JP2009099573A - Mehod of manufacturing superconducting coil - Google Patents

Mehod of manufacturing superconducting coil Download PDF

Info

Publication number
JP2009099573A
JP2009099573A JP2007266428A JP2007266428A JP2009099573A JP 2009099573 A JP2009099573 A JP 2009099573A JP 2007266428 A JP2007266428 A JP 2007266428A JP 2007266428 A JP2007266428 A JP 2007266428A JP 2009099573 A JP2009099573 A JP 2009099573A
Authority
JP
Japan
Prior art keywords
coil
wire
superconducting
heat treatment
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007266428A
Other languages
Japanese (ja)
Inventor
Shinichi Kobayashi
慎一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007266428A priority Critical patent/JP2009099573A/en
Publication of JP2009099573A publication Critical patent/JP2009099573A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a superconducting coil by which a non-circular coil having a small-curvature portion is formed in an intended shape. <P>SOLUTION: Provided is the method of manufacturing the superconducting coil which has a non-circular shape and has the curvature portion having curvature not more than the limit curvature of a superconducting wire rod, the method of manufacturing the superconducting coil includes the steps of: forming a body in a pancake coil shape by winding a (Bi, Pb)2223 precursor wire rod; and heat-treating the body in the pancake coil shape in a pressurized atmosphere, the total pressure in the pressurized atmosphere being ≥0.5 MPa at a temperature of ≥600°C in the step of the heat treatment. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、導体として(Bi,Pb)2223超電導線材が用いられ、円形とは異なる形状(非円形形状)を有する超電導コイルの製造方法に関するものである。   The present invention relates to a method of manufacturing a superconducting coil in which a (Bi, Pb) 2223 superconducting wire is used as a conductor and has a shape (non-circular shape) different from a circle.

金属シース法で作製された(Bi,Pb)SrCaCu10±δ(δは0.1程度の数:以下(Bi,Pb)2223とする)相を主成分とする酸化物超電導線材は高い臨界温度を持ちかつ、液体窒素温度等の比較的簡単な冷却下でも高い臨界電流値を示す有用な線材である(たとえば、非特許文献1を参照)。 Oxidation mainly composed of (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O 10 ± δ (δ is a number of about 0.1: hereinafter referred to as (Bi, Pb) 2223) phase produced by a metal sheath method A superconducting wire is a useful wire that has a high critical temperature and exhibits a high critical current value even under relatively simple cooling such as liquid nitrogen temperature (for example, see Non-Patent Document 1).

また上記(Bi,Pb)2223超電導線材を使用することによって、従来の常伝導導体を用いるよりはるかにエネルギー損失を低減することが可能となり、大電流を低電圧で流すことができる。(Bi,Pb)2223超電導線材は臨界電流値を大きくするためにテープ形状にされている。またこのテープ状(Bi,Pb)2223超電導線材を導体として用いた超電導コイル、超電導マグネット等の超電導応用機器開発も同時に進められている。   In addition, by using the (Bi, Pb) 2223 superconducting wire, it is possible to reduce energy loss far more than when using a conventional normal conductor, and a large current can flow at a low voltage. The (Bi, Pb) 2223 superconducting wire is tape-shaped to increase the critical current value. Further, superconducting application equipment such as a superconducting coil and a superconducting magnet using the tape-like (Bi, Pb) 2223 superconducting wire as a conductor is being developed at the same time.

超電導コイルの形状としては、円形のパンケーキ状コイルが一般的である。この円形パンケーキコイルでは、線材の曲率が内側から外側に向けて、連続的単調に増加するよう線材が巻回されている。ところで、使用目的によってはコイル形状としては、円形だけでなくレーストラック形状や、楕円形、略四角形状のように曲率が単調に増加しないパンケーキコイル(円形以外を非円形コイルと呼ぶ)が選択され、組み込まれる機器もある。   As a shape of the superconducting coil, a circular pancake-shaped coil is generally used. In this circular pancake coil, the wire is wound so that the curvature of the wire increases continuously and monotonously from the inside toward the outside. By the way, depending on the purpose of use, as a coil shape, not only a circular shape but also a racetrack shape, a pancake coil whose non-circular curvature is increased such as an elliptical shape or a substantially rectangular shape (other than a circular shape is called a non-circular coil) is selected. Some devices are built in.

酸化物超電導線材を導体として用いる上記の超電導コイルの製造方法としては、熱処理し、線材中に目的とする超電導相を形成したのちに、線材を所望の形に巻回していく、リアクトアンドワインド法(特許文献1を参照)と、所望の形に超電導線材を巻回した後、それを熱処理し目的の超電導相を生成するワインドアンドリアクト法(特許文献2参照)がある。   As a manufacturing method of the above superconducting coil using an oxide superconducting wire as a conductor, a heat and heat treatment is performed, and a desired superconducting phase is formed in the wire, and then the wire is wound into a desired shape. (See Patent Document 1) and the Wind and React method (see Patent Document 2) in which a superconducting wire is wound into a desired shape and then heat-treated to generate a target superconducting phase.

比較的大きな径を有する超電導コイルを作製する場合は、リアクトアンドワインド法が採用される。一方、小さな径を持つ超電導コイルを形成する場合はワインドアンドリアクト法が用いられる。後者は、熱処理後に超電導線材中の酸化物超電導体が生成された状態で、線材を小さな曲率で曲げるとセラミックスである超電導部が破壊され臨界電流値が低下する。そのため、小径コイルを形成する場合は予め所望の形状にしておき、その形状で焼き固めてしまうという製造方法である。   When producing a superconducting coil having a relatively large diameter, a react and wind method is employed. On the other hand, when forming a superconducting coil having a small diameter, the wind and react method is used. In the latter, when the oxide superconductor in the superconducting wire is generated after the heat treatment, bending the wire with a small curvature destroys the superconducting portion made of ceramics and lowers the critical current value. Therefore, when forming a small-diameter coil, it is a manufacturing method in which a desired shape is formed in advance and the shape is baked and hardened.

