JP4893117B2 - Oxide superconducting wire manufacturing method and superconducting equipment - Google Patents

Oxide superconducting wire manufacturing method and superconducting equipment Download PDF

Info

Publication number
JP4893117B2
JP4893117B2 JP2006162240A JP2006162240A JP4893117B2 JP 4893117 B2 JP4893117 B2 JP 4893117B2 JP 2006162240 A JP2006162240 A JP 2006162240A JP 2006162240 A JP2006162240 A JP 2006162240A JP 4893117 B2 JP4893117 B2 JP 4893117B2
Authority
JP
Japan
Prior art keywords
wire
superconducting
heat treatment
oxide
precursor powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006162240A
Other languages
Japanese (ja)
Other versions
JP2007335102A (en
Inventor
直樹 綾井
昌志 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006162240A priority Critical patent/JP4893117B2/en
Publication of JP2007335102A publication Critical patent/JP2007335102A/en
Application granted granted Critical
Publication of JP4893117B2 publication Critical patent/JP4893117B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、超電導ケーブル、超電導コイル、超電導変圧器、超電導電力貯蔵装置等の超電導応用機器に用いられる(Bi,Pb)SrCaCu10±δ(δは0.1程度の数:以下(Bi,Pb)2223とする)相を含む酸化物超電導線材の製造方法に関し、詳しくは(Bi,Pb)2223超電導線材の臨界電流値向上を目的とする酸化物超電導線材の製造方法に関する。 The present invention is used for superconducting application equipment such as superconducting cables, superconducting coils, superconducting transformers, superconducting power storage devices, etc. (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O 10 ± δ (δ is about 0.1) Number: Hereinafter, it relates to a method of manufacturing an oxide superconducting wire including a phase (hereinafter referred to as (Bi, Pb) 2223), and more specifically, a method of manufacturing an oxide superconducting wire for the purpose of improving the critical current value of (Bi, Pb) 2223 About.

金属シース法で作製された(Bi,Pb)2223相を主成分とする酸化物超電導線材は高い臨界温度を持ちかつ、液体窒素温度等の比較的簡単な冷却下でも高い臨界電流値を示す有用な線材である(たとえば、非特許文献1を参照)。それゆえ更なる性能(臨界電流値)の向上が実現すれば、より実用に供される範囲が広がる。   An oxide superconducting wire mainly composed of (Bi, Pb) 2223 phase produced by a metal sheath method has a high critical temperature and a useful value showing a high critical current value even under relatively simple cooling such as liquid nitrogen temperature. (For example, refer nonpatent literature 1). Therefore, if further improvement in performance (critical current value) is realized, the range of practical use is expanded.

また上記(Bi,Pb)2223超電導材線材を使用することによって、従来の常伝導導体を用いるよりはるかにエネルギー損失を低減することが可能であると考えられている。そのため(Bi,Pb)2223超電導材線材を導体として用いた超電導ケーブル、超電導コイル、超電導変圧器、超電導電力貯蔵装置等の超電導応用機器開発も同時に進められている。   In addition, it is considered that by using the (Bi, Pb) 2223 superconducting wire, it is possible to reduce energy loss far more than when using a conventional normal conductor. Therefore, development of superconducting application equipment such as a superconducting cable, a superconducting coil, a superconducting transformer, and a superconducting power storage device using a (Bi, Pb) 2223 superconducting wire as a conductor is being promoted simultaneously.

超電導線材の臨界電流値を上げる方法としては、(Bi,Pb)2223系超電導線材を加圧された雰囲気下において焼結する方法が採用されている(特許文献1および非特許文献1を参照)。これにより液体窒素温度での臨界電流値は約100Aから120A級に向上している。   As a method for increasing the critical current value of a superconducting wire, a method of sintering a (Bi, Pb) 2223 series superconducting wire in a pressurized atmosphere is employed (see Patent Document 1 and Non-Patent Document 1). . As a result, the critical current value at the liquid nitrogen temperature is improved from about 100 A to 120 A class.

特開2002−093252号公報JP 2002-093252 A SEIテクニカルレビュー、2004年3月 第164号 p36−42SEI Technical Review, March 2004, No. 164, p36-42

上記の技術によっても、臨界電流値向上の効果は認められる。しかしながら、今後の市場からのニーズを考えれば、さらなる臨界電流値の増大が望まれる。そこで本発明はより臨界電流値の高い酸化物超電導線材の製造方法を提供することを目的とする。   The effect of improving the critical current value is also recognized by the above technique. However, considering the needs from the future market, further increase of the critical current value is desired. Therefore, an object of the present invention is to provide a method for producing an oxide superconducting wire having a higher critical current value.

本発明者らは、(Bi,Pb)2223線材の製造工程中の圧延加工とその前後における充填粉末の関係を検討し、圧延工程前の充填粉末に特徴をもたせることによって、臨界電流値が向上することを見出した。   The present inventors investigated the relationship between rolling processing during the manufacturing process of (Bi, Pb) 2223 wire and the packing powder before and after that, and improved the critical current value by giving the packing powder characteristics before the rolling process. I found out.

本発明は、(Bi,Pb)2223超電導の前駆体粉末を金属で被覆した形態の線材を伸線する伸線工程と、前記伸線工程後の線材を圧延する圧延工程と、前記圧延工程後の線材を熱処理する熱処理工程とを備え、前記伸線工程と前記圧延工程との間において、中間熱処理を加え線材中の前駆体粉末の結晶粒サイズを、伸線後の結晶粒サイズより大きくすることを特徴とする酸化物超電導線材の製造方法である。   The present invention includes a wire drawing step of drawing a wire in a form in which a precursor powder of (Bi, Pb) 2223 superconductivity is coated with a metal, a rolling step of rolling the wire after the wire drawing step, and after the rolling step A heat treatment step of heat-treating the wire, and adding an intermediate heat treatment between the wire drawing step and the rolling step to make the crystal grain size of the precursor powder in the wire larger than the crystal grain size after wire drawing This is a method for producing an oxide superconducting wire.

本発明において、前記中間熱処理によって、前駆体粉末の結晶粒のc軸に垂直な方向の平均サイズを2μm以上にすることが好ましい。   In the present invention, it is preferable that the average size in the direction perpendicular to the c-axis of the crystal grains of the precursor powder is 2 μm or more by the intermediate heat treatment.

本発明において、前記中間熱処理は、酸素を含む雰囲気中700℃以上、800℃以下の温度において、1時間から5時間の条件で行われることが好ましい。   In the present invention, the intermediate heat treatment is preferably performed under conditions of 1 hour to 5 hours in an oxygen-containing atmosphere at a temperature of 700 ° C. or higher and 800 ° C. or lower.

また本発明において、前記(Bi,Pb)2223超電導の前駆体粉末は、正方晶Bi2212相が主相であることが好ましい。   In the present invention, the (Bi, Pb) 2223 superconducting precursor powder preferably has a tetragonal Bi2212 phase as a main phase.

また本発明は、上記のいずれかに記載の製造方法により製造された酸化物超電導線材を導体として含む超電導機器である。   Moreover, this invention is a superconducting apparatus which contains the oxide superconducting wire manufactured by the manufacturing method in any one of said as a conductor.

本発明の製造方法によれば、高い臨界電流値を有する(Bi,Pb)2223酸化物超電導線材を得ることができる。また本発明の酸化物超電導線材を導体として用いることにより、高性能な超電導ケーブル、超電導コイル、超電導変圧器、超電導電力貯蔵装置等の超電導機器を実現できる。   According to the production method of the present invention, a (Bi, Pb) 2223 oxide superconducting wire having a high critical current value can be obtained. Moreover, by using the oxide superconducting wire of the present invention as a conductor, it is possible to realize superconducting equipment such as a high-performance superconducting cable, a superconducting coil, a superconducting transformer, and a superconducting power storage device.

(実施の形態)
図1は、酸化物超電導線材の構成を模式的に示す部分断面斜視図である。図1を参照して、例えば、多芯線の酸化物超電導線材について説明する。酸化物超電導線材11は、長手方向に伸びる複数本の酸化物超電導体フィラメント12と、それらを被覆するシース部13とを有している。複数本の酸化物超電導体フィラメント12の各々の材質は、Bi−Pb−Sr−Ca−Cu−O系の組成が好ましく、特に(Bi,Pb):Sr:Ca:Cuの原子比がほぼ2:2:2:3の比率で近似して表される(Bi,Pb)2223相を含む材質が最適である。シース部13の材質は、例えば銀や銀合金等の金属から構成される。
(Embodiment)
FIG. 1 is a partial cross-sectional perspective view schematically showing the configuration of an oxide superconducting wire. For example, a multi-core oxide superconducting wire will be described with reference to FIG. The oxide superconducting wire 11 has a plurality of oxide superconductor filaments 12 extending in the longitudinal direction and a sheath portion 13 covering them. The material of each of the plurality of oxide superconductor filaments 12 is preferably a Bi—Pb—Sr—Ca—Cu—O based composition, and the atomic ratio of (Bi, Pb): Sr: Ca: Cu is particularly about 2. The material including the (Bi, Pb) 2223 phase expressed by the ratio of 2: 2: 3 is optimal. The material of the sheath part 13 is comprised from metals, such as silver and a silver alloy, for example.

次に、上記の酸化物超電導線材の製造方法について説明する。   Next, the manufacturing method of said oxide superconducting wire is demonstrated.

図2は、本発明の実施の形態における酸化物超電導線材の製造工程を示すフロー図である。また図3〜7は、図2の各工程を示す図である。   FIG. 2 is a flowchart showing a manufacturing process of the oxide superconducting wire in the embodiment of the present invention. 3 to 7 are diagrams showing each step of FIG.

図2および図3を参照して、まず、酸化物超電導体の前駆体粉末31を金属管32に充填する(ステップS1)。この酸化物超電導体の前駆体粉末31は、たとえば(Bi,Pb)SrCaCu8±δ(δは0.1に近い数:以下(Bi,Pb)2212と呼ぶ)相を主相とし、(Bi,Pb)2223相、アルカリ土類酸化物(例えば、(Ca,Sr)CuO、(Ca,Sr)CuO、(Ca,Sr)14Cu2441等)、Pb酸化物(例えば、CaPbO、(Bi,Pb)SrCaCu)を含む材質よりなっている。なお、金属管32としては銀や銀合金を用いることが好ましい。これは前駆体粉末と金属管が反応して化合物を形成することによる、前駆体粉末の組成ずれを防ぐためである。 Referring to FIGS. 2 and 3, first, oxide superconductor precursor powder 31 is filled into metal tube 32 (step S1). This oxide superconductor precursor powder 31 has, for example, a (Bi, Pb) 2 Sr 2 Ca 1 Cu 2 O 8 ± δ (δ is a number close to 0.1: hereinafter referred to as (Bi, Pb) 2212) phase. (Bi, Pb) 2223 phase, alkaline earth oxides (for example, (Ca, Sr) CuO 2 , (Ca, Sr) 2 CuO 3 , (Ca, Sr) 14 Cu 24 O 41 etc.) , And a Pb oxide (for example, Ca 2 PbO 4 , (Bi, Pb) 3 Sr 2 Ca 2 Cu 1 O z ). The metal tube 32 is preferably made of silver or a silver alloy. This is to prevent compositional deviation of the precursor powder due to the reaction between the precursor powder and the metal tube to form a compound.

次に、図2および図4に示すように、上記前駆体粉末が充填された金属管41を所望の直径まで伸線加工し、前駆体42を芯材として銀などの金属に被覆された単芯線43を作製する(ステップS2)。   Next, as shown in FIG. 2 and FIG. 4, the metal tube 41 filled with the precursor powder is drawn to a desired diameter, and the precursor 42 is used as a core material and coated with a metal such as silver. The core wire 43 is produced (step S2).

次に、図2および図5に示すように、この単芯線51を多数束ねて、例えば銀等からなる金属管52内に嵌合する(多芯嵌合:ステップS3)。これにより、前駆体粉末を芯材として多数有する多芯構造材が得られる。   Next, as shown in FIGS. 2 and 5, a large number of single core wires 51 are bundled and fitted into a metal tube 52 made of, for example, silver (multi-core fitting: step S3). Thereby, the multi-core structure material which has many precursor powders as a core material is obtained.

次に、図2および図6に示すように、多芯構造材61を所望の直径まで伸線加工し、前駆体粉末62が金属シース部63に埋め込まれ、断面形状が円状あるいは多角形状の等方的多芯母線64を作製する(ステップS4)。これにより、酸化物超電導線材の前駆体粉末62を金属で被覆した形態を有する等方的多芯母線64が得られる。   Next, as shown in FIGS. 2 and 6, the multi-core structural member 61 is drawn to a desired diameter, the precursor powder 62 is embedded in the metal sheath portion 63, and the cross-sectional shape is circular or polygonal. An isotropic multi-core bus 64 is produced (step S4). Thereby, an isotropic multi-core bus 64 having a form in which the precursor powder 62 of the oxide superconducting wire is covered with a metal is obtained.

次に、図2に示すように、この等方的多芯母線71に中間熱処理を施す。(ステップS5)。このステップが本発明の特徴である。このステップについては詳細を後述する。   Next, as shown in FIG. 2, the isotropic multi-core bus 71 is subjected to an intermediate heat treatment. (Step S5). This step is a feature of the present invention. Details of this step will be described later.

次に、図2および図7に示すように、この等方的多芯母線71を圧延する(1次圧延:ステップS6)。これによりテープ状前駆体線材72が得られる。   Next, as shown in FIGS. 2 and 7, the isotropic multi-core bus bar 71 is rolled (primary rolling: step S6). Thereby, the tape-shaped precursor wire 72 is obtained.

次に、テープ状前駆体線材を熱処理する(1次熱処理:ステップS7)。この熱処理は、たとえば大気圧下、または1MPa以上50MPa以下の加圧雰囲気において約830℃の温度で行われる。熱処理によって前駆体粉末から目的とする(Bi,Pb)2223超電導相が生成される。   Next, the tape-shaped precursor wire is heat-treated (primary heat treatment: step S7). This heat treatment is performed at a temperature of about 830 ° C., for example, under atmospheric pressure or in a pressurized atmosphere of 1 MPa to 50 MPa. The target (Bi, Pb) 2223 superconducting phase is generated from the precursor powder by heat treatment.

その後、再び線材を圧延する(2次圧延:ステップS8)。このように、2次圧延を行うことにより、1次熱処理で生じたボイドが除去される。   Thereafter, the wire is rolled again (secondary rolling: step S8). In this way, voids generated by the primary heat treatment are removed by performing the secondary rolling.

続いて、例えば830℃の温度で線材を熱処理する(2次熱処理:ステップS9)。このときも、大気圧下、または加圧雰囲気で熱処理する。以上の製造工程により、図1に示す酸化物超電導線材が得られる。以上の製造工程により、酸化物超電導線材が得られる。   Subsequently, the wire is heat-treated at a temperature of, for example, 830 ° C. (secondary heat treatment: step S9). Also at this time, heat treatment is performed under atmospheric pressure or in a pressurized atmosphere. The oxide superconducting wire shown in FIG. 1 is obtained by the above manufacturing process. The oxide superconducting wire is obtained by the above manufacturing process.

以下、本発明の特徴であるステップS5の中間熱処理について詳細を記す。酸化物超電導線材において高臨界電流密度化を図るには超電導結晶粒の高度な配向化が重要である。そのためにステップS6の圧延が施される。これは線材を一軸方向に変形させテープ状にし、(Bi,Pb)2223超電導結晶のa−b面方向をテープ面と平行になるよう配向させるものである。   Details of the intermediate heat treatment in step S5, which is a feature of the present invention, will be described below. In order to achieve a high critical current density in an oxide superconducting wire, high orientation of superconducting crystal grains is important. For this purpose, rolling in step S6 is performed. In this method, the wire is deformed in a uniaxial direction into a tape shape, and the ab plane direction of the (Bi, Pb) 2223 superconducting crystal is oriented so as to be parallel to the tape surface.

断面形状が円状の等方的多芯母線を圧延し、内部の結晶の変化を模式的に表した線材断面図を図8(a)に示す。図8では単芯線のケースをモデルとして表す。断面が円形状の等方的母線81においては金属管82中に平板状の超電導相を含む種々の結晶83が存在している。そのような状況において、超電導結晶が圧延する前に充分大きいサイズを有していれば、圧延操作によりテープ材84になった際、各結晶は長手方向(a−b面方向)が圧延時の外力方向に対して垂直になるように倒れてその方向がそろう。一方、図8(b)に示すように結晶サイズが小さい場合、結晶83は倒れにくく配向化もおこりにくい。よって、圧延前にはできる限り結晶83のサイズが大きい方が、配向化には有利である。   FIG. 8A shows a cross-sectional view of a wire rod, in which an isotropic multi-core bus bar having a circular cross-sectional shape is rolled and a change in the internal crystal is schematically represented. In FIG. 8, the case of a single core wire is represented as a model. In the isotropic bus 81 having a circular cross section, various crystals 83 including a flat superconducting phase are present in the metal tube 82. In such a situation, if the superconducting crystal has a sufficiently large size before rolling, each crystal has a longitudinal direction (a-b plane direction) at the time of rolling when it becomes the tape material 84 by the rolling operation. It falls down so that it is perpendicular to the direction of external force, and the direction is aligned. On the other hand, as shown in FIG. 8B, when the crystal size is small, the crystal 83 is not easily tilted and is not easily oriented. Therefore, it is advantageous for orientation that the size of the crystal 83 is as large as possible before rolling.

ところで、圧延までに線材はステップS2とステップS4の伸線加工が施される。この伸線加工は縮径加工であり、ステップS1で充填された状況から各金属管はその直径において1/10〜1/100程度の縮小変形をうける。   By the way, the wire rod is subjected to wire drawing in steps S2 and S4 before rolling. This wire drawing process is a diameter reduction process, and each metal tube undergoes a reduction deformation of about 1/10 to 1/100 in the diameter from the state filled in step S1.

この変形において、充填された前駆体粉末も外力を受け、砕けて結晶サイズが小さくなっていく。このような状況で圧延操作をおこなっても、配向化はおこりにくい。よって本発明では、伸線工程で砕けて小さくなった結晶粒を大きくするために圧延前に中間熱処理を施すものである。   In this deformation, the filled precursor powder also receives an external force and is crushed to reduce the crystal size. Even if a rolling operation is performed in such a situation, orientation is unlikely to occur. Therefore, in the present invention, an intermediate heat treatment is performed before rolling in order to enlarge the crystal grains that are crushed and reduced in the wire drawing step.

本発明の効果を模式的に表した線材断面図を図9に示す。前駆体粉末の結晶粒は伸線加工により、砕け小さくなる。小さくなった結晶粒に対して熱処理を施し、結晶粒サイズを大きくする。大きくなった結晶粒に対して圧延操作を施すことにより、高度な配向化組織が得られる。   A wire cross-sectional view schematically showing the effect of the present invention is shown in FIG. The crystal grains of the precursor powder are broken by the wire drawing process. Heat treatment is performed on the crystal grains that have become smaller to increase the crystal grain size. A highly oriented structure can be obtained by rolling the enlarged crystal grains.

前記中間熱処理条件の目安として、結晶粒のc軸に垂直な方向の大きさ(板状結晶の幅)をもって判定すると熱処理条件の最適化を行いやすい。本発明者らは、結晶粒のc軸に垂直な方向の平均サイズが2μm以上になると効果が大きいことを実験的に見出した。   As a measure of the intermediate heat treatment condition, it is easy to optimize the heat treatment condition if it is determined based on the size of the crystal grain in the direction perpendicular to the c-axis (the width of the plate crystal). The inventors have experimentally found that the effect is large when the average size of the crystal grains in the direction perpendicular to the c-axis is 2 μm or more.

上記「c軸に垂直な方向の平均サイズ」について説明する。伸線後あるいは中間熱処理後の等方的母線中では、各結晶粒はそのa−b面方向と母線長手方向がほぼ平行になるよう存在している。このような母線において、長手方向に垂直な断面を観察すると、各結晶の側面(a−c面、b−c面あるいはab−c面)が見える。この側面における長い方の一辺を測定する。実際の結晶は見えている側面より長いc軸に垂直な方向サイズを有しているケースもあるが、少なくとも断面に表れている部分のサイズは有している。よってこの観測された長さを「各結晶のサイズ」と定義する。結晶サイズを数十から百程度の結晶について測定し、その平均値を算出する。その値を「平均サイズ」とする。   The “average size in the direction perpendicular to the c-axis” will be described. In the isotropic bus bar after drawing or after intermediate heat treatment, each crystal grain exists so that the ab plane direction and the bus bar longitudinal direction are substantially parallel. When a cross section perpendicular to the longitudinal direction is observed in such a bus, the side surfaces (ac surface, bc surface, or ab-c surface) of each crystal can be seen. Measure the longer side on this side. In some cases, the actual crystal has a direction size perpendicular to the c-axis that is longer than the visible side surface, but at least the size of the portion appearing in the cross section. Therefore, this observed length is defined as “size of each crystal”. The crystal size is measured for crystals of about several tens to one hundred, and the average value is calculated. The value is defined as “average size”.

また上記のようになる、具体的な中間熱処理条件は、酸素を含む雰囲気中700℃以上、800℃以下の温度において、1時間から5時間であることも見出した。   It has also been found that the specific intermediate heat treatment condition as described above is 1 hour to 5 hours at a temperature of 700 ° C. to 800 ° C. in an oxygen-containing atmosphere.

一方、前駆体粉末を構成する成分により、この中間熱処理での結晶粒の成長度合いが影響を受ける。充填される前駆体粉末中には、斜方晶である(Bi,Pb)2212相と正方晶であるBiSrCaCu8±δ(δは0.1に近い数:以下Bi2212と呼ぶ)相の2つの2212相が混在する。これらの割合は前駆体粉末を作製する段階で調整できる。Bi2212相は周りに存在するPb化合物からPbを吸収し、(Bi,Pb)2212相にかわることができる。この反応がおこる際に、Bi2212相から非常に大きな(Bi,Pb)2212相が生成されやすい。よって主相として前駆体粉末は、正方晶Bi2212相が主相であることが好ましく、それに対して中間熱処理を施すとより効果的である。 On the other hand, the degree of crystal grain growth in this intermediate heat treatment is affected by the components constituting the precursor powder. In the precursor powder to be filled, (Bi, Pb) 2212 phase that is orthorhombic and Bi 2 Sr 2 Ca 1 Cu 2 O 8 ± δ that is tetragonal (δ is a number close to 0.1: Two 2212 phases (referred to as Bi2212) are mixed. These ratios can be adjusted at the stage of preparing the precursor powder. The Bi 2212 phase absorbs Pb from the surrounding Pb compound and can replace the (Bi, Pb) 2212 phase. When this reaction occurs, a very large (Bi, Pb) 2212 phase is easily generated from the Bi 2212 phase. Therefore, it is preferable that the precursor powder as the main phase is a tetragonal Bi2212 phase, which is more effective when subjected to an intermediate heat treatment.

上記のようにして、大きな超電導結晶粒を含む線材を圧延することにより、高度な配向化組織が得られる。この高度に配向化された線材をベースにステップS6以降の加工処理を行うと、高い臨界電流値を有する超電導線材を製造することができる。   As described above, a highly oriented structure can be obtained by rolling a wire containing large superconducting crystal grains. When the processing after step S6 is performed on the basis of this highly oriented wire, a superconducting wire having a high critical current value can be manufactured.

また本発明にかかる超電導機器は、上記のような臨界電流値の高い超電導線材から構成されるため、優れた超電導特性を有する。ここで、超電導機器は、上記超電導線材を含むものであれば特に制限なく、超電導ケーブル、超電導コイル、超電導変圧器、超電導電力貯蔵装置などが挙げられる。例えば、交流用途で使用される超電導ケーブルや、超電導変圧器では臨界電流値の向上により、運転電流値における損失が減少する。一方、超電導コイルや超電導電力貯蔵装置のような直流使用が主な機器は、最大発生磁場や最大蓄積エネルギーが大幅に増大する。   Moreover, since the superconducting device according to the present invention is composed of the superconducting wire having a high critical current value as described above, it has excellent superconducting characteristics. Here, the superconducting device is not particularly limited as long as it includes the superconducting wire, and examples thereof include a superconducting cable, a superconducting coil, a superconducting transformer, and a superconducting power storage device. For example, in superconducting cables and superconducting transformers used in AC applications, the loss in operating current value decreases due to the improvement of the critical current value. On the other hand, the maximum generated magnetic field and the maximum stored energy are greatly increased in devices mainly using DC, such as a superconducting coil and a superconducting power storage device.

(実施例)
以下、実施例に基づき、本発明をさらに具体的に説明する。
(Example)
Hereinafter, based on an Example, this invention is demonstrated further more concretely.

原料粉末(Bi, PbO, SrCO, CaCO, CuO)をBi:Pb:Sr:Ca:Cu=1.8:0.3:1.9:2.0:3.0の比率で混合し、大気中で700℃×8時間の熱処理、粉砕、800℃×10時間の熱処理、粉砕、820℃×4時間の熱処理、粉砕の処理を施し前駆体粉末を得る。また、5種類の原料粉末が溶解した硝酸水溶液を、加熱された炉内に噴射することにより、金属硝酸塩水溶液の粒子の水分が蒸発し、硝酸塩の熱分解、そして金属酸化物同士の反応、合成を瞬時に起こさせる噴霧熱分解法で前駆体粉末を作製することもできる。こうして作製された前駆体粉末は、Bi2212相が主体となった粉末である。また一部は熱処理条件を変更し、(Bi,Pb)2212相が主相となった前駆体粉末を得る。 Raw material powder (Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , CuO) is Bi: Pb: Sr: Ca: Cu = 1.8: 0.3: 1.9: 2.0: 3.0 The mixture is subjected to heat treatment at 700 ° C. for 8 hours, pulverization, heat treatment at 800 ° C. for 10 hours, pulverization, heat treatment at 820 ° C. for 4 hours, and pulverization in the air to obtain a precursor powder. In addition, by injecting a nitric acid aqueous solution in which five types of raw material powders are dissolved into a heated furnace, the water content of the metal nitrate aqueous solution particles evaporates, the thermal decomposition of the nitrate, and the reaction and synthesis of metal oxides. Precursor powder can also be produced by a spray pyrolysis method that instantly raises. The precursor powder thus produced is a powder mainly composed of the Bi2212 phase. In addition, a part of the heat treatment conditions is changed to obtain a precursor powder in which the (Bi, Pb) 2212 phase is the main phase.

上記により作製された前駆体粉末を外径25mm、内径22mmの銀パイプに充填し、直径2.4mmまで伸線して単芯線を作製する。この単芯線を55本に束ねて外径25mm、内径22mmの銀パイプに挿入し、直径1.5mmまで伸線し、多芯(55芯)線材を得る。   The precursor powder produced as described above is filled in a silver pipe having an outer diameter of 25 mm and an inner diameter of 22 mm, and drawn to a diameter of 2.4 mm to produce a single core wire. The single core wires are bundled into 55, inserted into a silver pipe having an outer diameter of 25 mm and an inner diameter of 22 mm, and drawn to a diameter of 1.5 mm to obtain a multi-core (55 core) wire.

この多芯線材に熱処理を施す。熱処理雰囲気は全圧1気圧(0.1MPa)、酸素分圧0.0001MPaに設定し、時間は2時間で固定して各種温度で熱処理を行った。温度条件と試料番号を表1に記す。その後、端部を切り出して、長手方向に垂直な断面を電子顕微鏡で観察することによって結晶粒サイズ(圧延前の結晶サイズ)を計測した。平均粒サイズは任意に選んだ100個の結晶に関して、前記したよう断面に表れている結晶側面の長い方の一辺サイズを測定する。そしてその平均値を算出する。その結果を表1に記す。   This multi-core wire is heat treated. The heat treatment atmosphere was set at a total pressure of 1 atm (0.1 MPa) and an oxygen partial pressure of 0.0001 MPa, and the heat treatment was performed at various temperatures with the time fixed at 2 hours. Table 1 shows the temperature conditions and sample numbers. Then, the edge part was cut out and the crystal grain size (crystal size before rolling) was measured by observing a cross section perpendicular | vertical to a longitudinal direction with an electron microscope. As for the average grain size, the side size of the longer one of the crystal side surfaces shown in the cross section as described above is measured for 100 crystals selected arbitrarily. And the average value is calculated. The results are shown in Table 1.

上記熱処理後、多芯線を圧延し、厚み0.25mmのテープ状線材に加工する。得られたテープ状線材を全圧1気圧(0.1MPa)、酸素分圧8kPaの雰囲気中で830℃、30時間〜50時間の1次熱処理を施す。   After the heat treatment, the multi-core wire is rolled and processed into a tape-like wire having a thickness of 0.25 mm. The obtained tape-shaped wire is subjected to primary heat treatment at 830 ° C. for 30 to 50 hours in an atmosphere having a total pressure of 1 atm (0.1 MPa) and an oxygen partial pressure of 8 kPa.

1次熱処理後のテープ状線材を厚み0.23mmになるように再圧延する。再圧延後のテープ状線材に酸素分圧8kPaを含む、全圧30MPaの加圧雰囲気下にて830℃、50時間〜100時間の2次熱処理を施す。作製された線材の臨界電流値(Ic)を測定した。   The tape-shaped wire after the primary heat treatment is re-rolled to a thickness of 0.23 mm. The tape-shaped wire after re-rolling is subjected to a secondary heat treatment at 830 ° C. for 50 to 100 hours in a pressurized atmosphere containing an oxygen partial pressure of 8 kPa and a total pressure of 30 MPa. The critical current value (Ic) of the produced wire was measured.

臨界電流値は、温度77K、ゼロ磁場中、四端子法で電流―電圧曲線を測定し、その曲線から線材1cmあたり1×10−6Vの電圧を発生させる電流を臨界電流値と定義した。 For the critical current value, a current-voltage curve was measured by a four-terminal method at a temperature of 77 K and in a zero magnetic field, and a current that generates a voltage of 1 × 10 −6 V per 1 cm of wire was defined as the critical current value.

また、(Bi,Pb)2223結晶の配向性評価として、以下の平均配向ずれ角αを測定する。平均配向ずれ角αとは、各々の(Bi,Pb)2223結晶のa軸とb軸により形成される面と、線材のテープ面(幅×長さ方向の面)とのなす角度の平均をいう。(Bi,Pb)2223結晶の平均配向ずれ角αが小さいほど、(Bi,Pb)2223結晶の配向性が高いことを示す。(Bi,Pb)2223結晶の平均配向ずれ角αは、(Bi,Pb)2223相の(0,0,24)面に由来する回折ピークの半価幅の1/2として算出される。Ic及びαを表1に記す。   Further, as an evaluation of the orientation of the (Bi, Pb) 2223 crystal, the following average misalignment angle α is measured. The average misalignment angle α is the average angle formed between the surface formed by the a-axis and the b-axis of each (Bi, Pb) 2223 crystal and the tape surface (width × length surface) of the wire. Say. The smaller the average misorientation angle α of (Bi, Pb) 2223 crystal, the higher the orientation of (Bi, Pb) 2223 crystal. The average misorientation angle α of the (Bi, Pb) 2223 crystal is calculated as ½ of the half width of the diffraction peak derived from the (0,0,24) plane of the (Bi, Pb) 2223 phase. Ic and α are shown in Table 1.

Figure 0004893117
Figure 0004893117

試料1(比較例)は、中間熱処理を施していない。試料2(実施例)以降は中間熱処理が施されている。中間熱処理を施していない試料1は、圧延前の平均結晶サイズは0.5μmである。また全ての工程終了後の臨界電流値120Aでありかつ、ずれ角αは11°である。本発明に従って中間熱処理を施した試料2〜10では、圧延前の平均結晶サイズが試料1に比べ大きくなっている。また臨界電流値およびずれ角αともに試料1に比べ向上している。   Sample 1 (comparative example) is not subjected to intermediate heat treatment. Sample 2 (Example) and thereafter are subjected to intermediate heat treatment. Sample 1 not subjected to intermediate heat treatment has an average crystal size before rolling of 0.5 μm. Further, the critical current value after the completion of all the steps is 120A, and the deviation angle α is 11 °. In samples 2 to 10 subjected to the intermediate heat treatment according to the present invention, the average crystal size before rolling is larger than that of sample 1. Further, both the critical current value and the deviation angle α are improved as compared with the sample 1.

試料2〜10を比較すると、中間熱処理温度が700℃以上、800℃以下の範囲である試料4〜9において160A以上の高い臨界電流値が得られている。また前駆体粉末の主相を変えた場合(試料6と7の比較)、Bi2212相を主相としたほうが効果の大きいことが判る。   When samples 2 to 10 are compared, high critical current values of 160 A or more are obtained in samples 4 to 9 in which the intermediate heat treatment temperature is in the range of 700 ° C. or higher and 800 ° C. or lower. Further, when the main phase of the precursor powder is changed (comparison between samples 6 and 7), it can be seen that the effect is greater when the Bi2212 phase is the main phase.

今回開示された実施の形態および実施例は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

酸化物超電導線材の構成を模式的に示す部分断面斜視図である。It is a partial section perspective view showing typically the composition of an oxide superconducting wire. 本発明の実施の形態における酸化物超電導線材の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the oxide superconducting wire in embodiment of this invention. 図2中S1ステップを示す図である。It is a figure which shows S1 step in FIG. 図2中S2ステップを示す図である。It is a figure which shows S2 step in FIG. 図2中S3ステップを示す図である。It is a figure which shows S3 step in FIG. 図2中S4ステップを示す図である。It is a figure which shows S4 step in FIG. 図2中S5ステップを示す図である。It is a figure which shows S5 step in FIG. 圧延時における、金属管内部の結晶の変化を模式的に表した線材断面図である。It is wire rod sectional drawing showing typically the change of the crystal inside a metal pipe at the time of rolling. 本発明の効果を模式的に表した線材断面図である。It is wire rod sectional drawing which expressed the effect of the present invention typically.

符号の説明Explanation of symbols

11 酸化物超電導線材、12 酸化物超電導フィラメント、13 シース部、31 前駆体粉末、32 金属管 41 前駆体粉末が充填された金属管、42 前駆体、43 単芯線、51 単芯線、52 金属管、61 多芯構造材、62 前駆体原料粉末、63 金属シース部、64 等方的多芯母線、71 等方的多芯母線、72 テープ状前駆体線材 81 等方的母線、82 金属管、83 結晶、84 テープ材。
DESCRIPTION OF SYMBOLS 11 Oxide superconducting wire, 12 Oxide superconducting filament, 13 Sheath part, 31 Precursor powder, 32 Metal tube 41 Metal tube filled with precursor powder, 42 Precursor, 43 Single core wire, 51 Single core wire, 52 Metal tube 61 multi-core structural material, 62 precursor raw material powder, 63 metal sheath part, 64 isotropic multi-core bus bar, 71 isotropic multi-core bus bar, 72 tape-like precursor wire 81 isotropic bus bar, 82 metal tube, 83 crystal, 84 tape material.

Claims (4)

(Bi、Pb)2223超電導体の前駆体粉末を銀または銀合金で被覆した形態の線材を伸線する伸線工程と、
前記伸線工程後の線材を圧延する圧延工程と、
前記圧延工程後の線材を熱処理する熱処理工程とを備え、
前記(Bi、Pb)2223超電導の前駆体粉末は、主相として正方晶Bi2212相を含み、
さらに斜方晶(Bi、Pb)2212相、(Bi、Pb)2223相、アルカリ土類酸化物、Pb酸化物の少なくとも一つを含む材料からなっており、
前記伸線工程と前記圧延工程との間において、中間熱処理を加え線材中の前駆体粉末の結晶粒サイズを、伸線後の結晶粒サイズより大きくすることを特徴とする酸化物超電導線材の製造方法。
(Bi, Pb) a wire drawing step of drawing a wire in a form in which a precursor powder of 2223 superconductor is coated with silver or a silver alloy ;
A rolling step of rolling the wire after the wire drawing step;
A heat treatment step of heat-treating the wire after the rolling step,
The (Bi, Pb) 2223 superconducting precursor powder includes a tetragonal Bi2212 phase as a main phase,
Furthermore, it is made of a material containing at least one of orthorhombic (Bi, Pb) 2212 phase, (Bi, Pb) 2223 phase, alkaline earth oxide, Pb oxide,
Production of an oxide superconducting wire characterized in that an intermediate heat treatment is applied between the wire drawing step and the rolling step so that the crystal grain size of the precursor powder in the wire is larger than the crystal grain size after the wire drawing. Method.
前記中間熱処理によって、前駆体粉末の結晶粒のc軸に垂直な方向の平均サイズを2μm以上にすることを特徴とする請求項1に記載の酸化物超電導線材の製造方法。   2. The method for producing an oxide superconducting wire according to claim 1, wherein an average size in a direction perpendicular to the c-axis of the crystal grains of the precursor powder is set to 2 μm or more by the intermediate heat treatment. 前記中間熱処理は、酸素を含む雰囲気中700℃以上、800℃以下の温度において、1時間から5時間の条件で行われることを特徴とする請求項1または2のいずれかに記載の酸化物超電導線材の製造方法。   3. The oxide superconductivity according to claim 1, wherein the intermediate heat treatment is performed at a temperature of 700 ° C. or more and 800 ° C. or less in an oxygen-containing atmosphere for 1 to 5 hours. A manufacturing method of a wire. 請求項1から請求項までのいずれかに記載の製造方法により製造された酸化物超電導線材を導体として含む超電導機器。 The superconducting apparatus which contains the oxide superconducting wire manufactured by the manufacturing method in any one of Claim 1 to 3 as a conductor.
JP2006162240A 2006-06-12 2006-06-12 Oxide superconducting wire manufacturing method and superconducting equipment Expired - Fee Related JP4893117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162240A JP4893117B2 (en) 2006-06-12 2006-06-12 Oxide superconducting wire manufacturing method and superconducting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162240A JP4893117B2 (en) 2006-06-12 2006-06-12 Oxide superconducting wire manufacturing method and superconducting equipment

Publications (2)

Publication Number Publication Date
JP2007335102A JP2007335102A (en) 2007-12-27
JP4893117B2 true JP4893117B2 (en) 2012-03-07

Family

ID=38934383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162240A Expired - Fee Related JP4893117B2 (en) 2006-06-12 2006-06-12 Oxide superconducting wire manufacturing method and superconducting equipment

Country Status (1)

Country Link
JP (1) JP4893117B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3089294B2 (en) * 1997-02-04 2000-09-18 工業技術院長 Manufacturing method of superconducting tape material
JPH11185551A (en) * 1997-12-18 1999-07-09 Fujikura Ltd Manufacture of oxide superconducting wire material

Also Published As

Publication number Publication date
JP2007335102A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
US7213325B2 (en) Method of manufacturing Fe-sheathed MgB2 wires and solenoids
JP4111240B1 (en) Oxide superconducting material, manufacturing method thereof, superconducting wire, superconducting equipment
JP2008140769A (en) METHOD FOR MANUFACTURING Bi2223 SUPERCONDUCTING WIRE ROD
JPWO2005022563A1 (en) Method for producing oxide superconducting wire, method for modifying oxide superconducting wire, and oxide superconducting wire
JP4038813B2 (en) Superconducting wire manufacturing method
JP4893117B2 (en) Oxide superconducting wire manufacturing method and superconducting equipment
JP2007149416A (en) Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
JP4715672B2 (en) Oxide superconducting wire and method for producing the same
KR20060023947A (en) Bismuth oxide superconducting wire rod and process for producing the same
JP2008153140A (en) Manufacturing method of oxide superconductive wire
JP2009170276A (en) Manufacturing method of bi2223 superconducting wire rod, and bi2223 superconducting wire rod
JP2003331660A (en) Metal-sheathed superconductor wire, superconducting coil, and its manufacturing method
JP2009181817A (en) Manufacturing method of oxide superconductive wire rod, and oxide superconductive wire rod
JP4696811B2 (en) Manufacturing method of Bi-based superconductor
JP2007165207A (en) Manufacturing method of oxide superconducting wire rod
JP4720211B2 (en) Method for producing bismuth oxide superconducting wire
EP2859560B1 (en) Superconductor article with directional flux pinning
JP2006107843A (en) Tape-shaped superconductive wire
JP2007335100A (en) Manufacturing method of oxide superconducting wire and superconducting equipment
JP2008147012A (en) Manufacturing method of oxide superconducting wire, and superconducting apparatus
JP4496902B2 (en) Superconducting wire manufacturing method
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
JP4595813B2 (en) Oxide superconducting wire, manufacturing method thereof and superconducting equipment
JP4507899B2 (en) Bismuth oxide superconducting wire and method for producing the same, superconducting equipment using the bismuth oxide superconducting wire
JP2009070616A (en) Manufacturing method for bi2223 superconducting wire rod and bi2223 superconducting wire rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Ref document number: 4893117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees