1に絶縁処理
の施された酸化物超電導線材を多層に巻きつけ、コイル
2を形成する。
(2) As shown in FIG. 1, a coil 2 is formed by winding insulated oxide superconducting wire in multiple layers around the inner cylindrical body 1 of the winding frame.

■コイル2の外側に、第2図のように、外枠として外枠
円筒体3を焼バメ、冷しバメまたは圧入などの手段によ
りはめ込む。このとき、内枠円筒体1、コイル2、外枠
円筒体3の材料として各々の線膨張係数α1、α2、α
3の関係が、α冨≧ α2〉 α3         
          ・・・・・・ (2)となるよう
に材料を選定する。
(2) As shown in FIG. 2, an outer frame cylindrical body 3 is fitted as an outer frame onto the outside of the coil 2 by shrink fitting, cold fitting, press fitting, or the like. At this time, the materials of the inner frame cylindrical body 1, coil 2, and outer frame cylindrical body 3 have linear expansion coefficients α1, α2, and α, respectively.
The relationship of 3 is αTomi≧ α2〉 α3
・・・・・・ Select the material so that (2) is achieved.

■次に、この組合せ円筒体を、第3図に示すように、熱
処理炉4中に入れ、酸化物超電導線材の熱処理温度、通
常は800℃以上、で熱処理する。
(2) Next, as shown in FIG. 3, this combined cylindrical body is placed in a heat treatment furnace 4 and heat treated at a heat treatment temperature for oxide superconducting wires, usually 800° C. or higher.

この熱処理による温度上昇により熱膨張が起こるが、各
部材の線膨張係数、α1、α2、α3が上記の(2)の
ような関係にあるので、この線膨張係数の差からコイル
2は圧縮加工される。
Thermal expansion occurs due to the temperature rise due to this heat treatment, but since the linear expansion coefficients of each member, α1, α2, and α3, have the relationship shown in (2) above, the coil 2 is compressed due to the difference in linear expansion coefficients. be done.

Φ熱処理後、炉内温度を低下させると、変形により径の
増加したコイル2と内枠円筒体1の間にすき間が生じる
。内枠円筒体1を抜いた杖態を第4図に示す。
When the furnace temperature is lowered after the Φ heat treatment, a gap is created between the coil 2 whose diameter has increased due to deformation and the inner frame cylindrical body 1. Fig. 4 shows the cane with the inner frame cylindrical body 1 removed.

■コイル2と外筒セラミック円筒体3の組合せ円筒体に
たいし、第5図のとと<、CIP(冷間静水圧加圧)に
より加圧する。
(2) Combination of coil 2 and outer ceramic cylindrical body 3 The cylindrical body is pressurized by CIP (cold isostatic pressing) as shown in FIG.

■コイル2をさらに圧縮加工するために、コイル2の内
側に、図6のごとく内枠円筒体5を焼バメ、冷しバメま
たは圧入によりはめ込む。この内枠円筒体5としては、
その線膨張係数α5が、コイル2、外枠円筒体3の線膨
張係数α2、α3と以下の関係を溝たすようなものが選
ばれる。
(2) In order to further compress the coil 2, fit the inner frame cylindrical body 5 inside the coil 2 by shrink fitting, cold fitting, or press fitting as shown in FIG. As this inner frame cylindrical body 5,
A material is selected whose linear expansion coefficient α5 satisfies the following relationship with the linear expansion coefficients α2 and α3 of the coil 2 and the outer frame cylindrical body 3.

α5≧α2〉α3        ・・・・・・(3)
■第7図に示すように、この組合せ円筒体を熱処理炉4
に入れ、酸化物超電導線材の熱処理温度(通常は800
℃以上)で熱処理する。この時、内枠円筒体5と外枠円
筒体3の線膨張係数の差により、コイル2は高温状態で
大きな圧縮力を受け、ホットプレスされる。これにより
臨界電流密度はさらに太き(向上する。
α5≧α2>α3 ・・・・・・(3)
■As shown in Figure 7, this combined cylindrical body is placed in a heat treatment furnace.
and heat treatment temperature of oxide superconducting wire (usually 800℃).
heat treatment at temperatures above ℃). At this time, due to the difference in coefficient of linear expansion between the inner cylindrical frame 5 and the outer cylindrical frame 3, the coil 2 is subjected to a large compressive force in a high temperature state and is hot pressed. This further increases (improves) the critical current density.

熱処理後に内枠円筒体5を抜くことが可能な場合には、
上記■〜■の工程を繰り返すことにより更にコイル2の
性能が向上する。内枠円筒体5が抜けない場合にもその
ままで■〜■を繰り返せば良い。なお、内枠円筒体3を
最終的に必要としない場合には、低温に冷却することに
よって容易に抜くことができる。
If it is possible to remove the inner frame cylindrical body 5 after the heat treatment,
By repeating the steps (1) to (2) above, the performance of the coil 2 is further improved. Even if the inner frame cylindrical body 5 does not come out, it is sufficient to leave it as is and repeat steps ① to ②. Incidentally, if the inner frame cylindrical body 3 is not ultimately required, it can be easily removed by cooling it to a low temperature.

なお、本発明の加圧方法は、超電導コイル装置の製造以
外にも、酸化物超電導体を用いた磁気シールド体の製造
にも用いることができる。
Note that the pressurizing method of the present invention can be used not only for manufacturing a superconducting coil device but also for manufacturing a magnetic shield body using an oxide superconductor.

[発明の効果コ 本発明の製造法によれば、安定に固定した状態で、変形
や割れを発生させることなく超電導コイルに対して強い
圧力をかけることができるため、超電導コイルを形成す
る超電導線材内の超電導セラミックスを緻密化させ、か
つ結晶粒を電流の無がれ易い方向に配向させることがで
、臨界電流密度の高い、性能の高い超電導コイルを得る
ことができる。
[Effects of the Invention] According to the manufacturing method of the present invention, strong pressure can be applied to the superconducting coil in a stable fixed state without causing deformation or cracking, so that the superconducting wire forming the superconducting coil can be A superconducting coil with high critical current density and high performance can be obtained by densifying the superconducting ceramic inside the coil and orienting the crystal grains in a direction in which current flows easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第7図は本発明の製造方法の一例を示す説明図
である。 1.5・・・内枠円筒体、2・・・酸化物超電導コイル
、3・・・外枠円筒体、4・・・熱処理炉。 第4図 第5図 第6図 第7図
1 to 7 are explanatory views showing an example of the manufacturing method of the present invention. 1.5... Inner frame cylindrical body, 2... Oxide superconducting coil, 3... Outer frame cylindrical body, 4... Heat treatment furnace. Figure 4 Figure 5 Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物超電導線材を用いた超電導コイルの製造方
法において、超電導線材により形成されたコイルを、前
記コイルの線膨張係数以上の線膨張係数を有する内枠筒
体と、前記コイルの線膨張係数より小さい線膨張係数を
有する外枠筒体の中間に挟みこんだ組合せ筒体を加熱す
る加熱圧縮工程を含むことを特徴とする超電導コイルの
製造方法。
(1) In a method for manufacturing a superconducting coil using an oxide superconducting wire, a coil formed of a superconducting wire is connected to an inner frame cylinder having a linear expansion coefficient greater than or equal to the linear expansion coefficient of the coil, and a linear expansion coefficient of the coil. A method for manufacturing a superconducting coil, comprising a heating compression step of heating a combination cylinder sandwiched between outer frame cylinders having a coefficient of linear expansion smaller than the coefficient of linear expansion.
(2)内枠筒体と外枠筒体のいずれか一方は焼バメまた
は冷しバメまたは圧入によって超電導線材により形成さ
れたコイルを挟み込んで組合せ筒体を構成することを特
徴とする請求項1記載の超電導コイルの製造方法。
(2) Either one of the inner frame tube and the outer frame tube body is shrink-fitted, cold-fitted, or press-fitted to sandwich a coil formed of a superconducting wire material to form a combined tube body. A method of manufacturing the superconducting coil described above.
JP3714690A 1990-02-20 1990-02-20 Manufacture of superconducting coil Pending JPH03241706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3714690A JPH03241706A (en) 1990-02-20 1990-02-20 Manufacture of superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3714690A JPH03241706A (en) 1990-02-20 1990-02-20 Manufacture of superconducting coil

Publications (1)

Publication Number Publication Date
JPH03241706A true JPH03241706A (en) 1991-10-28

Family

ID=12489473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3714690A Pending JPH03241706A (en) 1990-02-20 1990-02-20 Manufacture of superconducting coil

Country Status (1)

Country Link
JP (1) JPH03241706A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644601A2 (en) * 1993-09-20 1995-03-22 Hitachi, Ltd. Oxide superconductor and method of fabricating the same
EP0698930A1 (en) * 1994-08-26 1996-02-28 Hitachi, Ltd. Oxide superconductor and fabrication method of the same
JP2013219196A (en) * 2012-04-09 2013-10-24 Chubu Electric Power Co Inc Superconducting coil device and manufacturing method of the same
JP2015159162A (en) * 2014-02-24 2015-09-03 中部電力株式会社 Method of manufacturing superconductive deformed coil
JP2020202316A (en) * 2019-06-11 2020-12-17 株式会社日立製作所 Wind and react type superconducting coil, wind and react type superconducting coil manufacturing method, and superconducting electromagnet device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644601A2 (en) * 1993-09-20 1995-03-22 Hitachi, Ltd. Oxide superconductor and method of fabricating the same
EP0644601A3 (en) * 1993-09-20 1996-01-24 Hitachi Ltd Oxide superconductor and method of fabricating the same.
EP0698930A1 (en) * 1994-08-26 1996-02-28 Hitachi, Ltd. Oxide superconductor and fabrication method of the same
JP2013219196A (en) * 2012-04-09 2013-10-24 Chubu Electric Power Co Inc Superconducting coil device and manufacturing method of the same
JP2015159162A (en) * 2014-02-24 2015-09-03 中部電力株式会社 Method of manufacturing superconductive deformed coil
JP2020202316A (en) * 2019-06-11 2020-12-17 株式会社日立製作所 Wind and react type superconducting coil, wind and react type superconducting coil manufacturing method, and superconducting electromagnet device

Similar Documents

Publication Publication Date Title
JPH04224021A (en) Id dimension-fitting process for annular object reinforced with filament
JPH03241706A (en) Manufacture of superconducting coil
US5434129A (en) Method for manufacturing high tc superconductor coils
JPH06243745A (en) Manufacture of high temperature superconducting wire material and high temperature superconducting coil
JPH03241722A (en) Manufacture of oxide superconducting coil
JPH01100901A (en) Superconducting ceramic electromagnet and preparation thereof
JPH03241797A (en) Manufacture of magnetic shield body
JPH03122061A (en) Production of oxide superconductive coil
JPH03145103A (en) Manufacture of oxide based superconducting coil
JPH02276113A (en) Manufacture of ceramics group superconductive wire material
JPH0541116A (en) Manufacture of aluminum composite superconducting wire
JPH03122917A (en) Manufacture of ceramics superconductive conductor
JPH0353902A (en) Manufacture of oxide superconductive coil
JPH02220809A (en) Production of magnetic shield cylinder composed of oxide superconducting material
JPH0518778B2 (en)
JPH04329217A (en) Oxide superconductive wire material and manufacture thereof
JPS63279525A (en) Manufacture of superconductive wire rod
JPH06140233A (en) Manufacture of oxide superconducting coil
JPH02129812A (en) Manufacture of ceramic superconductor product
JPH0446083A (en) Superconducting pipe and its production
RU2159474C1 (en) Method for producing niobium-titanium base superconducting wires
JP2845477B2 (en) Manufacturing method of oxide superconducting coil
JPH0215514A (en) Manufacture of oxide superconductor and superconductive magnet
JPH0494014A (en) Ceramic superconductive conductor
JPH0232504A (en) Manufacture of oxide based superconducting coil