特開2003−318017号公報JP 2003-318017 A 特開平9−63881号公報JP-A-9-63881 SEIテクニカルレビュー、2006年7月 第169号 p103−108SEI Technical Review, July 2006, No. 169, p103-108

比較的大きな径を持つ超電導コイルを形成する場合には、リアクトアンドワインド法によって円形も含めどのような形状のコイルであっても意図した形状を正確に形成することができる。また小径コイルであっても円形状ならばワインドアンドリアクト法によって、型崩れせず整った円形のコイルを形成できる。ワインドアンドリアクト法では目的とした形状にした後、熱処理をする。ところで、この熱処理時に超電導線材の厚さ方向の膨張がおこり、当初の形状をそのまま維持し熱処理を完了させることが容易ではない場合もある。曲率が単調に増加し、線材にかかっている張力、コイル径方向の押し付け力もほぼ一様な円形状では、ほぼ均一に線材の熱膨張がおこり型崩れしにくい。そのため小径円形コイルにはワインドアンドリアクト法が適用できる。   When forming a superconducting coil having a relatively large diameter can be accurately formed a shape intended even coils of any shape, including circular by React and wind method. Moreover, even if it is a small-diameter coil, if it is circular, it can form the circular coil which did not lose shape by the wind-and-react method. In the wind-and-react method, heat treatment is performed after the desired shape is obtained. By the way, in this heat treatment, the superconducting wire may expand in the thickness direction, and it may not be easy to complete the heat treatment while maintaining the original shape. If the curvature increases monotonously, and the tension applied to the wire and the pressing force in the coil radial direction are almost uniform, the wire is almost uniformly thermally expanded and is not easily deformed. Therefore, the wind-and-react method can be applied to the small-diameter circular coil.

ところが、前記した非円形コイルでは曲率が単調に増加しないため、線材にかかっている各種応力も場所により異なる。そのため熱膨張の割合が場所により違い、意図した形状を維持するよう熱処理することが困難である。   However, since the curvature does not increase monotonously in the non-circular coil described above, various stresses applied to the wire also differ depending on the location. Therefore, the rate of thermal expansion differs depending on the location, and it is difficult to perform heat treatment so as to maintain the intended shape.

そこで本発明は、小さい曲率部分を有する非円形コイルを意図した形状のとおり形成する超電導コイルの製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the manufacturing method of the superconducting coil which forms the non-circular coil which has a small curvature part as the intended shape.

本発明者らは、(Bi,Pb)2223超電導線材の性質を調査し、ワインドアンドリアクト法の熱処理を改善することにより、上記課題を解決できる発明の完成に至った。以下、本発明について説明する。   The inventors of the present invention have investigated the properties of (Bi, Pb) 2223 superconducting wire and improved the heat treatment of the wind and react method, thereby completing the invention capable of solving the above-mentioned problems. The present invention will be described below.

本発明は、(Bi,Pb)2223超電導線材がパンケーキ状に複数巻回され、非円形形状を有し、かつ前記超電導線材の限界曲率以下の曲率部分を有する超電導コイルの製造方法であって、(Bi,Pb)2223前駆体線材を巻回しパンケーキコイル状体を形成する工程と前記パンケーキコイル状体を加圧雰囲気中で熱処理する工程とを備え、前記熱処理する工程での600℃以上の温度において、前記加圧雰囲気の全圧力を0.5MPa以上とすることを特徴とする超電導コイルの製造方法である。   The present invention is a method for manufacturing a superconducting coil in which a plurality of (Bi, Pb) 2223 superconducting wires are wound in a pancake shape, have a non-circular shape, and have a curvature portion equal to or less than the limit curvature of the superconducting wires. , (Bi, Pb) 2223 precursor wire is wound to form a pancake coil-shaped body, and the pancake coil-shaped body is heat treated in a pressurized atmosphere at 600 ° C. In the above temperature, the total pressure of the pressurized atmosphere is 0.5 MPa or more.

本発明において、前記パンケーキコイル状体を熱処理する工程において、熱処理の開始から終了まで前記加圧雰囲気の全圧力を0.5MPa以上に維持することが好ましい。   In the present invention, in the step of heat treating the pancake coiled body, it is preferable to maintain the total pressure of the pressurized atmosphere at 0.5 MPa or more from the start to the end of the heat treatment.

本発明において、前記パンケーキコイル状体を形成する工程において、セラミック材料と有機バインダーを含むシート材と、前記(Bi,Pb)2223超電導線材を共に巻回することが好ましい。   In the present invention, in the step of forming the pancake coil-shaped body, it is preferable that the sheet material containing a ceramic material and an organic binder and the (Bi, Pb) 2223 superconducting wire are wound together.

本発明により、小さい曲率部分を有しかつ円形以外の非円形形状を有する超電導コイルを、意図した形状で製造することが可能となる。   According to the present invention, a superconducting coil having a small curvature portion and having a non-circular shape other than a circular shape can be manufactured in an intended shape.

(実施の形態)
図1は本発明の超電導コイルの製造工程を示す図である。図1を参照して本発明の具体的な工程を説明する。
(Embodiment)
FIG. 1 is a diagram showing a manufacturing process of a superconducting coil of the present invention. A specific process of the present invention will be described with reference to FIG.

まず、原料粉末(Bi、PbO、SrCO、CaCO、CuO)を所望の比率で混合し、熱処理し粉砕を繰り返し、前駆体粉末を作製する(ステップS1)。この前駆体粉末を金属管に充填する(ステップS2)。この前駆体粉末は、たとえば(Bi,Pb)SrCaCu8±δ(δは0.1に近い数:以下(Bi,Pb)2212と呼ぶ)相やBiSrCaCu8±δ(δは0.1に近い数:以下Bi2212と呼ぶ)相、(Bi,Pb)2223相等を含む材質よりなっている。なお、金属管としては前駆体と化合物を形成しにくい、銀や銀合金を用いることが好ましい。 First, raw material powders (Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , CuO) are mixed at a desired ratio, heat-treated and pulverized repeatedly to produce a precursor powder (step S1). The precursor powder is filled into a metal tube (step S2). This precursor powder is, for example, (Bi, Pb) 2 Sr 2 Ca 1 Cu 2 O 8 ± δ (δ is a number close to 0.1: hereinafter referred to as (Bi, Pb) 2212) phase or Bi 2 Sr 2 Ca. 1 Cu 2 O 8 ± δ (δ is a number close to 0.1: hereinafter referred to as Bi2212) phase, (Bi, Pb) 2223 phase and the like. As the metal tube, it is preferable to use silver or a silver alloy that hardly forms a compound with a precursor.

