JP4038813B2 - Superconducting wire manufacturing method - Google Patents

Superconducting wire manufacturing method Download PDF

Info

Publication number
JP4038813B2
JP4038813B2 JP2001401426A JP2001401426A JP4038813B2 JP 4038813 B2 JP4038813 B2 JP 4038813B2 JP 2001401426 A JP2001401426 A JP 2001401426A JP 2001401426 A JP2001401426 A JP 2001401426A JP 4038813 B2 JP4038813 B2 JP 4038813B2
Authority
JP
Japan
Prior art keywords
superconducting
heat treatment
phase
wire
low oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001401426A
Other languages
Japanese (ja)
Other versions
JP2003203532A (en
Inventor
洋康 湯村
武志 加藤
哲幸 兼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001401426A priority Critical patent/JP4038813B2/en
Publication of JP2003203532A publication Critical patent/JP2003203532A/en
Application granted granted Critical
Publication of JP4038813B2 publication Critical patent/JP4038813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超電導線材の製造方法と、超電導線材の使用方法ならびに超電導機器の製造方法に関するものである。特に、臨界電流密度(Jc)を向上できる超電導線材の製造方法に関するものである。
【0002】
【従来の技術】
パイダーインチューブ法によりBi2223相などの酸化物超電導体を長尺のテープ状線材に形成する技術が知られている。この方法は、まず超電導相の原料粉末を金属パイプに充填する。次に、この金属パイプを伸線加工してクラッド線とする。複数のクラッド線を束ねて再度金属パイプに挿入し、伸線加工して多芯線とする。この多芯線を圧延加工して、金属シース中に多数の超電導フィラメントが含まれるテープ線材とする。テープ線材に一次熱処理を施して目的の超電導相を生成させる。続いて、このテープ線材を再度圧延してから二次熱処理を施して、超電導相の結晶粒同士を接合させる。これら2回の塑性加工と熱処理は、1回しか行わない場合もあるが、一般に大気雰囲気下にて行われる。
【0003】
【発明が解決しようとする課題】
しかし、従来の超電導線材では、超電導コイルやケーブルなどの用途に適用する場合は、さらに高いJcが求められており、数%でもJcを向上することが重要かつ困難な課題であった。
【0004】
高温超電導線材は、酸化物セラミックスであるため、そのJcは原料粉末、フィラメント配置、加工プロセス、圧延条件、熱処理条件など、全ての製造条件の影響を受ける。そのため、さらに高いJcを実現するには、これらの各製造条件を最適化する必要がある。
【0005】
超電導線材のJcの向上には、▲1▼フィラメント内のBi2223相の割合を向上させる(単相化)、▲2▼Bi2223相の結晶粒の配向性を向上させる、▲3▼Bi2223の結晶粒同士の接合度を向上させることが効果的と考えられる。
【0006】
Bi2223相の単相化には、未反応相をなくし、異相生成を抑制する必要がある。また、結晶粒の配向性向上、接合度向上のためには、Bi2223相の結晶粒を強固に接合させることが重要となる。
【0007】
ところが、従来の大気雰囲気下における2回の熱処理では異相が残り、前述したJcの向上条件を満足することができなかった。
【0008】
従って、本発明の主目的は、Jcを向上させることができる超電導線材の製造方法を提供することにある。
【0009】
また、本発明の他の目的は、Jcを向上させることができる超電導線材の使用方法を提供することにある。
【0010】
さらに、本発明の別の目的は、Jcを向上させて超電導線材の特性を向上し、それに伴って超電導機器の性能を向上できる超電導機器の使用方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、超電導線材に低酸素雰囲気での熱処理を施すことで上記の目的を達成する。
【0012】
すなわち、本発明超電導線材の製造方法は、超電導相の原料粉末を金属パイプに充填し、この金属パイプに少なくとも1回の塑性加工および熱処理を施して線材を得る工程と、前記熱処理温度よりも低い温度で、かつ大気よりも低酸素雰囲気にて前記線材を加熱する低酸素熱処理工程とを含む。そして、前記低酸素熱処理を施す前の線材は、 Bi2223 相を含む超電導フィラメントが金属中に複数本配置され、このフィラメント中の Bi2223 相の生成割合が 92 %以下であることを特徴とする。ただし、 Bi2223 相の生成割合は、前記超電導フィラメントの 1000 倍の SEM 写真において、超電導フィラメント内の Bi2223 相とその他の相の面積を求め、 Bi2223 相の面積比率で示している。
【0013】
低酸素熱処理前の熱処理において、目的とする超電導相の生成が不完全で異相が含まれていたものが、低酸素熱処理により異相が分解され、さらに目的の超電導相が生成して、その割合が増加すると考えられる。また、低酸素熱処理により、結晶粒同士の接合が強化され、さらにはフィラメントのマイクロクラックが修復される。これらの相乗効果により、超電導線材のJcが向上されるものと推測される。
【0014】
以下、本発明をより詳しく説明する。
〔超電導線材の製造方法〕
通常、超電導線材の製造工程は、「原料粉末の調整→原料粉末の金属パイプへの充填→塑性加工→熱処理」により行われる。より詳しくは、「塑性加工」に「クラッド線の作製→多芯線の作製→テープ線材の加工」が含まれる。さらに、塑性加工と熱処理が各々2回行われる場合もある。例えば、上記の「塑性加工→熱処理」の代わりに「一次塑性加工→一次熱処理→二次塑性加工→二次熱処理」を行ってテープ状の超電導線材を得る。
【0015】
(原料粉末と金属パイプ)
原料粉末には、最終的に77K以上の臨界温度を持ちうる超電導相が得られるように配合した粉末が好適である。この原料粉末には、複合酸化物を所定の組成比となるように混合した粉末のみならず、その混合粉末を焼結し、これを粉砕した粉末も含まれる。
【0016】
例えば、最終的にBi2223系超電導線材を得る場合、出発原料にはBi2O3、PbO、SrCO3、CaCO3、CuOを用いる。これら粉末を700〜870℃、10〜40時間、大気雰囲気又は減圧雰囲気下にて少なくとも1回焼結する。このような焼結により、Bi2223相よりもBi2212相が主体となった原料粉末を得ることができる。
【0017】
具体的な組成比は、BiaPbbSrcCadCueでa+b:c:d:e=1.7〜2.8:1.7〜2.5:1.7〜2.8:3を満たすものが好ましい。中でもBiまたはBi+Pb:Sr:Ca:Cu=2:2:2:3を中心とする組成が好適である。特に、Biは1.8付近、Pbは0.3〜0.4、Srは2付近、Caは2.2付近、Cuは3.0付近が望ましい。
