JPH06140233A - Manufacture of oxide superconducting coil - Google Patents

Manufacture of oxide superconducting coil

Info

Publication number
JPH06140233A
JPH06140233A JP28745092A JP28745092A JPH06140233A JP H06140233 A JPH06140233 A JP H06140233A JP 28745092 A JP28745092 A JP 28745092A JP 28745092 A JP28745092 A JP 28745092A JP H06140233 A JPH06140233 A JP H06140233A
Authority
JP
Japan
Prior art keywords
oxide superconducting
coil
wire
annular ceramic
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28745092A
Other languages
Japanese (ja)
Inventor
Akira Usami
亮 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28745092A priority Critical patent/JPH06140233A/en
Publication of JPH06140233A publication Critical patent/JPH06140233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To improve the critical current density of an oxide superconducting coil by improving the C-axis orientation of oxide superconducting crystal in the wire material with which an oxide superconducting coil is formed. CONSTITUTION:A material, to be formed into a tape-like oxide superconducting wire material, is formed in a coil 2 by conducting heat-treatment thereon. A crystal of oxide superconducting material, having high C-axis orientational property, can be obtained by heating up the material to 830 deg.C or higher, desirably 840 deg.C or higher, in the state wherein a ceramic spring 1 is fitted to the outer or inner circumference of the coil 2, and at the same time, the load (about 10 to 20kgf/cm<2>) is applied to the coil 2 by the ceramic spring 1. As a result, the crystal of C-axis orientation can be grown easily, and the critical current density of the oxide superconducting coil can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導コイルの
製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an oxide superconducting coil.

【0002】[0002]

【従来の技術】酸化物超電導体は、その導体中の結晶の
c軸配向性が高いほど臨界電流密度が向上することが知
られている。そこで、従来は高臨界電流密度の酸化物超
電導コイルをうるために、つぎのように行われている。
すなわち、テープ状酸化物超電導線材を、巻枠の周囲に
絶縁材とともに巻きまわしてコイルの形状に成形して熱
処理したのち、これを解きほぐして前記絶縁材を取り除
く。そののち、前記線材を直線状にしてから室温にてプ
レス加工またはロール圧延加工を行うことによって線材
に荷重を加え、結晶配向性を向上させることが行われて
いる(たとえば山本啓介他、1990年度秋期低温工
学、超電導学会予稿集C2−8など)。
2. Description of the Related Art It is known that in oxide superconductors, the higher the c-axis orientation of the crystals in the conductor, the higher the critical current density. Therefore, in order to obtain an oxide superconducting coil having a high critical current density, the conventional method has been performed as follows.
That is, the tape-shaped oxide superconducting wire is wound around the winding frame together with an insulating material, molded into a coil shape, heat-treated, and then unraveled to remove the insulating material. After that, a load is applied to the wire by straightening the wire and pressing or rolling at room temperature to improve the crystal orientation (for example, Keisuke Yamamoto et al., 1990). Autumn Low Temperature Engineering, Superconductivity Society Proceedings C2-8, etc.).

【0003】また最近、コイル状の超電導線材の外形よ
りやや小さい内形状を有するリング状の形状記憶合金を
低温下で拡径し、前記コイルの外側に嵌合し、ついで形
状記憶合金のリングをマルテンサイト変態点以上の温度
に加熱して超電導線材のコイルを加圧する方法が提案さ
れている(特開平3−208308号公報)。
Further, recently, a ring-shaped shape memory alloy having an inner shape slightly smaller than the outer shape of a coil-shaped superconducting wire is expanded at a low temperature, fitted to the outside of the coil, and then a ring of the shape memory alloy is attached. A method of pressurizing a coil of a superconducting wire by heating it to a temperature above the martensitic transformation point has been proposed (JP-A-3-208308).

【0004】[0004]

【発明が解決しようとする課題】従来法では、熱処理中
は線材に荷重がかかっていないため、線材中で酸化物超
電導体結晶が任意の方向に成長する。これを熱処理後プ
レス加工またはロール圧延加工して結晶配向性の向上を
はかっても、配向性向上には限界があるという問題があ
る。
In the conventional method, since no load is applied to the wire during the heat treatment, the oxide superconductor crystal grows in the wire in any direction. Even if this is heat-treated and then pressed or rolled to improve the crystal orientation, there is a problem that there is a limit to the improvement of orientation.

【0005】また従来法では、コイル形状に成形した長
尺線材をプレス加工またはロール圧延加工するため、コ
イルを解きほぐして直線状に戻す必要がある。しかもプ
レス加工またはロール圧延加工によって破壊された粒間
結合を再構築するためには、線材を再度熱処理する必要
があるが、そのためにはプレス加工またはロール圧延加
工後に直線状線材をふたたび巻枠の周囲に絶縁材ととも
に巻きまわしてコイル形状に成形する必要がある。その
結果、これらの工程中の線材にかかる応力によって、線
材内部に微細なクラックが入り、そのため線材の臨界電
流密度が低下するという問題がある。
Further, in the conventional method, since a long wire formed into a coil shape is pressed or rolled, it is necessary to unravel the coil and return it to a straight line. Moreover, in order to reconstruct the intergranular bond destroyed by the press working or roll rolling, it is necessary to heat-treat the wire again.To this end, the linear wire is rewound after pressing or roll rolling. It is necessary to wind it around the insulating material together with the insulating material to form a coil shape. As a result, there is a problem that the stress applied to the wire during these steps causes fine cracks inside the wire, thereby lowering the critical current density of the wire.

【0006】さらに従来法では、配向性を向上させるた
めには前記の一連の工程を2〜3回繰り返す必要があ
り、そのため工程数が大幅に増加するという問題があ
る。
Further, in the conventional method, in order to improve the orientation, it is necessary to repeat the above-mentioned series of steps 2-3 times, which causes a problem that the number of steps is significantly increased.

【0007】また、形状記憶合金を用いる方法では、高
温での金属の性質の変化、脆弱化などの問題があるの
で、高温での焼結はできない。前記特開平3−2083
08号公報には形状記憶合金のリングをつけたまま焼結
してもよいとの記載もあるが、焼結温度の記載もなく、
ビスマス系やタリウム系の酸化物にとって好ましい高い
温度では金属の脆弱化のため、加圧ができないという問
題がある。
Further, the method using a shape memory alloy cannot be sintered at a high temperature because of problems such as change in the properties of the metal at a high temperature and weakening. JP-A-3-2083
No. 08 gazette describes that it may be sintered with the shape memory alloy ring attached, but there is no description of the sintering temperature.
At a high temperature, which is preferable for bismuth-based or thallium-based oxides, there is a problem that pressure cannot be applied because the metal becomes brittle.

【0008】[0008]

【課題を解決するための手段】本発明の酸化物超電導コ
イルの製法は、テープ状酸化物超電導線材を、巻枠の周
囲に絶縁材とともに巻きまわして成形したコイルの外周
および/または内周に、環状セラミックバネをはめるこ
とによって熱処理中の線材に荷重をかけるものである。
A method for manufacturing an oxide superconducting coil according to the present invention comprises a tape-shaped oxide superconducting wire wound around an winding material together with an insulating material on the outer circumference and / or the inner circumference of a coil. By applying an annular ceramic spring, a load is applied to the wire being heat-treated.

【0009】[0009]

【作用】本発明による酸化物超電導線材の製法には、熱
処理中に荷重がかかった状態で酸化物超電導体が結晶成
長するため、c軸配向の結晶成長がしやすくなるという
作用がある。
In the method for producing an oxide superconducting wire according to the present invention, the oxide superconductor crystal grows under a load applied during the heat treatment, so that the c-axis oriented crystal growth is facilitated.

【0010】また本発明による酸化物超電導線材の製法
には、熱処理前にすでに結晶成長している酸化物超電導
結晶については、塑性変化しやすい高温下で荷重がかか
るため、c軸配向性が向上するという作用がある。
Further, in the method for producing an oxide superconducting wire according to the present invention, the oxide superconducting crystal which has already grown before the heat treatment is subjected to a load at a high temperature which is likely to be plastically changed, so that the c-axis orientation is improved. There is an action to do.

【0011】また本発明による酸化物超電導線材の製法
によれば、熱処理後のコイルを直線状に解きほぐす工
程、プレス加工工程もしくはロール圧延工程後の直線状
線材を再度コイル状に成形する工程、および再熱処理工
程を行なう必要がないため、工程数を減少できるという
作用も生じる。
Further, according to the method for producing an oxide superconducting wire according to the present invention, a step of unraveling the coil after the heat treatment into a linear shape, a step of re-molding the linear wire after the pressing step or the rolling step, and Since it is not necessary to perform the reheat treatment step, there is an effect that the number of steps can be reduced.

【0012】[0012]

【実施例】本発明の方法はテープ状酸化物超電導線材ま
たは熱処理をすることによってテープ状酸化物超電導線
材となる材料を、コイルの形状に成形し、該コイルの外
周および/または内周に環状セラミックバネをはめた状
態で830℃以上、好ましくは840℃以上の高温にす
ると同時に前記コイルにセラミックバネによる荷重(約
10〜20kgf/cm2)をかけて、c軸配向性の高
い酸化物超電導材料の結晶をうる方法である。図1は本
発明の方法に用いられる前記環状セラミックバネの斜視
図である。
EXAMPLE The method of the present invention is a method of forming a tape-shaped oxide superconducting wire or a material to be a tape-shaped oxide superconducting wire by heat treatment into a coil shape, and forming an annular shape on the outer circumference and / or the inner circumference of the coil. A high temperature of 830 ° C. or higher, preferably 840 ° C. or higher in a state where the ceramic spring is fitted, and a load (about 10 to 20 kgf / cm 2 ) from the ceramic spring is applied to the coil at the same time, and the oxide superconductivity with high c-axis orientation is obtained. This is a method of obtaining a crystal of the material. FIG. 1 is a perspective view of the annular ceramic spring used in the method of the present invention.

【0013】前記本発明の方法は、環状セラミックバネ
を用いることによってはじめてなし遂げることができた
ものである。すなわちビスマス系酸化物やタリウム系酸
化物超電導体を結晶成長あるいは焼結させるためには8
30℃以上の高温が必要であって、このような高温で線
材に荷重を与えられるだけの強度を有する材料はセラミ
ックス以外にはない。
The method of the present invention can be achieved only by using an annular ceramic spring. That is, in order to grow or sinter the bismuth oxide or thallium oxide superconductor, 8
A high temperature of 30 ° C. or higher is required, and there is no other material than ceramics that has strength enough to apply a load to a wire at such a high temperature.

【0014】本発明と同様な製法を、たとえば金属製の
バネなどを用いて実施しようとしても、高温によって脆
弱化した金属製バネでは、バネ自体が変形するので超電
導体のc軸配向性を向上させられるだけの荷重は生じな
いので、本発明におけるようなすぐれた効果はえられな
い。また、金属が脆弱化しない程度の低い温度では単に
従来法における加圧方法を変更しただけのばあいと大差
なく、本発明におけるようなすぐれた効果はえられな
い。
Even if a manufacturing method similar to that of the present invention is carried out by using, for example, a metal spring or the like, the spring itself is deformed in the metal spring weakened by high temperature, so that the c-axis orientation of the superconductor is improved. Since no sufficient load is generated, the excellent effect as in the present invention cannot be obtained. Further, at a low temperature at which the metal does not become brittle, there is not much difference from the case where the pressurizing method in the conventional method is simply changed, and the excellent effect as in the present invention cannot be obtained.

【0015】本発明の方法に好ましく用いられる酸化物
超電導線材としてはビスマス系酸化物超電導体高温相、
同低温相およびタリウム系酸化物超電導体のほかイット
リウム系酸化物超電導体などがあげられる。なかでもビ
スマス系酸化物またはタリウム系酸化物超電導体を用い
たテープ状銀シース線材がとくに好ましく用いられる。
前記銀シースの銀は純度70〜100%のものが用いら
れる。
The oxide superconducting wire preferably used in the method of the present invention is a bismuth oxide superconductor high temperature phase,
In addition to the low-temperature phase and thallium-based oxide superconductors, yttrium-based oxide superconductors and the like can be mentioned. Among them, a tape-shaped silver sheath wire rod using a bismuth-based oxide or thallium-based oxide superconductor is particularly preferably used.
The silver of the silver sheath has a purity of 70 to 100%.

【0016】本発明の方法に好ましく用いられるセラミ
ック材料としては、たとえば部分安定化ジルコニア、チ
ッ化ケイ素などがあげられる。
Examples of ceramic materials preferably used in the method of the present invention include partially stabilized zirconia and silicon nitride.

【0017】加熱温度は830℃以上、好ましくは83
0〜900℃であって、ビスマス系酸化物のばあいにつ
いて言えば830〜900℃が好ましく、そのなかでも
845〜855℃がとくに好ましい。タリウム系酸化物
のばあいは前記よりやや高く890℃程度が好ましい。
加熱温度が800℃未満では超電導相はえられ難い。
The heating temperature is 830 ° C. or higher, preferably 83
The temperature is 0 to 900 ° C., and in the case of a bismuth oxide, 830 to 900 ° C. is preferable, and 845 to 855 ° C. is particularly preferable. In the case of a thallium-based oxide, it is preferably slightly higher than the above and about 890 ° C.
If the heating temperature is less than 800 ° C, it is difficult to obtain a superconducting phase.

【0018】以下に具体的な実施例にもとづいて本発明
をさらに詳しく説明するが、本発明はかかる実施例のみ
に限定されるものではない。
The present invention will be described in more detail based on the following specific examples, but the present invention is not limited to these examples.

【0019】[実施例1]部分安定化ジルコニアをバイ
ンダーとしてのポリビニルアルコールとともに混練して
スラリー状としてからドクターブレード法を用いて厚さ
3mmのシートに成形した。これを巻きまわしたコイル
巾よりやや広い巾で、成形後の環の直径に応じた長さの
短冊状に切り抜いた。該短冊状のものを環状に成形し、
乾燥および焼成して図1に示すごとき、一部切り欠きを
有する環状セラミックバネを作製した。
Example 1 Partially stabilized zirconia was kneaded together with polyvinyl alcohol as a binder to form a slurry, which was then formed into a sheet having a thickness of 3 mm by the doctor blade method. This was cut out into a strip shape with a width slightly wider than the wound coil width and a length corresponding to the diameter of the ring after molding. The strip is formed into a ring,
After drying and firing, an annular ceramic spring having a partial notch as shown in FIG. 1 was produced.

【0020】完全な環とせずに切り欠きを有するバネと
したのは、環状セラミックバネを押し広げてコイルに挿
入嵌合するためである。本実施例においては、環状セラ
ミックバネ内径がコイル外径よりも若干小さくなるよう
にした。
The reason why the spring having a notch instead of a perfect ring is to spread the annular ceramic spring and insert it into the coil. In this embodiment, the inner diameter of the annular ceramic spring is made slightly smaller than the outer diameter of the coil.

【0021】従来法に従って製造した、ビスマス系高温
相を用いたテープ状酸化物超電導銀シース線材を銀製巻
枠の周囲に、絶縁材であるアルミナ80%−シリカ20
%のファイバーテープとともに巻きまわして外径約30
mm、高さ約40mmのコイル形状に成形し、コイル外
周に前記環状セラミックバネをはめた。図2は前記コイ
ルの外周に前記環状セラミックバネをはめた状態を示す
平面図である。図中3は銀製巻枠、2はテープ状酸化物
超電導銀シース線材のコイル、1は環状セラミックバネ
である。
A tape-shaped oxide superconducting silver sheath wire made of a bismuth-based high-temperature phase, which is manufactured according to the conventional method, is provided around the silver reel and is made of 80% alumina and 20% silica.
Approximately 30 outside diameter by winding with a fiber tape
mm, and a height of about 40 mm was formed into a coil shape, and the annular ceramic spring was fitted on the outer circumference of the coil. FIG. 2 is a plan view showing a state in which the annular ceramic spring is fitted on the outer circumference of the coil. In the figure, 3 is a silver reel, 2 is a coil of tape-shaped oxide superconducting silver sheath wire, and 1 is an annular ceramic spring.

【0022】前記環状セラミックバネをはめたコイルを
大気中850℃で100時間熱処理してから室温に冷
却、環状セラミックバネを押し広げて外し、酸化物超電
導コイルをえた。前記環状セラミックバネをはめたこと
によって、大気中でビスマス系高温相が成長しやすい温
度である850℃において、試料に10kgf/cm2
の荷重がかかっていた。この試料には熱処理後のプレス
加工またはロール圧延加工、および再熱処理は行わなか
った。
The coil fitted with the annular ceramic spring was heat-treated in air at 850 ° C. for 100 hours, then cooled to room temperature, and the annular ceramic spring was pushed out and removed to obtain an oxide superconducting coil. By fitting the annular ceramic spring, it was possible to apply 10 kgf / cm 2 to the sample at 850 ° C., which is a temperature at which the bismuth-based high temperature phase easily grows in the atmosphere.
Was being loaded. This sample was not subjected to press working or roll rolling after heat treatment and reheat treatment.

【0023】えられた酸化物超電導コイルの臨界電流密
度を77K、印加磁界がゼロテスラ0T(以下、0Tと
いう)で測定したところ、臨界電流密度は7400A/
cm2であった。
When the critical current density of the obtained oxide superconducting coil was measured at 77K and the applied magnetic field was zero Tesla 0T (hereinafter referred to as 0T), the critical current density was 7400A /
It was cm 2 .

【0024】[実施例2]実施例1と同様にして環状セ
ラミックバネを作製した。本実施例においては、内径の
異なる2種類の環状セラミックバネを作製し、大きい方
の環状セラミックバネの内径が小さい方の環状セラミッ
クバネの外径よりも若干小さくなるようにした。
[Example 2] An annular ceramic spring was produced in the same manner as in Example 1. In this embodiment, two types of annular ceramic springs having different inner diameters were manufactured so that the inner diameter of the larger annular ceramic spring was slightly smaller than the outer diameter of the smaller annular ceramic spring.

【0025】実施例1と同様にしてビスマス系高温相を
用いたテープ状酸化物超電導銀シース線材をコイル形状
に成形した。前記コイル外周に前記小さい方の環状セラ
ミックバネをはめ、さらにその外周に、前記大きい方の
環状セラミックバネをはめた。これら2つの環状セラミ
ックバネが熱処理によって互いに焼結しないように、前
記2つの環状セラミックバネ間にチッ化ホウ素粉末を塗
布した。これを大気中850℃で100時間熱処理後、
実施例1と同様にして酸化物超電導コイルを製造した。
前記環状セラミックバネをコイル外周に2つはめたこと
によって、計算によれば大気中でビスマス系高温相が成
長しやすい温度である850℃において、試料に20k
gf/cm2の荷重がかかっていた。この試料には熱処
理後のプレス加工またはロール圧延加工、および再熱処
理は行わなかった。
In the same manner as in Example 1, a tape-shaped oxide superconducting silver sheath wire using a bismuth high temperature phase was formed into a coil shape. The smaller annular ceramic spring was fitted on the outer circumference of the coil, and the larger annular ceramic spring was fitted on the outer circumference thereof. Boron nitride powder was applied between the two annular ceramic springs so that the two annular ceramic springs would not sinter each other due to heat treatment. After heat-treating this in air at 850 ° C for 100 hours,
An oxide superconducting coil was manufactured in the same manner as in Example 1.
Since two annular ceramic springs are attached to the outer circumference of the coil, it is calculated that the sample is 20 k
A load of gf / cm 2 was applied. This sample was not subjected to press working or roll rolling after heat treatment and reheat treatment.

【0026】えられた酸化物超電導コイルの臨界電流密
度を77K、0Tで測定したところ、臨界電流密度は9
800A/cm2であった。
When the critical current density of the obtained oxide superconducting coil was measured at 77K and 0T, the critical current density was 9
It was 800 A / cm 2 .

【0027】[実施例3]実施例1と同様にして環状セ
ラミックバネを作製した。本実施例においては、内径の
異なる2種類の環状セラミックバネを作製し、大きい方
の環状セラミックバネの内径がテープ状酸化物超電導銀
シース線材のコイル外径よりも若干小さくなるように、
また、小さい方の環状セラミックバネの外径がコイル内
径よりも若干大きくなるようにした。
[Example 3] An annular ceramic spring was produced in the same manner as in Example 1. In this example, two types of annular ceramic springs having different inner diameters were produced, and the inner diameter of the larger annular ceramic spring was slightly smaller than the outer diameter of the coil of the tape-shaped oxide superconducting silver sheath wire.
Further, the outer diameter of the smaller annular ceramic spring is set to be slightly larger than the inner diameter of the coil.

【0028】従来法に従って製造した、ビスマス系高温
相を用いたテープ状酸化物超電導銀シース線材を、前記
の小さい方の環状セラミックバネを巻枠として実施例1
と同様にしてコイル形状に成形した。該コイル外周に前
記の大きい方の環状セラミックバネをはめた。これを大
気中850℃で100時間熱処理後、実施例1と同様に
して酸化物超電導コイルを製造した。前記環状セラミッ
クバネをコイル内周と外周とにはめたことによって、計
算によれば大気中でビスマス系高温相が成長しやすい温
度である850℃において、試料に19kgf/cm2
の荷重がかかっていた。この試料には熱処理後のプレス
加工またはロール圧延加工、および再熱処理は行わなか
った。
A tape-shaped oxide superconducting silver sheath wire made of a bismuth-based high-temperature phase, which was manufactured according to a conventional method, was manufactured by using the smaller annular ceramic spring as a winding frame.
A coil shape was formed in the same manner as in. The larger annular ceramic spring was fitted on the outer circumference of the coil. This was heat-treated in air at 850 ° C. for 100 hours, and then an oxide superconducting coil was manufactured in the same manner as in Example 1. By fitting the annular ceramic spring on the inner circumference and the outer circumference of the coil, it was calculated that 19 kgf / cm 2 was applied to the sample at 850 ° C., which is a temperature at which the bismuth-based high temperature phase easily grows in the atmosphere.
Was being loaded. This sample was not subjected to press working or roll rolling after heat treatment and reheat treatment.

【0029】えられた酸化物超電導コイルの臨界電流密
度を77K、0Tで測定したところ、臨界電流密度は1
2100A/cm2であった。
When the critical current density of the obtained oxide superconducting coil was measured at 77K and 0T, the critical current density was 1
It was 2100 A / cm 2 .

【0030】[実施例4]実施例1と同様にして、ただ
し実施例1における部分安定化ジルコニアをチッ化ケイ
素に置き換えて、一部切り欠きを有する環状セラミック
バネを作成した。
Example 4 An annular ceramic spring having a partial cutout was prepared in the same manner as in Example 1, except that the partially stabilized zirconia in Example 1 was replaced with silicon nitride.

【0031】従来法にしたがって製造したビスマス系高
温相を用いたテープ状酸化物超電導銀シース線材を用
い、実施例1と同様に熱処理を行なった。
Heat treatment was carried out in the same manner as in Example 1 using the tape-shaped oxide superconducting silver sheath wire made of the bismuth-based high temperature phase produced according to the conventional method.

【0032】前記環状セラミックバネをはめたことによ
って、850℃において試料に12kgf/cm2の荷
重がかかっていた。
By fitting the annular ceramic spring, a load of 12 kgf / cm 2 was applied to the sample at 850 ° C.

【0033】この試料には熱処理後のプレス加工または
ロール圧延加工および再熱処理は行わなかった。
This sample was not subjected to pressing or roll rolling after heat treatment and reheat treatment.

【0034】えられた酸化物超電導コイルの臨界電流密
度を77K、0Tで測定したところ臨界電流密度は87
00A/cm2であった。
When the critical current density of the obtained oxide superconducting coil was measured at 77K and 0T, the critical current density was 87.
It was 00 A / cm 2 .

【0035】[比較例1]従来法に従って製造した、ビ
スマス系高温相を用いたテープ状酸化物超電導銀シース
線材を銀製巻枠の周囲に絶縁材であるアルミナ80%−
シリカ20%のファイバーテープとともに巻きまわして
コイル形状に成形した。該コイルを大気中850℃で2
5時間熱処理した。熱処理後のコイルを解きほぐして線
材を直線状にしたあと、ロール圧延加工を行った。ロー
ル圧延加工後の線材を再度銀製巻枠の周囲に絶縁材とと
もに巻きまわしてコイル形状に成形したあと、再び大気
中で850℃で25時間熱処理した。酸化物超電導コイ
ルの総熱処理時間が実施例1〜3と同一の100時間と
なるように、前記の一連の工程を2回行って、従来法に
よる酸化物超電導コイルを製造した。
Comparative Example 1 A tape-shaped oxide superconducting silver sheath wire made of a bismuth-based high-temperature phase, which was manufactured according to a conventional method, was used as an insulating material around the silver winding frame.
It was wound together with a fiber tape of 20% silica to form a coil shape. The coil at 850 ° C in air for 2
Heat treatment was performed for 5 hours. After the coil after the heat treatment was unraveled and the wire rod was made into a linear shape, it was rolled. The wire rod after the roll rolling was wound again around the silver winding frame together with the insulating material to be formed into a coil shape, and then again heat-treated in the atmosphere at 850 ° C. for 25 hours. The above-mentioned series of steps was performed twice so that the total heat treatment time of the oxide superconducting coil was 100 hours, which was the same as in Examples 1 to 3, to manufacture an oxide superconducting coil by the conventional method.

【0036】前記比較例の酸化物超電導コイルの臨界電
流密度を77K、0Tで測定したところ、臨界電流密度
は3200A/cm2であった。
When the critical current density of the oxide superconducting coil of the comparative example was measured at 77K and 0T, the critical current density was 3200A / cm 2 .

【0037】実施例1〜4および比較例1から、本発明
の方法によってえられたビスマス系酸化物超電導コイル
の臨界電流密度は、従来法でえられたものに比べて格段
に大きいことがわかる。
From Examples 1 to 4 and Comparative Example 1, it can be seen that the critical current density of the bismuth-based oxide superconducting coil obtained by the method of the present invention is significantly higher than that obtained by the conventional method. .

【0038】[実施例5]従来法にしたがって製造した
テープ状のタリウム系酸化物超電導銀シース線材を銀製
巻枠の周囲に実施例1と同様にしてコイル状に成形し
た。該コイルの外周に、実施例1と同様にして作成した
部分安定化ジルコニアからなる環状セラミックバネをは
め、大気中で890℃で100時間熱処理をしてから室
温に冷却、環状セラミックバネを外して酸化物超電導コ
イルをえた。前記環状セラミックバネを用いたことによ
り、890℃において試料には10kgf/cm2の荷
重がかかっていた。
Example 5 A tape-shaped thallium-based oxide superconducting silver sheath wire produced according to a conventional method was formed into a coil around the silver reel in the same manner as in Example 1. An annular ceramic spring made of partially stabilized zirconia prepared in the same manner as in Example 1 was fitted on the outer periphery of the coil, heat-treated at 890 ° C. for 100 hours in the atmosphere, cooled to room temperature, and the annular ceramic spring was removed. I got an oxide superconducting coil. By using the annular ceramic spring, a load of 10 kgf / cm 2 was applied to the sample at 890 ° C.

【0039】この試料には熱処理後のプレス加工または
ロール圧延加工および再熱処理は行わなかった。
This sample was not subjected to pressing or roll rolling after heat treatment and reheat treatment.

【0040】えられた酸化物超電導コイルの臨界電流密
度を77K、0Tで測定したところ臨界電流密度は24
00A/cm2であった。
When the critical current density of the obtained oxide superconducting coil was measured at 77K and 0T, the critical current density was 24.
It was 00 A / cm 2 .

【0041】[比較例2]タリウム系酸化物超電導体を
用いて比較例1と同様に作製したテープ状酸化物超電導
銀シース線材を、比較例1と同様にしてコイル状に成形
したのち、比較例1と同様に、中間プレスを含む熱処理
を行なった。ただし熱処理温度は890℃とした。
[Comparative Example 2] A tape-shaped oxide superconducting silver sheath wire produced in the same manner as in Comparative Example 1 using a thallium-based oxide superconductor was molded into a coil shape in the same manner as in Comparative Example 1 and then compared. Heat treatment including an intermediate press was performed in the same manner as in Example 1. However, the heat treatment temperature was 890 ° C.

【0042】前記比較例2の酸化物超電導コイルの臨界
電流密度を77K、0Tで測定したところ、臨界電流密
度は1900A/cm2であった。
When the critical current density of the oxide superconducting coil of Comparative Example 2 was measured at 77K and 0T, the critical current density was 1900A / cm 2 .

【0043】実施例5および比較例2からタリウム系酸
化物超電導体の臨界電流密度はビスマス系のもののばあ
いに比べて小さいが、本発明の方法によってえられたも
のは、ロール圧延工程を含む従来法によってえられたも
のに比べて、はるかに大きいことがわかる。
Although the critical current densities of the thallium-based oxide superconductors of Example 5 and Comparative Example 2 are smaller than those of the bismuth-based ones, those obtained by the method of the present invention include a roll rolling step. It can be seen that it is much larger than that obtained by the conventional method.

【0044】前記実施例によってえられた酸化物超電導
コイルを形成する銀シース線材と前記比較例によってえ
られた酸化物超電導コイルを形成する銀シース線材との
断面をそれぞれ走査型電子顕微鏡観察したところ、環状
セラミックバネを用いて熱処理をした実施例1〜5でえ
られたものは、比較例1および2でえられたものに比べ
て明らかにc軸配向性が向上していた。
Scanning electron microscope observations were made on the cross sections of the silver sheath wire forming the oxide superconducting coil obtained in the above example and the silver sheath wire forming the oxide superconducting coil obtained in the comparative example. Those obtained in Examples 1 to 5 which were heat-treated using an annular ceramic spring had a clearly improved c-axis orientation as compared with those obtained in Comparative Examples 1 and 2.

【0045】[0045]

【発明の効果】本発明の酸化物超電導線材の製法によれ
ば、酸化物超電導コイルを形成する線材中の酸化物超電
導結晶のc軸配向性が向上することによって、酸化物超
電導コイルの臨界電流密度が向上するという効果があ
る。
According to the method for producing an oxide superconducting wire of the present invention, the c-axis orientation of the oxide superconducting crystals in the wire forming the oxide superconducting coil is improved, so that the critical current of the oxide superconducting coil is improved. This has the effect of improving the density.

【0046】また本発明の酸化物超電導線材の製法によ
れば、熱処理後プレス加工もしくはロール圧延加工を行
って再び熱処理するという工程を省略できるので、工程
数を減少できるという効果がある。
Further, according to the method for producing an oxide superconducting wire of the present invention, the step of performing heat treatment after pressing or roll rolling and then heat treatment again can be omitted, so that the number of steps can be reduced.

【0047】さらにコイルの解きほぐし、プレス加工ま
たはロール圧延加工、コイル形状への再成形などの操作
が省略されるので、これらの工程中に線材にかかる応力
によって起る線材内部の微細なクラックの発生が防止さ
れ、線材の臨界電流密度の低下が防止されるという効果
がある。
Further, since operations such as unraveling of the coil, press working or roll rolling, and re-shaping into a coil shape are omitted, minute cracks inside the wire caused by stress applied to the wire during these steps are generated. Is prevented, and a decrease in the critical current density of the wire is prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の環状セラミックバネの斜視図である。FIG. 1 is a perspective view of an annular ceramic spring of the present invention.

【図2】実施例1における環状セラミックバネをコイル
外周にはめた状態の平面図である。
FIG. 2 is a plan view showing a state in which the annular ceramic spring according to the first embodiment is fitted on the outer circumference of the coil.

【符号の説明】[Explanation of symbols]

1 環状セラミックバネ 2 酸化物超電導線材コイル 1 Annular ceramic spring 2 Oxide superconducting wire coil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 テープ状酸化物超電導線材を、巻枠の周
囲に絶縁材とともに巻きまわしてコイルの形状に成形す
る工程を含む酸化物超電導コイルの製法であって、前記
コイルの外周および/または内周に、環状セラミックバ
ネをはめた状態で熱処理することを特徴とする酸化物超
電導コイルの製法。
1. A method for producing an oxide superconducting coil, which comprises a step of winding a tape-shaped oxide superconducting wire together with an insulating material around a winding frame and forming the oxide superconducting coil into a coil shape. A method for manufacturing an oxide superconducting coil, which comprises heat-treating an annular ceramic spring fitted on the inner circumference.
【請求項2】 環状セラミックバネの材質が、チッ化ケ
イ素または部分安定化ジルコニアである請求項1記載の
酸化物超電導コイルの製法。
2. The method for producing an oxide superconducting coil according to claim 1, wherein the material of the annular ceramic spring is silicon nitride or partially stabilized zirconia.
JP28745092A 1992-10-26 1992-10-26 Manufacture of oxide superconducting coil Pending JPH06140233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28745092A JPH06140233A (en) 1992-10-26 1992-10-26 Manufacture of oxide superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28745092A JPH06140233A (en) 1992-10-26 1992-10-26 Manufacture of oxide superconducting coil

Publications (1)

Publication Number Publication Date
JPH06140233A true JPH06140233A (en) 1994-05-20

Family

ID=17717490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28745092A Pending JPH06140233A (en) 1992-10-26 1992-10-26 Manufacture of oxide superconducting coil

Country Status (1)

Country Link
JP (1) JPH06140233A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023724A (en) * 2009-07-16 2011-02-03 Siemens Plc Method of manufacturing solenoidal magnet coil, and solenoidal magnet coil
JP2020202316A (en) * 2019-06-11 2020-12-17 株式会社日立製作所 Wind and react type superconducting coil, wind and react type superconducting coil manufacturing method, and superconducting electromagnet device
GB2586505A (en) * 2019-08-23 2021-02-24 Siemens Healthcare Ltd A method for assembly of a monolithically impregnated cylindrical coil assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023724A (en) * 2009-07-16 2011-02-03 Siemens Plc Method of manufacturing solenoidal magnet coil, and solenoidal magnet coil
JP2020202316A (en) * 2019-06-11 2020-12-17 株式会社日立製作所 Wind and react type superconducting coil, wind and react type superconducting coil manufacturing method, and superconducting electromagnet device
GB2586505A (en) * 2019-08-23 2021-02-24 Siemens Healthcare Ltd A method for assembly of a monolithically impregnated cylindrical coil assembly
GB2586505B (en) * 2019-08-23 2021-10-20 Siemens Healthcare Ltd A method for assembly of a monolithically impregnated cylindrical coil assembly

Similar Documents

Publication Publication Date Title
JPH09511099A (en) Post-winding reaction superconducting coil and manufacturing method
US6694600B2 (en) Simplified deformation-sintering process for oxide superconducting articles
JPH06140233A (en) Manufacture of oxide superconducting coil
JP3218947B2 (en) Manufacturing method of oxide superconducting wire
US6205645B1 (en) Tensioning process for manufacture of superconducting ceramic composite conductors
JPH03241706A (en) Manufacture of superconducting coil
JP3574461B2 (en) Manufacturing method of oxide superconducting wire
US5758405A (en) Consumable mandrel for superconducting magnetic coils
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
JP3858830B2 (en) Manufacturing method of oxide superconducting wire
JP2757575B2 (en) Method for manufacturing high-temperature superconducting wire
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JPH04262308A (en) Oxide superconductive wire rod
JP2684610B2 (en) Reel for oxide superconducting coil
JPH0382105A (en) Manufacture of oxide superconducting coil
JPH06302235A (en) Manufacture of oxide superconductive wire rod
JPS63252315A (en) Manufacture of superconductive wire
JP4893117B2 (en) Oxide superconducting wire manufacturing method and superconducting equipment
JPH06223650A (en) Manufacture of bi oxide superconducting wire
JPH04329217A (en) Oxide superconductive wire material and manufacture thereof
JPH01163913A (en) Manufacture of oxide superconductive wire
JPH0465034A (en) Manufacture of oxide superconducting wire
JPH03122061A (en) Production of oxide superconductive coil
JPH01162307A (en) Manufacture of superconductor coil
JPS63310518A (en) Manufacture of compound superconductive wire