次に、所望の直径まで上記線材を伸線加工し、前駆体を芯材として銀などの金属を被覆した単芯線を作製する(ステップS3)。次に、この単芯線を多数束ねて、例えば銀等からなる金属管内に嵌合する(多芯嵌合:ステップS4)。これにより、前駆体粉末を芯材として多数有する多芯構造材が得られる。   Next, the wire is drawn to a desired diameter, and a single core wire coated with a metal such as silver with the precursor as a core material is produced (step S3). Next, many single core wires are bundled and fitted into a metal tube made of, for example, silver or the like (multi-core fitting: step S4). Thereby, the multi-core structure material which has many precursor powders as a core material is obtained.

次に、所望の直径にまで多芯構造材を伸線加工する。これにより前駆体粉末が銀等のシース部に埋め込まれ、断面形状が円状あるいは多角形状の等方的多芯母線を得る(ステップS5)。次に、この等方的多芯母線を圧延する(1次圧延:ステップS6)。これによりテープ状の母線材が得られる。   Next, the multi-core structural material is drawn to a desired diameter. Thereby, the precursor powder is embedded in a sheath portion made of silver or the like, and an isotropic multi-core bus bar having a circular or polygonal cross-sectional shape is obtained (step S5). Next, this isotropic multi-core bus is rolled (primary rolling: step S6). Thereby, a tape-shaped bus bar is obtained.

次に、テープ状母線材を熱処理する(1次熱処理:ステップS7)。この熱処理は、たとえば酸素分圧1〜20kPaの雰囲気において約800℃〜850℃の温度で行わる。この熱処理により、前駆体粉末は目的とする(Bi,Pb)2223相にほぼ変態する。   Next, the tape-shaped bus bar is heat-treated (primary heat treatment: step S7). This heat treatment is performed at a temperature of about 800 ° C. to 850 ° C. in an atmosphere having an oxygen partial pressure of 1 to 20 kPa, for example. By this heat treatment, the precursor powder is almost transformed into the target (Bi, Pb) 2223 phase.

その後、再びテープ状母線材を圧延する(2次圧延:ステップS8)。このように、2次圧延を行うことにより、1次熱処理で生じたボイドが除去される。この2次圧延後までの状態を前駆体線材と呼ぶ。2次圧延されたテープ状前駆体線材を、セラミック材料と有機バインダーを含むシート材と共に巻回し、所望の形状、例えばレーストラック型パンケーキコイル状体を得る(ステップS9)。   Thereafter, the tape-shaped bus bar is rolled again (secondary rolling: step S8). In this way, voids generated by the primary heat treatment are removed by performing the secondary rolling. The state until after the secondary rolling is called a precursor wire. The secondary rolled tape-shaped precursor wire is wound together with a sheet material containing a ceramic material and an organic binder to obtain a desired shape, for example, a racetrack pancake coil (step S9).

巻回された前駆体線材をそのままの形状で熱処理炉に入れ、加圧熱処理を施す(ステップS10)。このときの熱処理条件は、全圧が0.5MPa以上、酸素分圧1〜20kPaの雰囲気において約820〜840℃の温度で20から100時間程度である。この熱処理により、一部ステップS7で反応しきらず残った部分の(Bi,Pb)2223相への変態が起こるとともに、各(Bi,Pb)2223結晶どうし、あるいは(Bi,Pb)2223結晶と非超電導相が強固に結合する。ステップ10後に高い特性の超電導線材が得られ、同時に超電導コイルが形成できる。   The wound precursor wire is put into a heat treatment furnace as it is and subjected to pressure heat treatment (step S10). The heat treatment conditions at this time are about 20 to 100 hours at a temperature of about 820 to 840 ° C. in an atmosphere having a total pressure of 0.5 MPa or more and an oxygen partial pressure of 1 to 20 kPa. This heat treatment causes transformation of the part that has not reacted in step S7 to the (Bi, Pb) 2223 phase, and (Bi, Pb) 2223 crystals, or (Bi, Pb) 2223 crystals and non-reacts. The superconducting phase is strongly bonded. After step 10, a superconducting wire having high characteristics is obtained, and a superconducting coil can be formed at the same time.

ここで本発明の対象となる小径非円形コイルについて説明する。図2は本発明の対象となる非円形パンケーキ状超電導コイルの上面図である。(a)レーストラック状コイル、(b)楕円形コイル、(c)略四角形コイルである。これらは例示であり、曲率が単調に増加しない形状のコイルは全て本発明の対象である。(a)レーストラック状コイルを例にとって説明する。本コイルには大曲率部22と小曲率部21が存在する。レーストラック状では大曲率部22の曲率は無限大である。このコイルを一本の線材で構成すると、線材にかかる曲率は内側から大→小→大→小→・・・となり、単調には増加していない。   Here, the small-diameter non-circular coil that is the subject of the present invention will be described. FIG. 2 is a top view of a non-circular pancake superconducting coil which is an object of the present invention. (A) a racetrack coil, (b) an elliptical coil, and (c) a substantially rectangular coil. These are merely examples, and any coil having a shape whose curvature does not increase monotonically is the subject of the present invention. (A) A racetrack coil will be described as an example. The coil has a large curvature portion 22 and a small curvature portion 21. In the racetrack shape, the curvature of the large curvature portion 22 is infinite. When this coil is composed of a single wire, the curvature applied to the wire is large → small → large → small →... From the inside and does not increase monotonously.

本発明が対象とするコイルのもう一つの特徴は、小曲率部21にある。この小曲率部21がコイルを構成している超電導線材の限界曲率より小さいことである。熱処理後、超電導線材中に酸化物超電導体が生成された状態で、小さな曲率に線材を曲げるとセラミックスである超電導部が破壊され臨界電流値が低下する。限界曲率とは、直状の超電導線材を円状に曲げていった時に、超電導線材の臨界電流値が直状の95%以下になる曲率直径をいう。例えば0.2mm程度の厚さを持つ銀被覆(Bi,Pb)2223超電導線材の限界曲率は約50mmである。このような限界曲率以下の小曲率部を有するコイルは、従来のリアクトアンドワインド法では超電導線材の臨界電流値の低下を伴わずに製造することができない。   Another feature of the coil targeted by the present invention resides in the small curvature portion 21. This small curvature portion 21 is smaller than the limit curvature of the superconducting wire constituting the coil. After heat treatment, if the wire is bent with a small curvature in the state where the oxide superconductor is generated in the superconducting wire, the superconducting portion made of ceramic is destroyed and the critical current value is lowered. The limit curvature is a diameter of curvature at which the critical current value of the superconducting wire becomes 95% or less of the straight shape when the straight superconducting wire is bent into a circle. For example, the limit curvature of a silver-coated (Bi, Pb) 2223 superconducting wire having a thickness of about 0.2 mm is about 50 mm. A coil having such a small curvature portion less than the limit curvature cannot be manufactured without a decrease in the critical current value of the superconducting wire by the conventional react-and-wind method.

本発明は上記のような、単調に増加しない曲率を有し、かつ限界曲率以下の部分を有するパンケーキ状コイルを製造する方法である。   The present invention is a method for producing a pancake-like coil having a curvature that does not increase monotonously and having a portion that is equal to or less than the limit curvature as described above.

本発明の第2の特徴は、ステップ10の加圧熱処理にある。加圧熱処理は外部から高圧力をかけて熱処理するため超電導結晶間の接合を強固にできる。そのため線材自体の性能が高くできるといった作用がある。もう一つの効果は、巻回されたコイルの形状を熱処理後も維持できるものである。銀被覆超電導線材は熱処理時に前駆体粉末から酸素等のガスが放出される。このガスが銀被覆内部に残留し熱膨張することによって線材自体を膨らませる。   The second feature of the present invention resides in the pressure heat treatment in step 10. Since the pressure heat treatment is performed by applying a high pressure from the outside, the bonding between the superconducting crystals can be strengthened. Therefore, there exists an effect | action that the performance of wire itself can be made high. Another effect is that the shape of the wound coil can be maintained after the heat treatment. In the silver-coated superconducting wire, a gas such as oxygen is released from the precursor powder during heat treatment. This gas remains inside the silver coating and thermally expands to expand the wire itself.

円形状コイルでは線材にかかっている張力、コイル径方向の押し付け力もほぼ一様である。そのためほぼ均一に線材の熱膨張がおこり、熱処理で型崩れしにくく、円形を保ちやすい。一方、非円形コイルでは、線材にかかる各種応力も場所により異なる。そのため熱膨張の割合が場所により違う。例えば、図2(a)レーストラック状コイルにおいて、大曲率部22では線材へかかるコイル径方向への押し付け力は小さく、小曲率部21でかかる押し付け力は大きい。このようなコイルを熱処理した場合、大曲率部22において線材は膨張しやすく、小曲率部21では膨張しにくい。そのため図2(a)の形状で熱処理を開始しても、熱処理後の形状は図2(b)の楕円形になることがある。   In the circular coil, the tension applied to the wire and the pressing force in the coil radial direction are substantially uniform. Therefore, thermal expansion of the wire material occurs almost uniformly, it is difficult to lose its shape by heat treatment, and it is easy to maintain a circular shape. On the other hand, in a non-circular coil, various stresses applied to the wire also differ depending on the location. Therefore, the rate of thermal expansion varies from place to place. For example, in the racetrack coil shown in FIG. 2A, the large curvature portion 22 has a small pressing force applied to the wire in the coil radial direction, and the small curvature portion 21 has a large pressing force. When such a coil is heat-treated, the wire is likely to expand at the large curvature portion 22 and hardly expand at the small curvature portion 21. Therefore, even if the heat treatment is started with the shape of FIG. 2A, the shape after the heat treatment may be an ellipse of FIG. 2B.

また全体的形状の変化だけでなく、線材間の隙間間隔も変化することがある。これは加熱及び冷却時の熱膨張と熱収縮によるものである。加熱により線材は厚さ方向に膨張し、線材が互いに離れていく方向に変形する。一方冷却時の厚さ方向への収縮には線材の位置は追随せず、そのままの位置で冷却される。よって線材間の隙間が大きくなり、コイルが緩んだ状態になる。径方向への押し付け力が強い小曲率部ではあまり線材間隔は広がらないが、押し付け力が弱い大曲率部では隙間が大きくなる傾向にある。この現象は後述する線材間に絶縁材料を挟んで絶縁材料とする場合に影響する。   Further, not only the overall shape change but also the gap interval between the wires may change. This is due to thermal expansion and contraction during heating and cooling. The wire expands in the thickness direction by heating, and deforms in a direction in which the wire moves away from each other. On the other hand, the position of the wire does not follow the contraction in the thickness direction at the time of cooling, and it is cooled at the position as it is. Therefore, the gap between the wire rods becomes large and the coil becomes loose. In the small curvature portion where the pressing force in the radial direction is strong, the wire interval is not so wide, but in the large curvature portion where the pressing force is weak, the gap tends to be large. This phenomenon affects the case where an insulating material is sandwiched between wire materials to be described later.

加圧熱処理時に圧力が加えられる温度領域は600℃以上であることが必要である。超電導セラミック部に含まれるガス成分として、炭素(C)、酸素(O)があげられる。炭素は650℃程度からCOとなって、酸素は800℃程度からOの形で超電導セラミック部から放出される。よって600℃以上の温度領域において、圧力をかけておけばこれら超電導セラミック部に含まれる炭素や酸素に起因するガス放出を抑制することができる。 The temperature range in which pressure is applied during the pressure heat treatment needs to be 600 ° C. or higher. Examples of gas components contained in the superconducting ceramic part include carbon (C) and oxygen (O). Carbon becomes CO 2 from about 650 ° C., and oxygen is released from the superconducting ceramic part in the form of O 2 from about 800 ° C. Therefore, if a pressure is applied in a temperature range of 600 ° C. or higher, gas emission caused by carbon and oxygen contained in these superconducting ceramic portions can be suppressed.

また前駆体粉末は吸着した水分を取り除かれて、金属管に充填されるが、充分除去できない場合は金属管内に水分が存在することになる。この水分は100℃以上で気化し線材膨張の原因となる。よって万が一水分が除去しきれていない前駆体粉末を使用した場合でも、100℃以下の温度(熱処理開始温度)から圧力をかけておけば、これら水分による膨張を抑えることができる。よって100℃以下の熱処理開始時から圧力をかけておくことが好ましい。   The precursor powder removes the adsorbed moisture and fills the metal tube. If the precursor powder cannot be sufficiently removed, moisture exists in the metal tube. This moisture evaporates at 100 ° C. or more and causes the wire material to expand. Therefore, even if a precursor powder from which moisture has not been completely removed is used, expansion due to moisture can be suppressed by applying pressure from a temperature of 100 ° C. or lower (heat treatment start temperature). Therefore, it is preferable to apply pressure from the start of heat treatment at 100 ° C. or lower.

降温時には、ガスが収縮するため原理的には膨張は起こらないが、なんらかの原因で熱処理前の前駆体線材がその銀被覆にピンホール等の穴を局部的に有していた場合、熱処理中に高圧の雰囲気ガスがフィラメント内に入ることになる。高圧ガスがフィラメント内に入り、超電導結晶間の結合により、出口がふさがった場合には高圧のガスがフィラメント内に閉じ込められた状態になる。降温時において銀被覆が柔らかい、すなわち温度が高い状況下で圧力を下げてしまうと、閉じ込められた高圧ガスが外部圧力に勝って膨張することがある。このような部位は局所的に膨れた状態となる。そこで仮にフィラメント内に高圧ガスが閉じ込められたとしても、銀被覆が充分硬くなる温度、すなわち100℃近くまで圧力を高くしておけば銀被覆の硬化によって膨張が防止できる。よって熱処理の終了時まで加圧状態を保っておくことが好ましい。   When the temperature drops, the gas shrinks, and in principle, expansion does not occur.However, if for some reason the precursor wire before heat treatment has local holes such as pinholes in its silver coating, High-pressure atmospheric gas enters the filament. When the high pressure gas enters the filament and the outlet is blocked by the coupling between the superconducting crystals, the high pressure gas is confined in the filament. If the silver coating is soft when the temperature is lowered, that is, if the pressure is lowered under a high temperature condition, the trapped high-pressure gas may expand over the external pressure. Such a part is in a locally swollen state. Therefore, even if the high-pressure gas is confined in the filament, if the pressure is increased to a temperature at which the silver coating becomes sufficiently hard, that is, close to 100 ° C., expansion can be prevented by curing the silver coating. Therefore, it is preferable to maintain the pressurized state until the end of the heat treatment.

熱処理時の圧力が0.5MPa以上であれば、超電導フィラメント部から放出されるガス、および吸着水分による膨張を抑えることを発明者は実験的に見出した。   The inventor has experimentally found that if the pressure during the heat treatment is 0.5 MPa or more, the expansion of the gas released from the superconducting filament portion and adsorbed moisture is suppressed.

熱処理後コイルとして使用する場合、線材間(ターン間)の絶縁が必要である。そのひとつの方法として、図1中ステップS9において、テープ状前駆体線材と、セラミック材料と有機バインダーを含むシート材とを共に巻回し、それを熱処理する。   When used as a coil after heat treatment, insulation between wires (between turns) is necessary. As one method, in step S9 in FIG. 1, a tape-shaped precursor wire, a sheet material containing a ceramic material and an organic binder are wound together and heat-treated.

熱処理後にシート材の成分中、有機バインダーは消失し、セラミック材料はコイル中の線材間に残り、線材間の絶縁材料として働く。セラミック材料としては、超電導材料あるいは被覆材との反応性が低い材質が好ましい。例えば、マグネシア、ジルコニア、アルミナ、酸化シリコン、CuO、SrCO、ZrSrO等があげられる。またこれらを複合して用いてもよい。 The organic binder disappears in the components of the sheet material after the heat treatment, and the ceramic material remains between the wire materials in the coil, and acts as an insulating material between the wire materials. As the ceramic material, a material having low reactivity with the superconducting material or the covering material is preferable. Examples thereof include magnesia, zirconia, alumina, silicon oxide, CuO, SrCO 3 , ZrSrO 4 and the like. These may be used in combination.

有機バインダーは、前記セラミック材料をシート状に保つことを主目的としており、線材熱処理中に消失する材質であればどのような材質でもかまわない。例として、セルロース系、天然ゴム系の材質があげられる。   The organic binder is mainly intended to keep the ceramic material in the form of a sheet, and any material may be used as long as it is a material that disappears during the wire heat treatment. Examples include cellulosic and natural rubber materials.

上記セラミック材は超電導線材とは反応しにくいため、超電導線材とは密着していない。熱処理後、線材間の隙間が大きくなっていると、コイルを炉から取り出す際等に、コイルからセラミック材料が脱落することもある。そうすると線材間の絶縁性が低下する。そこで前記したように線材間の隙間間隔が大きくならないように加圧熱処理することが重要である。   Since the ceramic material is difficult to react with the superconducting wire, it is not in close contact with the superconducting wire. If the gap between the wires becomes large after heat treatment, the ceramic material may fall off the coil when the coil is taken out of the furnace. If it does so, the insulation between wires will fall. Thus, as described above, it is important to perform the heat treatment so that the gap between the wires does not increase.

以下、実施例に基づき、本発明をさらに具体的に説明する。   Hereinafter, based on an Example, this invention is demonstrated further more concretely.

原料粉末(Bi、PbO、SrCO、CaCO、CuO)をBi:Pb:Sr:Ca:Cu=1.8:0.3:2.0:2.0:3.0の比率で混合し、大気中で700℃×8時間、粉砕、800℃×10時間、粉砕、840℃×4時間、粉砕の処理を施し前駆体粉末を得る。また、5種類の原料粉末が溶解した硝酸水溶液を、加熱された炉内に噴射することにより、金属硝酸塩水溶液の粒子の水分が蒸発し、硝酸塩の熱分解、そして金属酸化物同士の反応、合成を瞬時に起こさせる噴霧熱分解法で前駆体粉末を作製することもできる。こうして作製された前駆体粉末は、(Bi,Pb)2212相あるいはBi2212相が主体となった粉末である。 Raw material powder (Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , CuO) is in a ratio of Bi: Pb: Sr: Ca: Cu = 1.8: 0.3: 2.0: 2.0: 3.0 Are mixed in the atmosphere and subjected to pulverization in the air at 700 ° C. for 8 hours, pulverization, 800 ° C. for 10 hours, pulverization, and 840 ° C. for 4 hours to obtain a precursor powder. In addition, by injecting a nitric acid aqueous solution in which five types of raw material powders are dissolved into a heated furnace, the water in the particles of the metal nitrate aqueous solution evaporates, the thermal decomposition of the nitrate, and the reaction and synthesis of metal oxides. Precursor powder can also be produced by a spray pyrolysis method that instantly raises. The precursor powder thus produced is a powder mainly composed of (Bi, Pb) 2212 phase or Bi 2212 phase.

上記により作製された前駆体粉末を外径25mm、内径22mmの銀パイプに充填し、直径2.4mmまで伸線して単芯線を作製する。この単芯線を55本に束ねて外径25mm、内径22mmの銀パイプに挿入し、直径1.5mmまで伸線し、多芯(55芯)線材を得る。この多芯線を圧延し、厚み0.25mmのテープ状線材に加工する。得られたテープ状線材を8kPa酸素雰囲気中で820℃〜840℃、30時間〜50時間の大気圧における一次熱処理を施す。一次熱処理後のテープ状線材を厚み0.23mmになるように二次圧延する。   The precursor powder produced as described above is filled in a silver pipe having an outer diameter of 25 mm and an inner diameter of 22 mm, and drawn to a diameter of 2.4 mm to produce a single core wire. The single core wires are bundled into 55, inserted into a silver pipe having an outer diameter of 25 mm and an inner diameter of 22 mm, and drawn to a diameter of 1.5 mm to obtain a multi-core (55 core) wire. This multi-core wire is rolled and processed into a tape-like wire having a thickness of 0.25 mm. The obtained tape-shaped wire is subjected to primary heat treatment at 820 ° C. to 840 ° C. and atmospheric pressure for 30 hours to 50 hours in an oxygen atmosphere of 8 kPa. The tape-shaped wire after the primary heat treatment is secondarily rolled to a thickness of 0.23 mm.

(比較例:リアクトアンドワインド法によるコイル作製)
上記二次圧延後のテープ状線材の一部を酸素分圧8kPa、全圧0.5MPa加圧雰囲気下にて820℃〜840℃、100時間の二次熱処理を施す(リアクト)。二次熱処理を施された直後の超電導線材は直状で210Aの臨界電流値を有している。この線材を用いて、図3に示すレーストラック形コイルを作製する。図3は比較例、実施例として作製するコイルの上面図である。
(Comparative example: coil production by the react and wind method)
A part of the tape-shaped wire rod after the secondary rolling is subjected to a secondary heat treatment at 820 ° C. to 840 ° C. for 100 hours in an oxygen partial pressure of 8 kPa and a total pressure of 0.5 MPa (react). The superconducting wire immediately after the secondary heat treatment is straight and has a critical current value of 210A. A racetrack coil shown in FIG. 3 is produced using this wire. FIG. 3 is a top view of a coil manufactured as a comparative example and an example.

直線部(L)は30cm、半円形部の内径(b)は3cm、外径(B)は5cmである。また直線部中央間距離(A)はBと同じく5cmである。この形状の超電導コイルを上記二次熱処理後の線材と、セルロース系バインダーでアルミナ繊維が保持された厚さ0.1mmのテープ状シート材とを共に巻回し(ワインド)形成する。以後熱処理は施さない。   The straight part (L) is 30 cm, the inner diameter (b) of the semicircular part is 3 cm, and the outer diameter (B) is 5 cm. Further, the distance (A) between the straight line centers is 5 cm like B. A superconducting coil having this shape is formed by winding (winding) the wire after the secondary heat treatment and a tape-like sheet material having a thickness of 0.1 mm in which alumina fibers are held with a cellulose-based binder. Thereafter, no heat treatment is performed.

(実施例:ワインドアンドリアクト法によるコイル作製)
二次圧延後のテープ状線材を図3の形状になるように、比較例と同様にテープ状シート材と共に巻回する(ワインド)。このコイル状体に熱処理開始時から終了まで酸素分圧8kPa、全圧0.5MPaの雰囲気になるようにし、820℃〜840℃、100時間の二次熱処理を施し(リアクト)、超電導コイル(実施例1)とする。
(Example: Winding and Reacting Coil Manufacturing)
The tape-shaped wire after the secondary rolling is wound with a tape-shaped sheet material in the same manner as in the comparative example so as to have the shape shown in FIG. The coiled body was subjected to a secondary heat treatment at 820 ° C. to 840 ° C. for 100 hours (react) from the start to the end of the heat treatment so as to have an oxygen partial pressure of 8 kPa and a total pressure of 0.5 MPa. Example 1).

(実施例2−6及び比較例2−6:ワインドアンドリアクト法によるコイル作製)
実施例1と同様にコイル形状を形成した後、条件を変え二次熱処理を施すことにより複数の実施例、比較例となる超電導コイルを作製する。その実施例及び比較例番号と二次熱処理条件を表1に示す。
(Example 2-6 and Comparative Example 2-6: Production of Coil by Wind and React Method)
After forming a coil shape in the same manner as in Example 1, a superconducting coil serving as a plurality of Examples and Comparative Examples is manufactured by performing secondary heat treatment under different conditions. Examples and comparative example numbers and secondary heat treatment conditions are shown in Table 1.

作製された超電導コイルの臨界電流値(Ic)を、液体窒素中4端子法で測定する。1μV/cmの電圧が発生した電流値をIcとする。その結果を表1に示す。また二次熱処理後の直線部中央間距離(A)も表1に示す。   The critical current value (Ic) of the produced superconducting coil is measured by the 4-terminal method in liquid nitrogen. Let Ic be the current value at which a voltage of 1 μV / cm is generated. The results are shown in Table 1. Table 1 also shows the distance (A) between the straight line centers after the secondary heat treatment.

Figure 2009099573
Figure 2009099573

リアクトアンドワインド法で作製した比較例1の超電導コイルは、Ic(A)が100Aであり、コイル状形成前のIc(210A)から大きく低下している。これは超電導相形成(二次熱処理)後、限界曲率(本線材の場合5cm)以下に線材を曲げたことによる。この例より使用する超電導線材の限界曲率以下の径を有する超電導コイルは、元の超電導線材の性能を低下させずにリアクトアンドワインド法で作製することが困難であることが判る。但し、コイル状体形成後熱処理を行っていないため線材の膨張が起こらない。よって形状は巻回された形状を維持している(直線部中央間距離(A)が5cmのまま)。   The superconducting coil of Comparative Example 1 manufactured by the react-and-wind method has an Ic (A) of 100 A, which is significantly lower than the Ic (210 A) before forming the coil. This is because the wire was bent to a limit curvature (5 cm in the case of the main wire) or less after formation of the superconducting phase (secondary heat treatment). It can be seen from this example that a superconducting coil having a diameter equal to or less than the limit curvature of the superconducting wire used is difficult to manufacture by the react and wind method without degrading the performance of the original superconducting wire. However, since the heat treatment is not performed after the coiled body is formed, the wire does not expand. Therefore, the shape maintains the wound shape (distance (A) between the straight line centers remains 5 cm).

一方、本発明に従って作製された実施例1の超電導コイルは、Icが197Aである。これはコイル形状での通電であり、そのため磁場が発生していることを考えれば、使用された線材の本来性能をほぼ実現しているといえる。   On the other hand, the superconducting coil of Example 1 manufactured according to the present invention has an Ic of 197A. This is energization in the form of a coil, and considering the fact that a magnetic field is generated, it can be said that the original performance of the used wire is almost realized.

またコイル形状の変化の目安として、直線部中央間距離(A)を測定すると5.1cmである。これは線材の膨張が無く、熱処理前の形状を維持できていることを示す。二次熱処理が加圧熱処理でない比較例2では、Icが152Aと低く、直線部中央間距離(A)も6.1cmとなり楕円状に変形している。これらはいずれも圧力を加えないため線材が膨張したことに起因する。このようなコイルは直線部の線材間隔が広がっているため、絶縁用のセラミック材が脱落しやすい。   As a measure of the change in the coil shape, the distance (A) between the straight line centers is 5.1 cm. This indicates that there is no expansion of the wire and the shape before the heat treatment can be maintained. In Comparative Example 2 in which the secondary heat treatment is not the pressure heat treatment, Ic is as low as 152 A, and the distance (A) between the straight line centers is 6.1 cm, which is deformed into an ellipse. None of these results from the expansion of the wire because no pressure was applied. In such a coil, since the interval between the wire members in the straight portion is wide, the insulating ceramic material is likely to fall off.

比較例3、4、実施例1、4、5、6を比べてみると全圧力が0.5MPa以上で熱処理されたコイルにおいて、Icが高く、コイル形状の変化が小さいことがわかる。これは0.5MPa以上の全圧力で熱処理すると線材の膨張を抑えることができるからである。   Comparing Comparative Examples 3, 4 and Examples 1, 4, 5, and 6, it can be seen that the coil heat-treated at a total pressure of 0.5 MPa or higher has a high Ic and a small change in coil shape. This is because the expansion of the wire can be suppressed by heat treatment at a total pressure of 0.5 MPa or more.

比較例5、6、実施例1、2、3を比べてみると、加圧開始及び終了温度が600℃以下であると、言い換えれば600℃以上の温度領域がカバーされるよう加圧されると、Icが高く、変形の小さい、良好な超電導コイルが得られることがわかる。つまり超電導セラミック部から二酸化炭素や酸素が発生するような温度領域をカバーするように加圧してやればよい。また水分まで考慮すれば、室温から加圧していることが好ましい。   Comparing Comparative Examples 5 and 6 and Examples 1, 2, and 3, when the pressurization start and end temperatures are 600 ° C. or lower, in other words, pressurization is performed to cover a temperature region of 600 ° C. or higher. It can be seen that a good superconducting coil with high Ic and small deformation can be obtained. That is, pressurization may be performed so as to cover a temperature region where carbon dioxide and oxygen are generated from the superconducting ceramic portion. In consideration of moisture, it is preferable to pressurize from room temperature.

今回開示された実施の形態および実施例は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の超電導コイルの製造工程を示す図である。It is a figure which shows the manufacturing process of the superconducting coil of this invention. 本発明の対象となる非円形パンケーキ状超電導コイルの上面図である。(a)レーストラック状コイル、(b)楕円形コイル、(c)略四角形コイル。It is a top view of the non-circular pancake-shaped superconducting coil which is the subject of the present invention. (A) a racetrack coil, (b) an elliptical coil, (c) a substantially rectangular coil. 比較例、実施例として作製するコイルの上面図である。It is a top view of the coil produced as a comparative example and an Example.

符号の説明Explanation of symbols

21 小曲率部
22 大曲率部
21 Small curvature part 22 Large curvature part

Claims (3)

(Bi,Pb)2223超電導線材がパンケーキ状に複数巻回され、非円形形状を有し、かつ前記超電導線材の限界曲率以下の曲率部分を有する超電導コイルの製造方法であって、
(Bi,Pb)2223前駆体線材を巻回しパンケーキコイル状体を形成する工程と
前記パンケーキコイル状体を加圧雰囲気中で熱処理する工程とを備え、
前記熱処理する工程での600℃以上の温度において、前記加圧雰囲気の全圧力を0.5MPa以上とすることを特徴とする超電導コイルの製造方法。
(Bi, Pb) 2223 superconducting wire is a method for producing a superconducting coil, wherein a plurality of superconducting wires are wound in a pancake shape, have a non-circular shape, and have a curvature portion equal to or less than a limit curvature of the superconducting wire,
(Bi, Pb) comprising a step of winding a 2223 precursor wire to form a pancake coil-shaped body, and a step of heat-treating the pancake coil-shaped body in a pressurized atmosphere,
A method of manufacturing a superconducting coil, wherein the total pressure of the pressurized atmosphere is 0.5 MPa or higher at a temperature of 600 ° C. or higher in the heat treatment step.
前記パンケーキコイル状体を熱処理する工程において、熱処理の開始から終了まで前記加圧雰囲気の全圧力を0.5MPa以上に維持することを特徴とする請求項1に記載の超電導コイルの製造方法。   2. The method of manufacturing a superconducting coil according to claim 1, wherein in the step of heat-treating the pancake coil-like body, the total pressure of the pressurized atmosphere is maintained at 0.5 MPa or more from the start to the end of the heat treatment. 前記パンケーキコイル状体を形成する工程において、セラミック材料と有機バインダーを含むシート材と、前記(Bi,Pb)2223前駆体線材を共に巻回することを特徴とする請求項1または2に記載の超電導コイルの製造方法。   3. The step of forming the pancake coil-like body, wherein the sheet material containing a ceramic material and an organic binder and the (Bi, Pb) 2223 precursor wire are wound together. Manufacturing method of superconducting coil.
JP2007266428A 2007-10-12 2007-10-12 Mehod of manufacturing superconducting coil Pending JP2009099573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007266428A JP2009099573A (en) 2007-10-12 2007-10-12 Mehod of manufacturing superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007266428A JP2009099573A (en) 2007-10-12 2007-10-12 Mehod of manufacturing superconducting coil

Publications (1)

Publication Number Publication Date
JP2009099573A true JP2009099573A (en) 2009-05-07

Family

ID=40702349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007266428A Pending JP2009099573A (en) 2007-10-12 2007-10-12 Mehod of manufacturing superconducting coil

Country Status (1)

Country Link
JP (1) JP2009099573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012257A (en) * 2013-07-02 2015-01-19 株式会社東芝 Heat treatment device and method for superconducting coil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298706A (en) * 1988-05-27 1989-12-01 Fuji Electric Co Ltd Manufacture of superconducting coil
JPH0332003A (en) * 1989-06-29 1991-02-12 Furukawa Electric Co Ltd:The High-magnetic-field magnet
JPH05135935A (en) * 1991-11-14 1993-06-01 Mitsubishi Electric Corp Oxide superconductive coil
JPH09213520A (en) * 1996-01-30 1997-08-15 Toshiba Corp Superconducting coil
JPH10289623A (en) * 1997-04-14 1998-10-27 Sumitomo Electric Ind Ltd Structure with linear material wound into coil shape, manufacture thereof and spacer therefor
JP2001015324A (en) * 1999-04-27 2001-01-19 Toshiba Corp Superconducting coil and manufacture thereof
JP2002093252A (en) * 2000-07-14 2002-03-29 Sumitomo Electric Ind Ltd Method of manufacturing oxide superconducting wire and pressure heat treatment device used for the method
JP2003086419A (en) * 2001-09-14 2003-03-20 Mitsubishi Electric Corp Electromagnetic coil insulating device and method of manufacturing the electromagnetic coil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298706A (en) * 1988-05-27 1989-12-01 Fuji Electric Co Ltd Manufacture of superconducting coil
JPH0332003A (en) * 1989-06-29 1991-02-12 Furukawa Electric Co Ltd:The High-magnetic-field magnet
JPH05135935A (en) * 1991-11-14 1993-06-01 Mitsubishi Electric Corp Oxide superconductive coil
JPH09213520A (en) * 1996-01-30 1997-08-15 Toshiba Corp Superconducting coil
JPH10289623A (en) * 1997-04-14 1998-10-27 Sumitomo Electric Ind Ltd Structure with linear material wound into coil shape, manufacture thereof and spacer therefor
JP2001015324A (en) * 1999-04-27 2001-01-19 Toshiba Corp Superconducting coil and manufacture thereof
JP2002093252A (en) * 2000-07-14 2002-03-29 Sumitomo Electric Ind Ltd Method of manufacturing oxide superconducting wire and pressure heat treatment device used for the method
JP2003086419A (en) * 2001-09-14 2003-03-20 Mitsubishi Electric Corp Electromagnetic coil insulating device and method of manufacturing the electromagnetic coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012257A (en) * 2013-07-02 2015-01-19 株式会社東芝 Heat treatment device and method for superconducting coil

Similar Documents

Publication Publication Date Title
EP1096580B1 (en) Oxide superconducting wire having insulating coat and production method thereof
JP5219454B2 (en) Method for manufacturing a superconductor
JP2002093252A (en) Method of manufacturing oxide superconducting wire and pressure heat treatment device used for the method
JP2009099573A (en) Mehod of manufacturing superconducting coil
JP4111240B1 (en) Oxide superconducting material, manufacturing method thereof, superconducting wire, superconducting equipment
JPWO2010016302A1 (en) Precursor wire of oxide superconducting wire, manufacturing method thereof, and oxide superconducting wire using the precursor wire
TWI298169B (en) Method for producing oxide superconductive wire material, method for modifying oxide superconductive wire material and an oxide superconductive wire material
JP6262564B2 (en) Manufacturing method of superconducting deformed coil
JP4715672B2 (en) Oxide superconducting wire and method for producing the same
WO2006001100A1 (en) Method for producing superconducting wire
JP2010129214A (en) Superconductive wire material and manufacturing method
JP2007149416A (en) Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
JP4893117B2 (en) Oxide superconducting wire manufacturing method and superconducting equipment
JPH01100901A (en) Superconducting ceramic electromagnet and preparation thereof
JP3015389B2 (en) Superconducting coil manufacturing method
JP2007335100A (en) Manufacturing method of oxide superconducting wire and superconducting equipment
JP2008153140A (en) Manufacturing method of oxide superconductive wire
JPH06349358A (en) Manufacture of oxide high temperature superconductive wire material
JP2009181817A (en) Manufacturing method of oxide superconductive wire rod, and oxide superconductive wire rod
JP2009289502A (en) CERAMIC SHEET, MANUFACTURING METHOD FOR Bi2223 OXIDE SUPERCONDUCTIVE WIRE, AND Bi2223 OXIDE SUPERCONDUCTIVE WIRE
JPH04329217A (en) Oxide superconductive wire material and manufacture thereof
JP2008147012A (en) Manufacturing method of oxide superconducting wire, and superconducting apparatus
JP5343526B2 (en) Superconducting wire manufacturing method
JP4595813B2 (en) Oxide superconducting wire, manufacturing method thereof and superconducting equipment
JP2757575B2 (en) Method for manufacturing high-temperature superconducting wire

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524