【0018】
金属パイプに充填する粉末は、最大粒径が2.0μm以下であり、平均粒径が1.0μm以下であることが好ましい。このような微粉末を用いることで、高温超電導相を生成しやすくなる。
【0019】
金属パイプの材料としては、Ag、Cu、Fe、Ni、Cr、Ti、Mo、W、Pt、Pd、Rh、Ir、Ru、Osより選択される金属またはこれらの金属をベースとする合金が好ましい。特に、酸化物超電導体との反応性や加工性からAgまたはAg合金が好ましい。
【0020】
(塑性加工)
塑性加工には、種々の減面加工が含まれ、その具体例としては、伸線加工、圧延加工、プレス加工、スウェージなどが挙げられる。
【0021】
塑性加工を一度しか行わない場合、塑性加工の具体的内容としては、▲1▼原料粉末を充填した金属パイプを減面加工してクラッド線を作製すること、▲2▼クラッド線を束ねて挿入した金属パイプを減面加工して多芯線を製造すること、▲3▼多芯線をテープ状に加工することが含まれる。多芯線からテープ線材に加工するのは、最終的に形成される超電導導体の結晶の向きを揃えるためである。一般に、酸化物系の超電導導体は結晶の方向により流すことができる電流密度に大きな違いがあり、結晶方向を揃えることでより大きな電流密度を得ることができる。
【0022】
塑性加工を2度行う場合、一次塑性加工には前述したクラッド線の作製、多芯線の作製、テープ線材の加工が含まれる。一次塑性加工における減面率は20%以上95%未満、より好ましくは80%以上90%以下であることが望ましい。二次塑性加工では、テープ線材をさらに再圧延することが挙げられる。この再圧延加工は、一次熱処理による反応で形成された空隙を押し潰し、後に行う二次熱処理で超電導体の結晶同士を強固に結合させるために行われる。二次塑性加工における減面率は10%以上が好ましく、さらに好ましくは20%以上30%以下程度である。
【0023】
(熱処理)
熱処理は、代表的には一次熱処理と二次熱処理の2回行われる。一次熱処理は、主としてBi2223相などの超電導相を生成させることを目的として行われる。二次熱処理は、主としてBi2223相などの結晶粒同士を強固に結合させるために行う。
【0024】
処理温度は、一次熱処理・二次熱処理共に815℃超860℃以下とすることが好ましい。より好ましくは830℃〜850℃程度である。特に、一次熱処理を840℃以上850℃以下とし、二次熱処理を830℃以上840℃以下とすることが好適である。さらに、二次熱処理を上記温度内の異なる温度で多段階(特に2段階)に行っても良い。
【0025】
処理時間は、一次熱処理・二次熱処理共に50時間以上250時間以下とすることが好ましい。特に、二次熱処理を100時間以上とすることが好適である。
【0026】
雰囲気は、一次熱処理・二次熱処理共に大気雰囲気にて行えば良い。より好ましくは、大気と同成分からなる気流中で熱処理を施すことである。その際、熱処理雰囲気における水分の含有率を低下させることが好ましい。
【0027】
(低酸素熱処理前の線材)
低酸素熱処理前の線材としては、Bi2223相を含む超電導フィラメントが金属中に複数本配置され、このフィラメント中のBi2223相の生成割合が92%以下であることが好ましい。より好ましくは90%未満とする。
【0028】
後述する試験から明らかなように、低酸素熱処理前の線材において、フィラメントのBi2223相の割合が高いサンプルよりも低いサンプルの方が低酸素熱処理後のIc向上率が大きいことがわかった。このことから、低酸素熱処理前の線材には、ある程度の未反応相が必要と考えられ、フィラメント中のBi2223相の生成割合を92%以下、好ましくは90%未満と規定した。未反応相の存在により、低酸素熱処理時に未反応相が反応し、Bi2223相の割合がアップし、結晶粒の接合が強化され、マイクロクラックの修復が可能になると考えられる。
【0029】
ただし、Bi2223相の生成割合の下限は70%以上が好ましい。この下限値を下回ると、低酸素熱処理でもBi2223相を十分に生成することが難しく、Jcの向上効果が低減するからである。
【0030】
(低酸素熱処理)
この低酸素熱処理は、前述した熱処理(一次熱処理および二次熱処理)温度よりも低い温度で行う。すなわち、好ましくは750℃以上815℃以下、さらに好ましくは780℃以上810℃以下で熱処理する。また、低酸素熱処理時間は、好ましくは50時間以上150時間以下、さらに好ましくは80時間以上110時間以下とする。処理温度又は処理時間の上限値を超えると、Bi2223相が分解するものと予想される。ただし、処理時間は、50時間を下回っても効果があると推測される。さらに、熱処理雰囲気は大気よりも低酸素の雰囲気とする。より具体的には、酸素濃度:15体積%以下、より好ましくは10体積%以下の雰囲気にて行うことが好ましい。酸素濃度の下限は3体積%程度である。
【0031】
〔超電導線材の使用方法・超電導機器の製造方法〕
次に、本発明超電導線材の使用方法は、金属シース中に複数本の超電導フィラメントを有するテープ状超電導線材を枠材に巻回してまたは沿わせて超電導導体を構成する超電導線材の使用方法であって、前記超電導線材を大気よりも低酸素雰囲気にて熱処理する工程を含む。そして、低酸素雰囲気にて熱処理する前の超電導線材は、 Bi2223 相の生成割合が 92 %以下であることを特徴とする。ただし、 Bi2223 相の生成割合は、前記超電導フィラメントの 1000 倍の SEM 写真において、超電導フィラメント内の Bi2223 相とその他の相の面積を求め、 Bi2223 相の面積比率で示している。
【0032】
さらに、本発明超電導機器の製造方法は、金属シース中に複数本の超電導フィラメントを有するテープ状超電導線材を枠材に巻回してまたは沿わせて超電導導体を構成する超電導機器の製造方法であって、前記超電導線材を大気よりも低酸素雰囲気にて熱処理する工程を含む。そして、低酸素雰囲気にて熱処理する前の超電導線材は、 Bi2223 相の生成割合が 92 %以下であることを特徴とする。ただし、 Bi2223 相の生成割合は、前記超電導フィラメントの 1000 倍の SEM 写真において、超電導フィラメント内の Bi2223 相とその他の相の面積を求め、 Bi2223 相の面積比率で示している。
【0033】
前述したように、超電導線材を低酸素雰囲気での熱処理を施すことにより、Jcの向上が見られる。そこで、超電導線材を使用する際、超電導線材に低酸素雰囲気での熱処理を施せば、従来の製造方法で製造された線材であっても超電導特性が改善され、より高性能の機器を得ることができる。低酸素雰囲気での熱処理は、超電導導体を構成する前でも後でも構わない。特に、超電導導体を構成する前に行うことが好ましい。ここでの低酸素雰囲気の熱処理は、既に述べた「低酸素熱処理」と同一の条件で行えば良い。
【0034】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
低酸素熱処理を施した超電導線材を作製し、低酸素熱処理前後の臨界電流値(Ic)を比較した。
【0035】
<実験の概要>
「原料粉末の調整→原料粉末の金属パイプへの充填→一次塑性加工→一次熱処理(大気中)→二次塑性加工→二次熱処理(大気中)」の製造工程により得られたBi2223テープ線材に低酸素熱処理を施す。そして、低酸素熱処理を施す前後でIcがアップすることを確認する。
【0036】
<サンプル>
二次熱処理までの段階におけるBi2223テープ線材のサイズと外部磁場を印加しない状態での77KにおけるIcおよびJcは次の通りである。
▲1▼線材A:サイズ…巾3.9mm×厚0.24mm:Ic=95A(Jc=28.5kA/cm2
▲2▼線材B:サイズ…巾3.7mm×厚0.20mm:Ic=79A(Jc=28kA/cm2
