JP2007335100A - Manufacturing method of oxide superconducting wire and superconducting equipment - Google Patents
Manufacturing method of oxide superconducting wire and superconducting equipment Download PDFInfo
- Publication number
- JP2007335100A JP2007335100A JP2006162231A JP2006162231A JP2007335100A JP 2007335100 A JP2007335100 A JP 2007335100A JP 2006162231 A JP2006162231 A JP 2006162231A JP 2006162231 A JP2006162231 A JP 2006162231A JP 2007335100 A JP2007335100 A JP 2007335100A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- partial pressure
- oxygen partial
- wire
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
本発明は、超電導ケーブル、超電導コイル、超電導変圧器、超電導電力貯蔵装置等の超電導機器に用いられる(Bi,Pb)2Sr2Ca2Cu3O10±δ(δは0.1程度の数:以下(Bi,Pb)2223とする)相を含む酸化物超電導線材の製造方法に関し、詳しくは(Bi,Pb)2223超電導線材の臨界電流値向上を目的とする酸化物超電導線材の製造方法および超電導機器に関する。 The present invention is used for superconducting equipment such as superconducting cables, superconducting coils, superconducting transformers, superconducting power storage devices, etc. (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O 10 ± δ (δ is a number of about 0.1) The following description relates to a method for manufacturing an oxide superconducting wire containing a phase (hereinafter referred to as (Bi, Pb) 2223), and more specifically, a method for manufacturing an oxide superconducting wire for the purpose of improving the critical current value of (Bi, Pb) 2223 superconducting wire It relates to superconducting equipment.
金属シース法で作製された(Bi,Pb)2223相を主成分とする酸化物超電導線材は高い臨界温度を持ち、かつ、液体窒素温度等の比較的簡単な冷却下でも高い臨界電流値を示す有用な線材である(例えば、非特許文献1を参照)。だが、更なる性能(臨界電流値)の向上が実現すれば、より実用に供される範囲が広がる。 An oxide superconducting wire mainly composed of (Bi, Pb) 2223 phase produced by a metal sheath method has a high critical temperature and a high critical current value even under relatively simple cooling such as liquid nitrogen temperature. It is a useful wire (for example, refer nonpatent literature 1). However, if further improvement in performance (critical current value) is realized, the range of practical use will expand.
また、上記(Bi,Pb)2223超電導材線材を使用することによって、従来の常伝導導体を用いるよりはるかにエネルギー損失を低減することが可能であると考えられている。そのため(Bi,Pb)2223超電導材線材を導体として用いた超電導ケーブル、超電導コイル、超電導変圧器、超電導電力貯蔵装置等の超電導応用機器開発も同時に進められている。 In addition, it is considered that by using the (Bi, Pb) 2223 superconducting wire, it is possible to reduce energy loss far more than when using a conventional normal conductor. Therefore, development of superconducting application equipment such as a superconducting cable, a superconducting coil, a superconducting transformer, a superconducting power storage device using a (Bi, Pb) 2223 superconducting material wire as a conductor is being promoted at the same time.
超電導線材の臨界電流値を上げる方法としては、(Bi,Pb)2223系超電導線材を加圧された雰囲気下において焼結する方法が採用されている(特許文献1および非特許文献1を参照)。これにより液体窒素温度での臨界電流値は約100Aから120A級に向上している。
As a method for increasing the critical current value of a superconducting wire, a method of sintering a (Bi, Pb) 2223 series superconducting wire in a pressurized atmosphere is employed (see
上記の技術によっても、臨界電流値向上の効果は認められる。しかしながら、今後の市場からのニーズを考えれば、さらなる臨界電流値の増大が望まれる。そこで本発明はより臨界電流値の高い酸化物超電導線材の製造方法を提供することを目的とする。 The effect of improving the critical current value is also recognized by the above technique. However, considering the needs from the future market, further increase of the critical current value is desired. Therefore, an object of the present invention is to provide a method for producing an oxide superconducting wire having a higher critical current value.
本発明者らは、(Bi,Pb)2223線材の熱処理工程を検討しそこに焼鈍工程を加え、その焼鈍条件に特徴を持たせることによって、臨界電流値が向上することを見出した。 The present inventors have found that the critical current value is improved by examining the heat treatment step of the (Bi, Pb) 2223 wire, adding an annealing step thereto, and giving the annealing conditions characteristics.
本発明は、金属パイプに原料粉末を充填する工程、充填後の該金属パイプを塑性加工し金属被覆前駆体線材を形成する工程、該金属被覆前駆体線材を熱処理して(Bi,Pb)2223超電導相を形成する工程、前記熱処理後に酸素を含む雰囲気下で焼鈍を施す工程を備える金属被覆酸化物超電導線材の製造方法であって、前記焼鈍工程中に酸素分圧を1kPa以上減少させることを特徴とする酸化物超電導線材の製造方法である。 The present invention includes a step of filling a metal pipe with raw material powder, a step of plastically processing the metal pipe after filling to form a metal-coated precursor wire, and heat-treating the metal-coated precursor wire (Bi, Pb) 2223. A method for producing a metal-coated oxide superconducting wire comprising a step of forming a superconducting phase and a step of annealing in an atmosphere containing oxygen after the heat treatment, wherein the oxygen partial pressure is reduced by 1 kPa or more during the annealing step. It is the manufacturing method of the oxide superconducting wire characterized.
本発明において、前記焼鈍工程中に、雰囲気の温度を10℃以上下げることが好ましい。 In the present invention, it is preferable to lower the temperature of the atmosphere by 10 ° C. or more during the annealing step.
本発明において、前記焼鈍工程は、雰囲気の全圧が1MPa以上の圧力下で行われることが好ましい。 In this invention, it is preferable that the said annealing process is performed under the pressure whose total pressure of atmosphere is 1 Mpa or more.
また本発明において、前記焼鈍工程中に、酸素分圧が5kPa以上から5kPa未満になるよう酸素分圧を1kPa以上減少させることが好ましい。 In the present invention, it is preferable to reduce the oxygen partial pressure by 1 kPa or more during the annealing step so that the oxygen partial pressure is 5 kPa or more and less than 5 kPa.
さらに本発明において、前記焼鈍工程中に、酸素分圧が5kPa以上から3kPa以下になるよう酸素分圧を減少させることが好ましい。 Furthermore, in the present invention, it is preferable to reduce the oxygen partial pressure during the annealing step so that the oxygen partial pressure becomes 5 kPa or more and 3 kPa or less.
また本発明は、上記のいずれかに記載の製造方法により製造された酸化物超電導線材を導体として含む超電導機器である。 Moreover, this invention is a superconducting apparatus which contains the oxide superconducting wire manufactured by the manufacturing method in any one of said as a conductor.
本発明の製造方法によれば、高い臨界電流値を有する(Bi,Pb)2223酸化物超電導線材を得ることができる。また本発明の酸化物超電導線材を導体として用いることにより、高性能な超電導ケーブル、超電導コイル、超電導変圧器、超電導電力貯蔵装置等の超電導機器を実現できる。 According to the production method of the present invention, a (Bi, Pb) 2223 oxide superconducting wire having a high critical current value can be obtained. Moreover, by using the oxide superconducting wire of the present invention as a conductor, it is possible to realize superconducting equipment such as a high-performance superconducting cable, a superconducting coil, a superconducting transformer, and a superconducting power storage device.
(実施の形態)
図1は、酸化物超電導線材の構成を模式的に示す部分断面斜視図である。図1を参照して、例えば、多芯線の酸化物超電導線材について説明する。酸化物超電導線材11は、長手方向に伸びる複数本の酸化物超電導体フィラメント12と、それらを被覆するシース部13とを有している。複数本の酸化物超電導体フィラメント12の各々の材質は、Bi−Pb−Sr−Ca−Cu−O系の組成が好ましく、特に(Bi、Pb):Sr:Ca:Cuの原子比がほぼ2:2:2:3の比率で近似して表される(Bi、Pb)2223相を含む材質が最適である。シース部13の材質は、例えば銀や銀合金等の金属から構成される。
(Embodiment)
FIG. 1 is a partial cross-sectional perspective view schematically showing the configuration of an oxide superconducting wire. For example, a multi-core oxide superconducting wire will be described with reference to FIG. The oxide
次に、上記の酸化物超電導線材の製造方法について説明する。 Next, the manufacturing method of said oxide superconducting wire is demonstrated.
図2は、本発明の実施の形態における酸化物超電導線材の製造工程を示すフロー図である。また図3〜7は、図2の各工程を示す図である。 FIG. 2 is a flowchart showing a manufacturing process of the oxide superconducting wire in the embodiment of the present invention. 3 to 7 are diagrams showing each step of FIG.
図2および図3を参照して、まず、酸化物超電導体の前駆体粉末31を金属管32に充填する(ステップS1)。この酸化物超電導体の前駆体粉末31は、例えば(Bi,Pb)2Sr2Ca1Cu2O8±δ(δは0.1に近い数:以下(Bi,Pb)2212と呼ぶ)相を主相とし、(Bi,Pb)2223相、アルカリ土類酸化物(例えば、(Ca,Sr)CuO2、(Ca,Sr)2CuO3、(Ca,Sr)14Cu24O41等)、Pb酸化物(例えば、Ca2PbO4、(Bi,Pb)3Sr2Ca2Cu1Oz)を含む材質よりなっている。なお、金属管32としては銀や銀合金を用いることが好ましい。これは前駆体粉末と金属管が反応して化合物を形成することによる、前駆体粉末の組成ずれを防ぐためである。
Referring to FIGS. 2 and 3, first, oxide
次に、図2および図4に示すように、上記前駆体粉末が充填された金属管41を所望の直径まで伸線加工し、前駆体42を芯材として銀などの金属に被覆された単芯線43を作製する(ステップS2)。
Next, as shown in FIG. 2 and FIG. 4, the
次に、図2および図5に示すように、この単芯線51を多数束ねて、例えば銀等からなる金属管52内に嵌合する(多芯嵌合:ステップS3)。これにより、前駆体粉末を芯材として多数有する多芯構造材が得られる。 Next, as shown in FIGS. 2 and 5, a large number of single core wires 51 are bundled and fitted into a metal tube 52 made of, for example, silver (multi-core fitting: step S3). Thereby, the multi-core structure material which has many precursor powders as a core material is obtained.
次に、図2および図6に示すように、多芯構造材61を所望の直径まで伸線加工し、前駆体粉末62が金属シース部63に埋め込まれ、断面形状が円状あるいは多角形状の等方的多芯母線64を作製する(ステップS4)。これにより、酸化物超電導線材の前駆体粉末62を金属で被覆した形態を有する等方的多芯母線64が得られる。
Next, as shown in FIGS. 2 and 6, the multi-core
次に、図2および図7に示すように、この等方的多芯母線71を圧延する(1次圧延:ステップS5)。これによりテープ状前駆体線材72が得られる。
Next, as shown in FIGS. 2 and 7, the isotropic multi-core bus bar 71 is rolled (primary rolling: step S5). Thereby, the tape-
次に、テープ状前駆体線材を熱処理する(1次熱処理:ステップS6)。この熱処理は、例えば大気圧下、または1MPa以上50MPa以下の加圧雰囲気において約830℃の温度で行われる。熱処理によって前駆体粉末から目的とする(Bi,Pb)2223超電導相が生成される。 Next, the tape-shaped precursor wire is heat-treated (primary heat treatment: step S6). This heat treatment is performed at a temperature of about 830 ° C., for example, under atmospheric pressure or in a pressurized atmosphere of 1 MPa to 50 MPa. The target (Bi, Pb) 2223 superconducting phase is generated from the precursor powder by heat treatment.
その後、再び線材を圧延する(2次圧延:ステップS7)。このように、2次圧延を行うことにより、1次熱処理で生じたボイドが除去される。 Thereafter, the wire is rolled again (secondary rolling: step S7). In this way, voids generated by the primary heat treatment are removed by performing the secondary rolling.
続いて、例えば830℃の温度で線材を熱処理する(2次熱処理:ステップS8)。このときも、大気圧下、または加圧雰囲気で熱処理する。以上の製造工程により、図1に示す酸化物超電導線材が得られる。 Subsequently, for example, the wire is heat-treated at a temperature of 830 ° C. (secondary heat treatment: step S8). Also at this time, heat treatment is performed under atmospheric pressure or in a pressurized atmosphere. The oxide superconducting wire shown in FIG. 1 is obtained by the above manufacturing process.
以上までの製造工程により、焼鈍工程を施さない酸化物超電導線材が得られる。この段階で得られる酸化物超電導線材も臨界電流値120A級のものであるが、より高い臨界電流値が望まれる。 The oxide superconducting wire which does not perform an annealing process is obtained by the above manufacturing process. The oxide superconducting wire obtained at this stage also has a critical current value of 120 A class, but a higher critical current value is desired.
そこで本実施の形態では、上記で得られた酸化物超電導線材に対して、さらに焼鈍工程(ステップS9)を施す。 Therefore, in this embodiment, an annealing step (step S9) is further performed on the oxide superconducting wire obtained above.
本願発明者らが施す焼鈍工程は、その工程中に酸素分圧を1kPa以上減少させるものである。これにより高い臨界電流値を有する超電導線材が得られることを見出した。以下にこの焼鈍工程の態様とその効果を説明する。 The annealing process performed by the inventors of the present application reduces the oxygen partial pressure by 1 kPa or more during the process. As a result, it was found that a superconducting wire having a high critical current value can be obtained. Below, the aspect and effect of this annealing process are demonstrated.
酸化物超電導体のようなセラミック材料における熱処理は、大きく3つに分類される。一つ目は大きな相変化を促す熱処理である。例えば(Bi,Pb)2223線材においては、前駆体である(Bi,Pb)2212相を、目的とする(Bi,Pb)2223相へ変態させるような処理であり、熱処理の前後で形成されている化合物の化学組成が大きく変化する。(Bi,Pb)2223線材の製造工程では1次熱処理(ステップS6)がこれに相当する。 Heat treatment in ceramic materials such as oxide superconductors can be broadly classified into three. The first is heat treatment that promotes a large phase change. For example, in the (Bi, Pb) 2223 wire, the (Bi, Pb) 2212 phase that is the precursor is transformed into the target (Bi, Pb) 2223 phase, which is formed before and after the heat treatment. The chemical composition of the compound is greatly changed. In the manufacturing process of (Bi, Pb) 2223 wire, primary heat treatment (step S6) corresponds to this.
二つ目は一般的に「焼結」と言われる熱処理であり、存在する化合物自体の化学組成は変化しないが、化合物の粒同士を強固に結合させることを目的として行われるものである。この熱処理によりばらばらで電気的、機械的結合が希薄な孤立した粒状態から、それらが一体に結合したような組織に大きく変化する。(Bi,Pb)2223線材の製造工程では2次熱処理(ステップS8)がこれに相当する。 The second is a heat treatment generally referred to as “sintering”, which is performed for the purpose of firmly bonding the particles of the compound, although the chemical composition of the existing compound itself does not change. This heat treatment greatly changes from an isolated grain state in which electrical and mechanical bonds are disjoint and thin to a structure in which they are integrally bonded. In the manufacturing process of the (Bi, Pb) 2223 wire, secondary heat treatment (step S8) corresponds to this.
本発明の「焼鈍」あるいは「焼きなまし」は上記2つとは異なり、マクロな観点の変化は少なく、ミクロな変化を促すものである。よって温度的には上記2つの熱処理が起こらないような低温で行われるものである。(Bi,Pb)2223相で言えば、(Bi,Pb)2Sr2Ca2Cu3O10±δの酸素量δ、あるいはPb含有量を変えることが焼鈍によって行える。これにより(Bi,Pb)2223相の電気伝導を担う電子やホールといったキャリア量が増減し、超電導特性が変化する。 The “annealing” or “annealing” of the present invention, unlike the above two, has little change in macro viewpoint and promotes micro change. Therefore, in terms of temperature, the heat treatment is performed at such a low temperature that the two heat treatments do not occur. In the case of the (Bi, Pb) 2223 phase, the oxygen content δ or the Pb content of (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O 10 ± δ can be changed by annealing. As a result, the amount of carriers such as electrons and holes responsible for electrical conduction in the (Bi, Pb) 2223 phase increases and decreases, and the superconducting characteristics change.
また前記のような、超電導相中のPb等陽イオン量、陰イオンである酸素量の増減だけではなく、それらイオン成分の均一分散を誘導する効果もある。また直前の熱処理の冷却過程で導入された歪を緩和する効果もある。これらイオン成分の均一性の増加、歪の緩和により、電気伝導を担うキャリアの散乱が抑えられ、伝導性が良好になり、臨界電流値が向上する。 In addition to the increase / decrease in the amount of cations such as Pb and the amount of oxygen as anions in the superconducting phase as described above, there is an effect of inducing uniform dispersion of these ion components. There is also an effect of relaxing the strain introduced in the cooling process of the immediately preceding heat treatment. By increasing the uniformity of these ionic components and relaxing the strain, scattering of carriers responsible for electrical conduction is suppressed, the conductivity is improved, and the critical current value is improved.
本発明では上記の焼鈍作用の内、主として(Bi,Pb)2223相のPb含有量を変化させることに主眼をおいたものである。800℃程度の温度において、(Bi,Pb)2223相のようなセラミック材料中に含まれるPb元素は高酸素分圧側でPb4+イオンとして存在しやすい。一方低酸素分圧側ではPb2+イオンとして存在しやすい。 The present invention mainly focuses on changing the Pb content of the (Bi, Pb) 2223 phase among the above-described annealing actions. At a temperature of about 800 ° C., the Pb element contained in the ceramic material such as the (Bi, Pb) 2223 phase tends to exist as Pb 4+ ions on the high oxygen partial pressure side. On the other hand, it tends to exist as Pb 2+ ions on the low oxygen partial pressure side.
(Bi,Pb)2223相中において、Pb元素はPb2+イオン状態で存在割合が多いと考えられている。よってPb4+イオン状態が安定な高酸素分圧側では、(Bi,Pb)2223相中のPb元素の固溶度が低くなり(Bi,Pb)2223相からPb元素が排出されCa2PbO4、(Bi,Pb)3Sr2Ca2Cu1OzのようなPbが4価である化合物(以下Pb4価化合物と呼ぶ)として析出しやすい。 In the (Bi, Pb) 2223 phase, it is considered that the Pb element is present in a Pb 2+ ion state in a large proportion. Therefore, on the high oxygen partial pressure side where the Pb 4+ ion state is stable, the solid solubility of the Pb element in the (Bi, Pb) 2223 phase becomes low, and the Pb element is discharged from the (Bi, Pb) 2223 phase, and Ca 2 PbO 4 , (Bi, Pb) 3 Sr 2 Ca 2 Cu 1 O z , such as a compound in which Pb is tetravalent (hereinafter referred to as Pb tetravalent compound) is likely to precipitate.
これら、高酸素分圧側で析出したPb4価化合物は、例えば一定温度にさらしておいて酸素分圧だけを下げていくとPb4価化合物は分解し、(Bi,Pb)2223相中のPb元素の固溶度が高くなり、Pb元素が(Bi,Pb)2223相中へ取り込まれる現象がおこる。本発明者らは、この現象が臨界電流値の向上につながることを見出した。 These Pb tetravalent compounds precipitated on the high oxygen partial pressure side decompose, for example, by lowering only the oxygen partial pressure by exposing them to a constant temperature, and the Pb element in the (Bi, Pb) 2223 phase is decomposed. The solid solubility increases, and a phenomenon occurs in which the Pb element is taken into the (Bi, Pb) 2223 phase. The present inventors have found that this phenomenon leads to an improvement in the critical current value.
つまりある高酸素分圧状態で、一旦Pb元素をPb4価化合物として存在させ、その状態から酸素分圧を低下させ、Pb4価化合物を分解し(Bi,Pb)2223相にPb元素を取り込ませるという操作である。この際、酸素分圧の変化が1kPa未満では、Pb4価化合物の分解量、(Bi,Pb)2223相中のPb元素の固溶度変化が十分でないので、臨界電流値の変化も小さい。 In other words, in a certain high oxygen partial pressure state, the Pb element is once present as a Pb tetravalent compound, and from that state, the oxygen partial pressure is lowered, the Pb tetravalent compound is decomposed and the Pb element is taken into the (Bi, Pb) 2223 phase. It is an operation. At this time, if the change in oxygen partial pressure is less than 1 kPa, the amount of decomposition of the Pb tetravalent compound and the change in solid solubility of the Pb element in the (Bi, Pb) 2223 phase are not sufficient, so the change in critical current value is also small.
ここで焼鈍工程について説明する。図8はいくつかの焼鈍工程における温度および酸素分圧プロファイルを模式的にあらわした図である。温度パターンにおけるA点およびB点はいずれも室温である。(Bi,Pb)2223相は300℃以上の温度において、酸素の出入り、Pb元素の出入り等の化学的反応がおこる。しかしながら室温から300℃までの昇温過程、300℃から室温までの降温過程は、実工程上、避けられない付加的な要素である。よって本発明における焼鈍工程中に酸素分圧を1kPa以上減少させるとは、300℃以上の領域でなされるものである。つまり300℃以上の状態における酸素分圧の変化を対象とする。 Here, the annealing process will be described. FIG. 8 is a diagram schematically showing temperature and oxygen partial pressure profiles in several annealing processes. Both the points A and B in the temperature pattern are room temperature. The (Bi, Pb) 2223 phase undergoes chemical reactions such as the entry and exit of oxygen and the entry and exit of Pb elements at a temperature of 300 ° C. or higher. However, the temperature increasing process from room temperature to 300 ° C. and the temperature decreasing process from 300 ° C. to room temperature are inevitable additional elements in actual processes. Therefore, reducing the oxygen partial pressure by 1 kPa or more during the annealing step in the present invention is performed in a region of 300 ° C. or more. That is, the change in oxygen partial pressure in a state of 300 ° C. or higher is targeted.
また、温度変化のパターンは図8中に示されるように、等温(パターン1)、一定速度変化(パターン2)、階段状変化(パターン3)等各種が採用できる。また酸素分圧変化も同様に、一定速度減圧(パターンA)、階段状減圧(パターンB)等が採用でき、温度と酸素分圧の変化パターンはこれらの組み合わせで適宜選択できる In addition, as shown in FIG. 8, various patterns such as isothermal (pattern 1), constant speed change (pattern 2), step change (pattern 3) can be adopted as the temperature change pattern. Similarly, the oxygen partial pressure change can also be a constant rate pressure reduction (pattern A), stepped pressure reduction (pattern B), etc., and the temperature and oxygen partial pressure change pattern can be appropriately selected by a combination thereof.
本発明においては、焼鈍工程中に雰囲気温度を10℃以上下げることも好ましい。これはPb4価化合物の安定性は、温度にも依存するからである。(Bi,Pb)2223相が溶融しない程度の領域においては、高温側でPb4価化合物が安定に存在しやすい。一方低温側では不安定である。よってPb4価化合物の分解を促進させるためには、酸素分圧の低下とともに、温度を低下させてやることが好ましい。その際10℃以上の温度低下があればより効果的である。 In the present invention, it is also preferable to lower the ambient temperature by 10 ° C. or more during the annealing step. This is because the stability of the Pb tetravalent compound also depends on the temperature. In the region where the (Bi, Pb) 2223 phase does not melt, the Pb tetravalent compound tends to exist stably on the high temperature side. On the other hand, it is unstable on the low temperature side. Therefore, in order to promote the decomposition of the Pb tetravalent compound, it is preferable to decrease the temperature as the oxygen partial pressure decreases. In that case, it is more effective if there is a temperature drop of 10 ° C. or more.
また、全圧が1MPa以上の圧力をかけながら焼鈍を行うことも効果的であることを見出した。焼鈍工程中、ガス成分の出入り、歪の緩和、微小成分の析出により、(Bi,Pb)2223相粒間の結合が緩くなることもある。圧力をかけながら焼鈍を行うことで、(Bi,Pb)2223相粒間結合を焼鈍前の状態で維持させることができる。これにより粒間の結合が維持され、焼鈍で導入される効果がそのまま上乗せされ、より大きな臨界電流値の向上がある。 It has also been found effective to perform annealing while applying a total pressure of 1 MPa or more. During the annealing process, the bonding between (Bi, Pb) 2223 phase grains may be loosened due to the entry and exit of gas components, the relaxation of strain, and the precipitation of minute components. By performing the annealing while applying pressure, the (Bi, Pb) 2223 intergranular bond can be maintained in the state before annealing. Thereby, the bond between grains is maintained, the effect introduced by annealing is added as it is, and there is a larger improvement in critical current value.
また酸素分圧が5kPa以上から5kPa未満になるよう酸素分圧を1kPa以上減少させることがより効果的である。発明者らは焼鈍に適用される温度範囲において、酸素分圧が5kPa近傍で同じPb4価化合物として定義されるCa2PbO4相と(Bi,Pb)3Sr2Ca2Cu1Oz相との間に相転移があることを見出した。この相転移境界をまたいでPb元素を(Bi,Pb)2223相に取り込ませるとより効果的である。 It is more effective to reduce the oxygen partial pressure by 1 kPa or more so that the oxygen partial pressure is 5 kPa or more and less than 5 kPa. In the temperature range applied to annealing, the inventors have defined a Ca 2 PbO 4 phase and (Bi, Pb) 3 Sr 2 Ca 2 Cu 1 O z phase defined as the same Pb tetravalent compound at an oxygen partial pressure of around 5 kPa. It was found that there was a phase transition between. It is more effective to incorporate the Pb element into the (Bi, Pb) 2223 phase across the phase transition boundary.
さらには、酸素分圧が5kPa以上から3kPa以下になるよう酸素分圧を減少させると、Pbの吸収量がより多くなり、格段の効果があることも見出した。 Furthermore, it has also been found that when the oxygen partial pressure is decreased so that the oxygen partial pressure is 5 kPa or more and 3 kPa or less, the amount of Pb absorbed is increased and a remarkable effect is obtained.
また発明者らは、焼鈍工程は、(Bi,Pb)2223超電導相を形成する熱処理工程において、線材中に含まれる(Bi,Pb)2223超電導相の存在割合が最大にされた後に行われることが好ましいことも見出している。 In addition, the inventors have performed the annealing process after the (Bi, Pb) 2223 superconducting phase contained in the wire is maximized in the heat treatment process for forming the (Bi, Pb) 2223 superconducting phase. Has also been found to be preferable.
前記したように(Bi,Pb)2223線材においては、前駆体である(Bi,Pb)2212相を、目的とする(Bi,Pb)2223相へ変態させるような熱処理を施す。この熱処理は線材中の(Bi,Pb)2223超電導相の存在割合が最大になるように、840℃程度の温度で30〜100時間程度の条件で行われる。ここで熱処理時間が短すぎると、(Bi,Pb)2223相へ変態が充分進行せず、(Bi,Pb)2223超電導相の存在割合が少ない状態で停止することになる。一方、熱処理時間が長すぎると、一旦出来上がった(Bi,Pb)2223超電導相が分解してしまい、(Bi,Pb)2223超電導相の存在割合が減少する。 As described above, the (Bi, Pb) 2223 wire is subjected to heat treatment to transform the precursor (Bi, Pb) 2212 phase into the desired (Bi, Pb) 2223 phase. This heat treatment is performed at a temperature of about 840 ° C. for about 30 to 100 hours so that the ratio of the (Bi, Pb) 2223 superconducting phase in the wire is maximized. If the heat treatment time is too short, the transformation does not proceed sufficiently to the (Bi, Pb) 2223 phase, and the process stops with a small proportion of the (Bi, Pb) 2223 superconducting phase. On the other hand, if the heat treatment time is too long, the completed (Bi, Pb) 2223 superconducting phase is decomposed, and the existing ratio of the (Bi, Pb) 2223 superconducting phase is reduced.
また前述したように、焼鈍は通常、相変態、粒結合が起こらないような温度に設定されるため、(Bi,Pb)2223超電導相への相変態および、粒結合反応は焼鈍だけでは完結しない。よって、焼鈍前に相変態、粒結合は完了していることが好ましい。 Further, as described above, since annealing is usually set at a temperature at which phase transformation and grain bonding do not occur, phase transformation to the (Bi, Pb) 2223 superconducting phase and grain bonding reaction are not completed by annealing alone. . Therefore, it is preferable that phase transformation and grain bonding are completed before annealing.
また本発明にかかる超電導機器は、上記のような臨界電流値の高い超電導線材から構成されるため、優れた超電導特性を有する。ここで、超電導機器は、上記超電導線材を含むものであれば特に制限なく、超電導ケーブル、超電導コイル、超電導変圧器、超電導電力貯蔵装置などが挙げられる。 Moreover, since the superconducting device according to the present invention is composed of the superconducting wire having a high critical current value as described above, it has excellent superconducting characteristics. Here, the superconducting device is not particularly limited as long as it includes the superconducting wire, and examples thereof include a superconducting cable, a superconducting coil, a superconducting transformer, and a superconducting power storage device.
(実施例1)
以下、実施例に基づき、本発明をさらに具体的に説明する。
Example 1
Hereinafter, based on an Example, this invention is demonstrated further more concretely.
原料粉末(Bi2O3, PbO, SrCO3, CaCO3, CuO)をBi:Pb:Sr:Ca:Cu=1.8:0.3:1.9:2.0:3.0の比率で混合し、大気中で700℃×8時間の熱処理、粉砕、800℃×10時間の熱処理、粉砕、840℃×4時間の熱処理、粉砕の処理を施し前駆体粉末を得る。また、5種類の原料粉末が溶解した硝酸水溶液を、加熱された炉内に噴射することにより、金属硝酸塩水溶液の粒子の水分が蒸発し、硝酸塩の熱分解、そして金属酸化物同士の反応、合成を瞬時に起こさせる噴霧熱分解法で前駆体粉末を作製することもできる。こうして作製された前駆体粉末は、(Bi,Pb)2212相が主体となった粉末である。 Raw material powder (Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , CuO) is Bi: Pb: Sr: Ca: Cu = 1.8: 0.3: 1.9: 2.0: 3.0 And are subjected to heat treatment at 700 ° C. for 8 hours, pulverization, heat treatment at 800 ° C. for 10 hours, pulverization, heat treatment at 840 ° C. for 4 hours, and pulverization in the air to obtain a precursor powder. In addition, by injecting a nitric acid aqueous solution in which five types of raw material powders are dissolved into a heated furnace, the water content of the metal nitrate aqueous solution particles evaporates, the thermal decomposition of the nitrate, and the reaction and synthesis of metal oxides. Precursor powder can also be produced by a spray pyrolysis method that instantly raises. The precursor powder thus produced is a powder mainly composed of the (Bi, Pb) 2212 phase.
上記により作製された前駆体粉末を外径25mm、内径22mmの銀パイプに充填し、直径2.4mmまで伸線して単芯線を作製する。この単芯線を55本に束ねて外径25mm、内径22mmの銀パイプに挿入し、直径1.5mmまで伸線し、多芯(55芯)線材を得る。この多芯線を圧延し、厚み0.25mmのテープ状線材に加工する。得られたテープ状線材を全圧1気圧(0.1MPa)、酸素分圧8kPaの雰囲気中で840℃、30時間〜50時間の1次熱処理を施す。 The precursor powder produced as described above is filled into a silver pipe having an outer diameter of 25 mm and an inner diameter of 22 mm, and drawn to a diameter of 2.4 mm to produce a single core wire. The single core wires are bundled into 55, inserted into a silver pipe having an outer diameter of 25 mm and an inner diameter of 22 mm, and drawn to a diameter of 1.5 mm to obtain a multi-core (55 core) wire. This multi-core wire is rolled and processed into a tape-like wire having a thickness of 0.25 mm. The obtained tape-shaped wire is subjected to primary heat treatment at 840 ° C. for 30 to 50 hours in an atmosphere having a total pressure of 1 atm (0.1 MPa) and an oxygen partial pressure of 8 kPa.
1次熱処理後のテープ状線材を厚み0.23mmになるように再圧延する。再圧延後のテープ状線材に酸素分圧8kPaを含む、全圧30MPaの加圧雰囲気下にて830℃、50時間〜100時間の2次熱処理を施す。一部はこの状態で工程を終了させ臨界電流値(Ic)を測定した。一部はその後、温度、全圧、酸素分圧の各種条件下で焼鈍工程を施し、特性評価をおこなった。その焼鈍条件および評価結果を表1に記す。 The tape-shaped wire after the primary heat treatment is re-rolled to a thickness of 0.23 mm. The tape-shaped wire after re-rolling is subjected to a secondary heat treatment at 830 ° C. for 50 to 100 hours in a pressurized atmosphere containing an oxygen partial pressure of 8 kPa and a total pressure of 30 MPa. Some finished the process in this state and measured the critical current value (Ic). Some of them were then subjected to an annealing process under various conditions of temperature, total pressure, and oxygen partial pressure, and the characteristics were evaluated. The annealing conditions and evaluation results are shown in Table 1.
臨界電流値は、温度77K、ゼロ磁場中、四端子法で電流―電圧曲線を測定し、その曲線から線材1cmあたり1×10−6Vの電圧を発生させる電流を臨界電流値と定義した。 For the critical current value, a current-voltage curve was measured by a four-terminal method at a temperature of 77 K and in a zero magnetic field, and a current that generates a voltage of 1 × 10 −6 V per 1 cm of wire was defined as the critical current value.
表1中焼鈍開始温度は、室温から昇温し到達した最高温度である。それ以後その温度を維持するか、制御して降温する。焼鈍開始酸素分圧とは焼鈍開始温度時の酸素分圧である。焼鈍終了温度とは、制御しながら降温した最終温度である。それ以後は自然冷却する。焼鈍終了酸素分圧とは、焼鈍終了温度時点での酸素分圧である。 The annealing start temperature in Table 1 is the highest temperature reached from room temperature. Thereafter, the temperature is maintained or controlled and the temperature is lowered. The annealing starting oxygen partial pressure is the oxygen partial pressure at the annealing starting temperature. The annealing end temperature is the final temperature lowered while being controlled. After that, naturally cool. The annealing end oxygen partial pressure is the oxygen partial pressure at the time of annealing end temperature.
表1の試料に適用された焼鈍パターンは、図8中記載の開始点が表1に記載の焼鈍開始に、図8中終了点が表1中焼鈍終了に対応するよう設定した。またこれらの試料は等温あるいは一定速度温度変化と、一定速度減圧の組み合わせで焼鈍工程が施された。 The annealing pattern applied to the samples in Table 1 was set so that the start point shown in FIG. 8 corresponds to the start of annealing shown in Table 1 and the end point in FIG. 8 corresponds to the end of annealing in Table 1. These samples were subjected to an annealing process by a combination of isothermal or constant speed temperature change and constant speed depressurization.
試料番号1(比較例)は、二次熱処理で工程を終了しているため、本発明の加圧焼鈍を施していない。試料番号2(比較例)は酸素分圧の変化が0.5kPaである。焼鈍を施していない試料番号1は、臨界電流値120Aである。酸素分圧変化が小さい試料番号2(比較例)では臨界電流値の向上は見られなかった。一方、本発明に従って酸素分圧の変化を1kPa以上に設定した試料番号3〜8では臨界電流値の向上が見られた。 Sample No. 1 (Comparative Example) is not subjected to the pressure annealing of the present invention because the process is completed by the secondary heat treatment. Sample No. 2 (Comparative Example) has a change in oxygen partial pressure of 0.5 kPa. Sample No. 1 that has not been annealed has a critical current value of 120A. In Sample No. 2 (Comparative Example) in which the change in oxygen partial pressure was small, no improvement in the critical current value was observed. On the other hand, in Sample Nos. 3 to 8 in which the change in oxygen partial pressure was set to 1 kPa or more according to the present invention, the critical current value was improved.
焼鈍工程中の温度変化の無い試料番号3と、温度変化を伴った焼鈍を施された試料番号4を比較すると、温度変化を伴った焼鈍工程は効果が大きいことがわかる。また試料番号4、5、6を比較すると焼鈍雰囲気の全圧が高いほど、臨界電流値が大きくなっていることがわかる。さらには、試料番号6、7の比較から、同じ酸素分圧1kPaの降圧であっても、5kPaをまたぐように酸素分圧を変化させた焼鈍工程の方が効果的である。試料番号8から、酸素分圧5kPa以上から3kPa以下まで降圧する工程がより好ましいことがわかる。
Comparing
(実施例2)
実施例1において、二次熱処理を施された線材に対し、より大きな酸素分圧変化および、より大きな焼鈍温度変化を伴った焼鈍工程を施した。この際、全圧は30MPa、焼鈍時間は200時間に固定し、温度、酸素分圧とも一定速度で変化させた。それらの試料について実施例1と同様に臨界電流値を測定した。
(Example 2)
In Example 1, an annealing process accompanied by a larger oxygen partial pressure change and a larger annealing temperature change was performed on the wire subjected to the secondary heat treatment. At this time, the total pressure was fixed at 30 MPa, the annealing time was fixed at 200 hours, and both temperature and oxygen partial pressure were changed at a constant rate. The critical current values of these samples were measured in the same manner as in Example 1.
表2に示される焼鈍条件を図9にあらわす。図9は横軸に酸素分圧、縦軸に温度が設定されている。表2中の焼鈍開始は図9中の高酸素分圧および高温側の焼鈍開始点であり、焼鈍終了は図9中の焼鈍終了点である。本実施例においては、いずれの試料においても臨界電流値の大幅な上昇が見られ、150A以上の臨界電流値が得られている。 The annealing conditions shown in Table 2 are shown in FIG. In FIG. 9, the horizontal axis represents oxygen partial pressure, and the vertical axis represents temperature. The annealing start in Table 2 is the high oxygen partial pressure and the high temperature side annealing starting point in FIG. 9, and the annealing end is the annealing end point in FIG. In this example, the critical current value is significantly increased in any sample, and a critical current value of 150 A or more is obtained.
この結果から、図9中(酸素分圧(kPa)、熱処理温度(℃))の関係が(0.5、680)、(0.5、790)、(7、810)、(7、780)の4点で囲まれた範囲において、高酸素分圧および高温側から、低酸素分圧および低温側へ、酸素分圧および温度が移行する焼鈍条件が効果的であることがわかる。 From these results, the relationships between (oxygen partial pressure (kPa) and heat treatment temperature (° C.)) in FIG. 9 are (0.5, 680), (0.5, 790), (7, 810), (7, 780). ) In the range surrounded by four points, it can be seen that the annealing conditions in which the oxygen partial pressure and temperature shift from the high oxygen partial pressure and high temperature side to the low oxygen partial pressure and low temperature side are effective.
今回開示された実施の形態および実施例は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
11 酸化物超電導線材、12 酸化物超電導フィラメント、13 シース部、31 前駆体粉末、32 金属管 41 前駆体粉末が充填された金属管、42 前駆体、43 単芯線、51 単芯線、52 金属管、61 多芯構造材、62 前駆体原料粉末、63 金属シース部、64 等方的多芯母線、71 等方的多芯母線、72 テープ状前駆体線材。
DESCRIPTION OF
Claims (6)
A superconducting device comprising, as a conductor, an oxide superconducting wire manufactured by the manufacturing method according to any one of claims 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006162231A JP2007335100A (en) | 2006-06-12 | 2006-06-12 | Manufacturing method of oxide superconducting wire and superconducting equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006162231A JP2007335100A (en) | 2006-06-12 | 2006-06-12 | Manufacturing method of oxide superconducting wire and superconducting equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007335100A true JP2007335100A (en) | 2007-12-27 |
Family
ID=38934381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006162231A Pending JP2007335100A (en) | 2006-06-12 | 2006-06-12 | Manufacturing method of oxide superconducting wire and superconducting equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007335100A (en) |
-
2006
- 2006-06-12 JP JP2006162231A patent/JP2007335100A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4752505B2 (en) | Method for manufacturing oxide superconducting wire and method for modifying oxide superconducting wire | |
JP4111240B1 (en) | Oxide superconducting material, manufacturing method thereof, superconducting wire, superconducting equipment | |
JP2008140769A (en) | METHOD FOR MANUFACTURING Bi2223 SUPERCONDUCTING WIRE ROD | |
JP4038813B2 (en) | Superconducting wire manufacturing method | |
JP2006260854A (en) | Manufacturing method of superconductive wire rod | |
JP2007335100A (en) | Manufacturing method of oxide superconducting wire and superconducting equipment | |
JP2007149416A (en) | Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus | |
JP4715672B2 (en) | Oxide superconducting wire and method for producing the same | |
JP4893117B2 (en) | Oxide superconducting wire manufacturing method and superconducting equipment | |
JP4720211B2 (en) | Method for producing bismuth oxide superconducting wire | |
JP2007165207A (en) | Manufacturing method of oxide superconducting wire rod | |
JP3858830B2 (en) | Manufacturing method of oxide superconducting wire | |
JP2008153140A (en) | Manufacturing method of oxide superconductive wire | |
JP2009181817A (en) | Manufacturing method of oxide superconductive wire rod, and oxide superconductive wire rod | |
JP4507899B2 (en) | Bismuth oxide superconducting wire and method for producing the same, superconducting equipment using the bismuth oxide superconducting wire | |
JP4039260B2 (en) | Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire | |
JP2009170276A (en) | Manufacturing method of bi2223 superconducting wire rod, and bi2223 superconducting wire rod | |
JP4496902B2 (en) | Superconducting wire manufacturing method | |
JP2008147012A (en) | Manufacturing method of oxide superconducting wire, and superconducting apparatus | |
JP2003173721A (en) | Oxide superconductive cable for ac and its manufacturing method | |
JP2010049919A (en) | Bi2223 OXIDE SUPERCONDUCTIVE MULTICORE PRECURSOR WIRE MATERIAL, Bi2223 OXIDE SUPERCONDUCTIVE WIRE MATERIAL, AND MANUFACTURING METHOD OF Bi2223 OXIDE SUPERCONDUCTIVE WIRE MATERIAL | |
JP2009289502A (en) | CERAMIC SHEET, MANUFACTURING METHOD FOR Bi2223 OXIDE SUPERCONDUCTIVE WIRE, AND Bi2223 OXIDE SUPERCONDUCTIVE WIRE | |
JP4595813B2 (en) | Oxide superconducting wire, manufacturing method thereof and superconducting equipment | |
JP2007165206A (en) | Manufacturing method of oxide superconductive wire rod | |
JP2009099573A (en) | Mehod of manufacturing superconducting coil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110823 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120117 |