▲3▼線材C:サイズ…巾3.5mm×厚0.20mm:Ic=77A(Jc=29kA/cm2
▲4▼線材D:サイズ…巾4.1mm×厚0.22mm:Ic=95A(Jc=28kA/cm2
【0037】
また、二次熱処理までの段階における超電導フィラメント内のBi2223相の割合をSEM(Scanning Electron Microscope)観察により調査した。この割合は、1000倍のSEM写真(5視野)において、フィラメント内のBi2223相とその他の相の面積を求め、Bi2223相の面積比率により求めた。
▲1▼線材A:Bi2223相の割合…89%
▲2▼線材B:Bi2223相の割合…85%
▲3▼線材C:Bi2223相の割合…92%
▲4▼線材D:Bi2223相の割合…88%
【0038】
線材A〜Dは次のようにして作製した。
Bi2O3、PbO、SrCO3、CaCO3、CuOの各粉末を1.81:0.40:1.98:2.20:3.01の割合で混合する。混合粉末を大気中にて700℃×8時間、800℃×10時間、133Pa(1Torr)の減圧雰囲気において760℃×8時間の熱処理を順次行う。各熱処理後にはそれぞれ粉砕を行う。このようにして得られた粉末をさらに845℃×12時間の熱処理して原料粉末を調整する。この原料粉末を外径25mm、内径22mmの銀パイプに充填し、直径2.4mmまで伸線してクラッド線を作製する。クラッド線を61本束ねて外径25mm、内径22mmの銀パイプに挿入し、これを直径1.5mmにまで伸線して多芯線を得る。この多芯線を圧延し、テープ状線材に加工する。得られたテープ状線材に大気雰囲気にて840℃〜850℃×50時間の一次熱処理を施す。一次熱処理後のテープ状線材を上記サイズになるように再圧延する。そして、再圧延後のテープ状線材に大気雰囲気にて840℃〜850℃×50時間〜150時間の二次熱処理を施す。
【0039】
(実験1)
線材Aを用いて、時間を一定とし温度を変えた以下の条件の低酸素熱処理を施し、処理後の超電導線材について外部磁場を印加しない状態での77KにおけるIcを調べた。
【0040】
〔低酸素熱処理条件〕
雰囲気:低酸素分圧雰囲気(N2:92体積%、O2:8体積%)
温度 :780〜835℃
時間 :50時間
【0041】
〔結果〕
低酸素熱処理条件と同熱処理後のIcならびにIc比を表1に示し、低酸素熱処理後の温度とIcの関係を図1のグラフに示す。表1のIc比は、「低酸素熱処理後の線材の最大Ic/二次熱処理後の線材の平均Ic」で示している。表1および図1から明らかなように、780℃から815℃の温度範囲においてIcの向上が認められた。この結果、低酸素熱処理温度範囲としては、780℃から815℃が好ましいことが判明した。なお、今回の実験では780℃を低酸素熱処理の下限としたが、Bi2223相の生成と酸素濃度との関係に関する知見から概ね750℃程度まで効果があると考えられる。
【0042】
【表1】

Figure 0004038813
【0043】
(実験2)
線材Aを用いて、温度を一定とし時間を変えた以下の条件の低酸素熱処理を施し、処理後の超電導線材について外部磁場を印加しない状態での77KにおけるIcを調べた。
【0044】
〔低酸素熱処理条件〕
雰囲気:低酸素分圧雰囲気(N2:92体積%、O2:8体積%)
温度 :810℃
時間 :50〜200時間
【0045】
〔結果〕
低酸素熱処理条件と同熱処理後のIcならびにIc比を表2に示し、低酸素熱処理後の温度とIcの関係を図2のグラフに示す。表2のIc比は、「低酸素熱処理後の線材の最大Ic/二次熱処理後の線材の平均Ic」で示している。表2および図2から明らかなように、50から150時間の熱処理時間範囲においてIcの向上が認められた。この結果、低酸素熱処理時間としては、150時間以内が好ましいことが明らかとなった。50時間未満については試みていないが、さらに短時間でもある程度の効果は認められると考えられる。
【0046】
【表2】
Figure 0004038813
【0047】
(実験3)
線材B、C、Dについて、以下の条件で低酸素熱処理を施し、処理後の超電導線材について外部磁場を印加しない状態での77KにおけるIcと、リニアモータ用超電導コイルの使用条件下(20K‐3T)におけるIcならびに線材全断面積当りの実効臨界電流密度Jeを調べた。
【0048】
〔低酸素熱処理条件〕
焼結雰囲気:低酸素分圧雰囲気(N2:92体積%、O2:8体積%)
焼結温度 :720〜825℃
焼結時間 :50〜80時間
【0049】
低酸素熱処理条件、77KのIc、Ic比、20K‐3TのIc、Jeおよびα:77Kから20K‐3TへのIcアップ率を表3に示す。表3のIc比は、「低酸素熱処理後の線材の最大Ic/二次熱処理後の線材の平均Ic」で示している。
【0050】
【表3】
Figure 0004038813
【0051】
〔77Kにおける結果〕
表3から明らかなように、790〜815℃の温度領域でIcの向上が確認された。線材Bについては、79Aから最大89Aへ向上し、線材Cについては、77Aから最大79Aへ向上し、線材Dについては95Aから最大106Aへ向上している。
【0052】
〔20K‐3Tにおける結果〕
線材Bについては、167Aから200AへIcが向上している。77Kから20K‐3TへのIcアップ率(α)は、低酸素熱処理前の2.12から2.25へ向上した。
【0053】
線材Dについては、171Aから223AへIcが向上している。77Kから20K‐3TへのIcアップ率(α)は、低酸素熱処理前の1.80から2.12へ向上した。
【0054】
この実験結果より、低酸素熱処理、すなわち三次熱処理を施すことで77KにおけるIcが向上し、さらには冷凍機冷却で使用するリニアモータ用超電導コイルの使用条件である20K‐3Tにおいても、著しくIcが向上することを確認できた。これは、大気雰囲気で焼結すると、Pb系酸化物が分解しにくくPb系酸化物が超電導フィラメント内部に残るが、低酸素雰囲気下ではPb系酸化物が分解し、Bi2223相がより多く生成するためと考えられる。
【0055】
また、低酸素熱処理後のIcアップ率は、低酸素熱処理前のBi2223相の割合が90%よりも小さい線材B、Dで顕著であり、同割合が92%と大きい線材Cはアップ率が比較的小さい結果が得られた。この結果より、低酸素熱処理をする前の線材のBi2223相の生成割合が92%以下で効果があることが確認でき、さらに90%未満であることが、Icアップ率の観点から好ましいことが判明した。
【0056】
【発明の効果】
以上説明したように、本発明超電導線材の製造方法によれば、低酸素雰囲気での熱処理を施すことにより、超電導線材の臨界電流を向上できる。
【0057】
従って、市販の超電導線材に対しても低酸素雰囲気での熱処理を施すことで、超電導線材の特性を向上し、さらには超電導線材を利用する機器の性能を向上させることも期待できる。
【図面の簡単な説明】
【図1】低酸素熱処理温度とIcとの関係を示すグラフである。
【図2】低酸素熱処理時間とIcとの関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a superconducting wire, a method of using the superconducting wire, and a method of manufacturing a superconducting device. In particular, the present invention relates to a method for manufacturing a superconducting wire capable of improving the critical current density (Jc).
[0002]
[Prior art]
A technique for forming an oxide superconductor such as a Bi2223 phase on a long tape-shaped wire by a piper-in-tube method is known. In this method, first, raw material powder of a superconducting phase is filled into a metal pipe. Next, this metal pipe is drawn to form a clad wire. A plurality of clad wires are bundled and inserted again into a metal pipe, and drawn to form a multi-core wire. This multi-core wire is rolled to obtain a tape wire material in which a number of superconducting filaments are contained in a metal sheath. The tape wire is subjected to a primary heat treatment to produce the desired superconducting phase. Subsequently, the tape wire is rolled again and then subjected to a secondary heat treatment to join the crystal grains of the superconducting phase. These two plastic workings and heat treatments may be performed only once, but are generally performed in an air atmosphere.
[0003]
[Problems to be solved by the invention]
However, in conventional superconducting wires, when applied to applications such as superconducting coils and cables, higher Jc is required, and improving Jc by several percent has been an important and difficult task.
[0004]
Since the high-temperature superconducting wire is an oxide ceramic, its Jc is affected by all manufacturing conditions such as raw material powder, filament arrangement, processing process, rolling conditions, and heat treatment conditions. Therefore, in order to achieve a higher Jc, it is necessary to optimize each of these manufacturing conditions.
[0005]
In order to improve Jc of superconducting wire, (1) improve the ratio of Bi2223 phase in the filament (single phase), (2) improve the orientation of Bi2223 phase, (3) crystal grain of Bi2223 It is considered effective to improve the degree of bonding between each other.
[0006]
In order to make the Bi2223 phase into a single phase, it is necessary to eliminate the unreacted phase and suppress the generation of a different phase. Further, in order to improve the orientation of the crystal grains and the degree of bonding, it is important to firmly bond the crystal grains of the Bi2223 phase.
[0007]
However, a different phase remains after two heat treatments under the conventional air atmosphere, and the above-described Jc improvement conditions cannot be satisfied.
[0008]
Therefore, the main object of the present invention is to provide a method for manufacturing a superconducting wire capable of improving Jc.
[0009]
Another object of the present invention is to provide a method of using a superconducting wire that can improve Jc.
[0010]
Furthermore, another object of the present invention is to provide a method of using a superconducting device capable of improving the characteristics of the superconducting wire by improving Jc, and accordingly improving the performance of the superconducting device.
[0011]
[Means for Solving the Problems]
The present invention achieves the above object by subjecting a superconducting wire to heat treatment in a low oxygen atmosphere.
[0012]
That is, the method for producing a superconducting wire of the present invention includes a step of filling a metal pipe with a raw material powder of a superconducting phase and subjecting the metal pipe to at least one plastic working and heat treatment to obtain a wire, and lower than the heat treatment temperature. And a low oxygen heat treatment step of heating the wire in a temperature and a lower oxygen atmosphere than air . The wire before the low-oxygen heat treatment is characterized in that a plurality of superconducting filaments containing Bi2223 phase are arranged in the metal, and the generation ratio of Bi2223 phase in the filament is 92 % or less. However, production ratio of Bi2223 phase, said at 1000 × SEM photograph of the superconducting filaments, and measuring the area of Bi2223 phase and other phases in the superconducting filaments is shown in area ratio of Bi2223 phase.
[0013]
In the heat treatment before the low-oxygen heat treatment, the target superconducting phase was not completely generated and contained a different phase, but the different phase was decomposed by the low-oxygen heat treatment, and the target superconducting phase was generated. It is thought to increase. Further, the bonding between crystal grains is strengthened by the low oxygen heat treatment, and the microcracks of the filament are repaired. These synergistic effects are presumed to improve Jc of the superconducting wire.
[0014]
Hereinafter, the present invention will be described in more detail.
[Manufacturing method of superconducting wire]
Usually, the manufacturing process of the superconducting wire is performed by “preparation of raw material powder → filling of raw material powder into metal pipe → plastic processing → heat treatment”. More specifically, “plastic processing” includes “manufacture of clad wire → manufacture of multi-core wire → processing of tape wire”. Furthermore, plastic processing and heat treatment may be performed twice each. For example, instead of the above “plastic working → heat treatment”, “primary plastic working → primary heat treatment → secondary plastic working → secondary heat treatment” is performed to obtain a tape-shaped superconducting wire.
[0015]
(Raw material powder and metal pipe)
As the raw material powder, a powder blended so as to obtain a superconducting phase that can finally have a critical temperature of 77K or higher is suitable. This raw material powder includes not only a powder obtained by mixing a composite oxide so as to have a predetermined composition ratio, but also a powder obtained by sintering and pulverizing the mixed powder.
[0016]
For example, when finally obtaining a Bi2223 superconducting wire, Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , and CuO are used as starting materials. These powders are sintered at least once in an air atmosphere or a reduced pressure atmosphere at 700 to 870 ° C. for 10 to 40 hours. By such sintering, a raw material powder mainly composed of the Bi2212 phase rather than the Bi2223 phase can be obtained.
[0017]
Specific composition ratio, Bi a Pb b Sr c Ca d Cu e with a + b: c: d: e = 1.7~2.8: 1.7~2.5: 1.7~2.8: preferably satisfy the 3. Among them, a composition centering on Bi or Bi + Pb: Sr: Ca: Cu = 2: 2: 2: 3 is preferable. In particular, Bi is preferably near 1.8, Pb is 0.3 to 0.4, Sr is near 2, Ca is around 2.2, and Cu is around 3.0.
[0018]
The powder filled in the metal pipe preferably has a maximum particle size of 2.0 μm or less and an average particle size of 1.0 μm or less. By using such fine powder, it becomes easy to generate a high-temperature superconducting phase.
[0019]
The material of the metal pipe is preferably a metal selected from Ag, Cu, Fe, Ni, Cr, Ti, Mo, W, Pt, Pd, Rh, Ir, Ru, Os or an alloy based on these metals. . In particular, Ag or an Ag alloy is preferable from the viewpoint of reactivity with an oxide superconductor and workability.
[0020]
(Plastic processing)
Plastic processing includes various surface reduction processing, and specific examples thereof include wire drawing processing, rolling processing, press processing, swaging, and the like.
[0021]
When plastic processing is performed only once, the details of plastic processing are as follows: (1) reducing the surface of a metal pipe filled with raw material powder to produce a clad wire, and (2) bundling the clad wire for insertion. Including manufacturing a multi-core wire by reducing the surface of the metal pipe, and (3) processing the multi-core wire into a tape shape. The reason why the multifilamentary wire is processed into the tape wire is to align the crystal orientation of the finally formed superconducting conductor. In general, oxide-based superconducting conductors have a large difference in current density that can flow depending on the direction of the crystal, and a larger current density can be obtained by aligning the crystal direction.
[0022]
When the plastic working is performed twice, the primary plastic working includes the above-described clad wire production, multi-core wire production, and tape wire material processing. The area reduction rate in the primary plastic working is preferably 20% or more and less than 95%, more preferably 80% or more and 90% or less. In the secondary plastic working, the tape wire is further re-rolled. This re-rolling process is performed in order to crush the voids formed by the reaction by the primary heat treatment and firmly bond the superconductor crystals to each other by the secondary heat treatment performed later. The area reduction rate in the secondary plastic working is preferably 10% or more, and more preferably 20% or more and 30% or less.
[0023]
(Heat treatment)
The heat treatment is typically performed twice: a primary heat treatment and a secondary heat treatment. The primary heat treatment is performed mainly for the purpose of generating a superconducting phase such as a Bi2223 phase. The secondary heat treatment is mainly performed in order to firmly bond crystal grains such as the Bi2223 phase.
[0024]
The treatment temperature is preferably more than 815 ° C. and not more than 860 ° C. for both the primary heat treatment and the secondary heat treatment. More preferably, it is about 830 ° C to 850 ° C. In particular, the primary heat treatment is preferably 840 ° C. or higher and 850 ° C. or lower, and the secondary heat treatment is preferably 830 ° C. or higher and 840 ° C. or lower. Further, the secondary heat treatment may be performed in multiple stages (particularly in two stages) at different temperatures within the above temperature.
[0025]
The treatment time is preferably 50 hours or more and 250 hours or less for both the primary heat treatment and the secondary heat treatment. In particular, the secondary heat treatment is preferably 100 hours or longer.
[0026]
As for the atmosphere, both the primary heat treatment and the secondary heat treatment may be performed in an air atmosphere. More preferably, the heat treatment is performed in an air stream composed of the same components as the atmosphere. At that time, it is preferable to reduce the moisture content in the heat treatment atmosphere.
[0027]
(Wire before low oxygen heat treatment)
As the wire before the low oxygen heat treatment, it is preferable that a plurality of superconducting filaments containing a Bi2223 phase are arranged in the metal, and the generation ratio of the Bi2223 phase in the filament is 92% or less. More preferably, it is less than 90%.
[0028]
As is clear from the test described later, it was found that the Ic improvement rate after the low oxygen heat treatment was larger in the sample before the low oxygen heat treatment than in the sample having a high Bi2223 phase ratio of the filament. From this, it is considered that a certain amount of unreacted phase is necessary for the wire before the low oxygen heat treatment, and the generation ratio of the Bi2223 phase in the filament is defined as 92% or less, preferably less than 90%. Due to the presence of the unreacted phase, it is considered that the unreacted phase reacts during the low oxygen heat treatment, the ratio of the Bi2223 phase increases, the crystal grain bonding is strengthened, and the microcracks can be repaired.
[0029]
However, the lower limit of the Bi2223 phase generation ratio is preferably 70% or more. If the lower limit is not reached, it is difficult to sufficiently generate the Bi2223 phase even with a low oxygen heat treatment, and the effect of improving Jc is reduced.
[0030]
(Low oxygen heat treatment)
This low oxygen heat treatment is performed at a temperature lower than the heat treatment (primary heat treatment and secondary heat treatment) described above. That is, the heat treatment is preferably performed at 750 ° C. or more and 815 ° C. or less, more preferably 780 ° C. or more and 810 ° C. or less. The low oxygen heat treatment time is preferably 50 hours to 150 hours, more preferably 80 hours to 110 hours. When the upper limit of the processing temperature or processing time is exceeded, the Bi2223 phase is expected to decompose. However, it is estimated that the treatment time is effective even when the processing time is less than 50 hours. Further, the heat treatment atmosphere is a lower oxygen atmosphere than the air. More specifically, the oxygen concentration is preferably 15% by volume or less, more preferably 10% by volume or less. The lower limit of the oxygen concentration is about 3% by volume.
[0031]
[Usage method of superconducting wire and manufacturing method of superconducting equipment]
Next, the method of using the superconducting wire according to the present invention is a method of using a superconducting wire in which a tape-shaped superconducting wire having a plurality of superconducting filaments is wound around or along a frame material to form a superconducting conductor. Te, including the step of heat-treating the superconducting wire in a low oxygen atmosphere than air. The superconducting wire before heat treatment in a low oxygen atmosphere is characterized in that the generation ratio of the Bi2223 phase is 92 % or less. However, production ratio of Bi2223 phase, said at 1000 × SEM photograph of the superconducting filaments, and measuring the area of Bi2223 phase and other phases in the superconducting filaments is shown in area ratio of Bi2223 phase.
[0032]
Furthermore, the method for manufacturing a superconducting device of the present invention is a method for manufacturing a superconducting device in which a superconducting conductor is configured by winding or along a frame material with a tape-shaped superconducting wire having a plurality of superconducting filaments in a metal sheath. , including the step of heat-treating the superconducting wire in a low oxygen atmosphere than air. The superconducting wire before heat treatment in a low oxygen atmosphere is characterized in that the generation ratio of the Bi2223 phase is 92 % or less. However, production ratio of Bi2223 phase, said at 1000 × SEM photograph of the superconducting filaments, and measuring the area of Bi2223 phase and other phases in the superconducting filaments is shown in area ratio of Bi2223 phase.
[0033]
As described above, the Jc can be improved by heat-treating the superconducting wire in a low oxygen atmosphere. Therefore, when using a superconducting wire, if the superconducting wire is heat-treated in a low oxygen atmosphere, the superconducting characteristics can be improved even with a wire manufactured by a conventional manufacturing method, and a higher performance device can be obtained. it can. The heat treatment in a low oxygen atmosphere may be performed before or after the superconductor is formed. In particular, it is preferably performed before the superconducting conductor is constructed. The heat treatment in the low oxygen atmosphere here may be performed under the same conditions as the “low oxygen heat treatment” already described.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
Superconducting wires with low oxygen heat treatment were prepared and the critical current values (Ic) before and after low oxygen heat treatment were compared.
[0035]
<Outline of experiment>
For Bi2223 tape wire obtained by the manufacturing process of “preparation of raw material powder → filling of metal powder into metal pipe → primary plastic processing → primary heat treatment (in air) → secondary plastic processing → secondary heat treatment (in air)” Apply low oxygen heat treatment. It is confirmed that Ic increases before and after the low oxygen heat treatment.
[0036]
<Sample>
The size of the Bi2223 tape wire at the stage up to the secondary heat treatment and Ic and Jc at 77K without applying an external magnetic field are as follows.
(1) Wire A: Size: 3.9mm width x 0.24mm thickness: Ic = 95A (Jc = 28.5kA / cm 2 )
( 2 ) Wire B: Size: 3.7mm width x 0.20mm thickness: Ic = 79A (Jc = 28kA / cm 2 )
(3) Wire C: Size ... Width 3.5mm x Thickness 0.20mm: Ic = 77A (Jc = 29kA / cm 2 )
(4) Wire D: Size ... Width 4.1mm x Thickness 0.22mm: Ic = 95A (Jc = 28kA / cm 2 )
[0037]
In addition, the ratio of the Bi2223 phase in the superconducting filament at the stage up to the secondary heat treatment was investigated by SEM (Scanning Electron Microscope) observation. This ratio was obtained from the area ratio of the Bi2223 phase by obtaining the areas of the Bi2223 phase and other phases in the filament in a 1000 times SEM photograph (5 fields of view).
(1) Wire A: Bi2223 phase ratio: 89%
(2) Wire B: Bi2223 phase ratio ... 85%
(3) Wire C: Bi2223 phase ratio ... 92%
(4) Wire D: Bi2223 phase ratio ... 88%
[0038]
Wires A to D were produced as follows.
Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , and CuO powders are mixed at a ratio of 1.81: 0.40: 1.98: 2.20: 3.01. The mixed powder is sequentially heat-treated in the atmosphere at 700 ° C. × 8 hours, 800 ° C. × 10 hours, and in a reduced pressure atmosphere of 133 Pa (1 Torr) at 760 ° C. × 8 hours. Grinding is performed after each heat treatment. The powder thus obtained is further heat-treated at 845 ° C. for 12 hours to prepare a raw material powder. This raw material powder is filled into a silver pipe having an outer diameter of 25 mm and an inner diameter of 22 mm, and drawn to a diameter of 2.4 mm to produce a clad wire. 61 clad wires are bundled and inserted into a silver pipe having an outer diameter of 25 mm and an inner diameter of 22 mm, and this is drawn to a diameter of 1.5 mm to obtain a multi-core wire. This multi-core wire is rolled and processed into a tape-shaped wire. The obtained tape-shaped wire is subjected to a primary heat treatment at 840 ° C. to 850 ° C. for 50 hours in an air atmosphere. The tape-shaped wire after the primary heat treatment is re-rolled to the above size. The re-rolled tape-shaped wire is subjected to secondary heat treatment at 840 ° C. to 850 ° C. for 50 hours to 150 hours in an air atmosphere.
[0039]
(Experiment 1)
The wire A was subjected to a low oxygen heat treatment under the following conditions with the time being constant and the temperature changed, and the Ic at 77 K in a state where no external magnetic field was applied to the superconducting wire after the treatment was examined.
[0040]
[Low oxygen heat treatment conditions]
Atmosphere: Low oxygen partial pressure atmosphere (N 2 : 92% by volume, O 2 : 8% by volume)
Temperature: 780-835 ° C
Time: 50 hours [0041]
〔result〕
Table 1 shows the low oxygen heat treatment conditions and the Ic and Ic ratio after the heat treatment, and the graph of FIG. 1 shows the relationship between the temperature after the low oxygen heat treatment and Ic. The Ic ratio in Table 1 is indicated by “maximum Ic of wire after low oxygen heat treatment / average Ic of wire after secondary heat treatment”. As is apparent from Table 1 and FIG. 1, an improvement in Ic was observed in the temperature range of 780 ° C. to 815 ° C. As a result, it was found that the low oxygen heat treatment temperature range is preferably 780 ° C. to 815 ° C. In this experiment, 780 ° C. was set as the lower limit of the low oxygen heat treatment, but it is considered that the effect is generally up to about 750 ° C. from the knowledge about the relation between the formation of the Bi2223 phase and the oxygen concentration.
[0042]
[Table 1]
Figure 0004038813
[0043]
(Experiment 2)
The wire A was subjected to low oxygen heat treatment under the following conditions with the temperature kept constant and the time changed, and the Ic at 77 K in a state where no external magnetic field was applied to the superconducting wire after the treatment was examined.
[0044]
[Low oxygen heat treatment conditions]
Atmosphere: Low oxygen partial pressure atmosphere (N 2 : 92% by volume, O 2 : 8% by volume)
Temperature: 810 ° C
Time: 50-200 hours [0045]
〔result〕
Table 2 shows the low oxygen heat treatment conditions, Ic and Ic ratio after the heat treatment, and the graph of FIG. 2 shows the relationship between the temperature and Ic after the low oxygen heat treatment. The Ic ratio in Table 2 is indicated by “maximum Ic of wire after low oxygen heat treatment / average Ic of wire after secondary heat treatment”. As is apparent from Table 2 and FIG. 2, an improvement in Ic was observed in the heat treatment time range of 50 to 150 hours. As a result, it became clear that the low oxygen heat treatment time is preferably within 150 hours. Although no attempt has been made for less than 50 hours, it is considered that some effect is observed even in a shorter time.
[0046]
[Table 2]
Figure 0004038813
[0047]
(Experiment 3)
For wire rods B, C, and D, low oxygen heat treatment was performed under the following conditions, and the superconducting wire after treatment was subjected to Ic at 77K with no external magnetic field applied and the conditions for using the superconducting coil for the linear motor (20K-3T ) And the effective critical current density Je per total cross section of the wire.
[0048]
[Low oxygen heat treatment conditions]
Sintering atmosphere: Low oxygen partial pressure atmosphere (N 2 : 92% by volume, O 2 : 8% by volume)
Sintering temperature: 720-825 ° C
Sintering time: 50-80 hours
Table 3 shows low oxygen heat treatment conditions, Ic of 77K, Ic ratio, Ic, Je of 20K-3T, and α: Ic up rate from 77K to 20K-3T. The Ic ratio in Table 3 is indicated by “maximum Ic of wire after low oxygen heat treatment / average Ic of wire after secondary heat treatment”.
[0050]
[Table 3]
Figure 0004038813
[0051]
[Results at 77K]
As is apparent from Table 3, the improvement in Ic was confirmed in the temperature range of 790 to 815 ° C. The wire B is improved from 79A to a maximum of 89A, the wire C is improved from 77A to a maximum of 79A, and the wire D is improved from 95A to a maximum of 106A.
[0052]
[Results at 20K-3T]
As for wire B, Ic is improved from 167A to 200A. The Ic-up rate (α) from 77K to 20K-3T improved from 2.12 before the low oxygen heat treatment to 2.25.
[0053]
For wire D, Ic is improved from 171A to 223A. The Ic-up rate (α) from 77K to 20K-3T improved from 1.80 before the low oxygen heat treatment to 2.12.
[0054]
From this experimental result, low oxygen heat treatment, that is, tertiary heat treatment, improved Ic at 77K. Furthermore, even in 20K-3T, which is the use condition of the superconducting coil for linear motors used for refrigerator cooling, Ic is remarkably high. It was confirmed that it improved. This is because when sintered in an air atmosphere, the Pb-based oxide is difficult to decompose, but the Pb-based oxide remains inside the superconducting filament, but in a low-oxygen atmosphere, the Pb-based oxide decomposes and more Bi2223 phases are generated. This is probably because of this.
[0055]
In addition, the Ic increase rate after low oxygen heat treatment is remarkable for the wires B and D in which the Bi2223 phase ratio before the low oxygen heat treatment is smaller than 90%, and the wire C, which has a large ratio of 92%, compares the increase rate. Small results were obtained. From this result, it can be confirmed that the Bi2223 phase generation ratio of the wire before the low oxygen heat treatment is effective at 92% or less, and it is further preferable that it is less than 90% from the viewpoint of the Ic-up rate. did.
[0056]
【The invention's effect】
As described above, according to the method of manufacturing a superconducting wire of the present invention, the critical current of the superconducting wire can be improved by performing a heat treatment in a low oxygen atmosphere.
[0057]
Therefore, it can be expected that the characteristics of the superconducting wire are improved by performing heat treatment in a low-oxygen atmosphere even on a commercially available superconducting wire, and further, the performance of equipment using the superconducting wire is improved.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between low oxygen heat treatment temperature and Ic.
FIG. 2 is a graph showing the relationship between low oxygen heat treatment time and Ic.

Claims (10)

超電導相を含む原料粉末を金属パイプに充填し、この金属パイプに少なくとも1回の塑性加工および熱処理を施して線材を得る工程と、
前記熱処理温度よりも低い温度で、かつ大気よりも低酸素雰囲気にて前記線材を加熱する低酸素熱処理工程とを含み、
前記低酸素熱処理を施す前の線材は、Bi2223相を含む超電導フィラメントが金属中に複数本配置され、このフィラメント中のBi2223相の生成割合が92%以下であることを特徴とする超電導線材の製造方法。
ただし、 Bi2223 相の生成割合は、前記超電導フィラメントの 1000 倍の SEM 写真において、超電導フィラメント内の Bi2223 相とその他の相の面積を求め、 Bi2223 相の面積比率で示している。
Filling a metal pipe with raw material powder containing a superconducting phase, and subjecting the metal pipe to at least one plastic working and heat treatment to obtain a wire,
A low oxygen heat treatment step of heating the wire in a temperature lower than the heat treatment temperature and in a lower oxygen atmosphere than air,
The wire before the low oxygen heat treatment is a superconducting wire characterized in that a plurality of superconducting filaments containing a Bi2223 phase are arranged in the metal, and the generation ratio of the Bi2223 phase in the filament is 92% or less. Method.
However, production ratio of Bi2223 phase, said at 1000 × SEM photograph of the superconducting filaments, and measuring the area of Bi2223 phase and other phases in the superconducting filaments is shown in area ratio of Bi2223 phase.
前記低酸素熱処理工程における処理温度が750℃以上815℃以下であることを特徴とする請求項1に記載の超電導線材の製造方法。  The method for producing a superconducting wire according to claim 1, wherein a treatment temperature in the low oxygen heat treatment step is 750 ° C. or more and 815 ° C. or less. 前記低酸素熱処理工程における処理温度が780℃以上であることを特徴とする請求項2に記載の超電導線材の製造方法。  3. The method for producing a superconducting wire according to claim 2, wherein a treatment temperature in the low oxygen heat treatment step is 780 ° C. or higher. 前記低酸素熱処理工程における処理時間が150時間以下であることを特徴とする請求項1〜3のいずれかに記載の超電導線材の製造方法。  4. The method for producing a superconducting wire according to claim 1, wherein a treatment time in the low oxygen heat treatment step is 150 hours or less. 前記低酸素熱処理工程における処理時間が50時間以上であることを特徴とする請求項4に記載の超電導線材の製造方法。  5. The method for producing a superconducting wire according to claim 4, wherein a treatment time in the low oxygen heat treatment step is 50 hours or more. 前記フィラメント中のBi2223相の生成割合が90%未満であることを特徴とする請求項1に記載の超電導線材の製造方法。  2. The method for producing a superconducting wire according to claim 1, wherein a production ratio of the Bi2223 phase in the filament is less than 90%. 前記低酸素熱処理を施す前の線材は、大気と同等の酸素を含む雰囲気中で2回以上の熱処理を施して得られることを特徴とする請求項1〜6のいずれかに記載の超電導線材の製造方法。  7. The superconducting wire according to claim 1, wherein the wire before the low oxygen heat treatment is obtained by performing heat treatment twice or more in an atmosphere containing oxygen equivalent to air. Production method. Bi2223相の生成割合が70%以上92%以下であるように加工された線材に、大気よりも低酸素雰囲気にて、750℃以上815℃以下の温度で、150時間以下の熱処理を施すことを特徴とする請求項1に記載の超電導線材の製造方法。A wire processed to have a Bi2223 phase generation rate of 70% or more and 92% or less is subjected to a heat treatment for 150 hours or less at a temperature of 750 ° C or higher and 815 ° C or lower in a lower oxygen atmosphere than air. The method of manufacturing a superconducting wire according to claim 1, wherein 金属シース中に複数本の超電導フィラメントを有するテープ状超電導線材を枠材に巻回してまたは沿わせて超電導導体を構成する超電導線材の使用方法であって、
前記超電導導体を構成する前又は構成した後に、前記超電導線材を大気よりも低酸素雰囲気にて熱処理する工程を含み、
低酸素雰囲気にて熱処理する前の超電導線材は、Bi2223相の生成割合が92%以下であることを特徴とする超電導線材の使用方法。
ただし、 Bi2223 相の生成割合は、前記超電導フィラメントの 1000 倍の SEM 写真において、超電導フィラメント内の Bi2223 相とその他の相の面積を求め、 Bi2223 相の面積比率で示している。
A method of using a superconducting wire that constitutes a superconducting conductor by winding a tape-shaped superconducting wire having a plurality of superconducting filaments in a metal sheath around a frame material,
Before or after configuring the superconducting conductor, including a step of heat-treating the superconducting wire in a lower oxygen atmosphere than the atmosphere,
The method of using a superconducting wire, wherein the superconducting wire before heat treatment in a low oxygen atmosphere has a Bi2223 phase generation rate of 92% or less.
However, production ratio of Bi2223 phase, said at 1000 × SEM photograph of the superconducting filaments, and measuring the area of Bi2223 phase and other phases in the superconducting filaments is shown in area ratio of Bi2223 phase.
金属シース中に複数本の超電導フィラメントを有するテープ状超電導線材を枠材に巻回してまたは沿わせて超電導導体を構成する超電導機器の製造方法であって、
前記超電導導体を構成する前又は構成した後に、前記超電導線材を大気よりも低酸素雰囲気にて熱処理する工程を含み、
低酸素雰囲気にて熱処理する前の超電導線材は、Bi2223相の生成割合が92%以下であることを特徴とする超電導機器の製造方法。
ただし、 Bi2223 相の生成割合は、前記超電導フィラメントの 1000 倍の SEM 写真において、超電導フィラメント内の Bi2223 相とその他の相の面積を求め、 Bi2223 相の面積比率で示している。
A method of manufacturing a superconducting device in which a superconducting conductor is formed by winding a tape-shaped superconducting wire having a plurality of superconducting filaments in a metal sheath around or along a frame member,
Before or after configuring the superconducting conductor, including a step of heat-treating the superconducting wire in a lower oxygen atmosphere than the atmosphere,
A method for manufacturing a superconducting device, wherein the superconducting wire before heat treatment in a low oxygen atmosphere has a Bi2223 phase generation rate of 92% or less.
However, production ratio of Bi2223 phase, said at 1000 × SEM photograph of the superconducting filaments, and measuring the area of Bi2223 phase and other phases in the superconducting filaments is shown in area ratio of Bi2223 phase.
JP2001401426A 2001-12-28 2001-12-28 Superconducting wire manufacturing method Expired - Fee Related JP4038813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001401426A JP4038813B2 (en) 2001-12-28 2001-12-28 Superconducting wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001401426A JP4038813B2 (en) 2001-12-28 2001-12-28 Superconducting wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2003203532A JP2003203532A (en) 2003-07-18
JP4038813B2 true JP4038813B2 (en) 2008-01-30

Family

ID=27640153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001401426A Expired - Fee Related JP4038813B2 (en) 2001-12-28 2001-12-28 Superconducting wire manufacturing method

Country Status (1)

Country Link
JP (1) JP4038813B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513473B2 (en) * 2004-09-14 2010-07-28 住友電気工業株式会社 Raw material powder manufacturing method
JP4496902B2 (en) * 2004-09-15 2010-07-07 住友電気工業株式会社 Superconducting wire manufacturing method
JP4470880B2 (en) * 2005-02-02 2010-06-02 住友電気工業株式会社 Method for producing raw material for oxide superconductor, and method for producing oxide superconducting wire
JP4720211B2 (en) * 2005-02-28 2011-07-13 住友電気工業株式会社 Method for producing bismuth oxide superconducting wire
KR101037230B1 (en) * 2008-12-12 2011-05-25 한국산업기술대학교산학협력단 METHOD FOR COATING OF SILVER PROTECTIVE LAYER ON HIGH Tc SUPERCONDUCTING FILM USING ORGANIC SILVER COMPLEXES
CN103943280B (en) * 2014-04-30 2016-06-29 中国科学院电工研究所 A kind of REFeAsO1-xFxThe preparation method of iron-based superconducting wire or band
CN109524174B (en) * 2018-11-22 2020-06-26 西北有色金属研究院 Preparation method of Bi-2212 high-temperature superconducting wire

Also Published As

Publication number Publication date
JP2003203532A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
JP4038813B2 (en) Superconducting wire manufacturing method
JP4752505B2 (en) Method for manufacturing oxide superconducting wire and method for modifying oxide superconducting wire
JP2008171666A (en) Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
JP3778971B2 (en) Oxide superconducting wire and method for producing the same
JP3920606B2 (en) Powder method Nb (3) Method for producing Sn superconducting wire
WO2005001852A1 (en) Bismuth oxide superconducting wire rod and process for producing the same
JP4011358B2 (en) Superconducting wire manufacturing method
WO1995005680A1 (en) Improved superconductor tapes and coils and method of manufacture
JP4016324B2 (en) Superconducting wire manufacturing method
JP3712120B2 (en) Superconducting wire manufacturing method
JP4720211B2 (en) Method for producing bismuth oxide superconducting wire
JP3721392B2 (en) Manufacturing method of high-temperature superconducting wire
JP3051867B2 (en) Manufacturing method of oxide superconducting wire
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JP2569413B2 (en) Method for producing Bi-based oxide superconducting wire
JP3692657B2 (en) Oxide superconducting wire
JPH09115355A (en) Oxide superconducting composite material and its manufacture
JP4893117B2 (en) Oxide superconducting wire manufacturing method and superconducting equipment
JP2006107843A (en) Tape-shaped superconductive wire
EP1686594A1 (en) Superconductive wire material, superconductive multi-conductor wire using the same and method for producing the same
JP3044732B2 (en) Method for producing bismuth-based oxide superconductor
JPH06342607A (en) Manufacture of oxide superconductive wire rod
JP4507899B2 (en) Bismuth oxide superconducting wire and method for producing the same, superconducting equipment using the bismuth oxide superconducting wire
AU742588B2 (en) Cryogenic deformation of ceramic superconductors
JPH11126522A (en) Oxide superconductive wire material and manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees