JP2008147012A - Manufacturing method of oxide superconducting wire, and superconducting apparatus - Google Patents

Manufacturing method of oxide superconducting wire, and superconducting apparatus Download PDF

Info

Publication number
JP2008147012A
JP2008147012A JP2006332711A JP2006332711A JP2008147012A JP 2008147012 A JP2008147012 A JP 2008147012A JP 2006332711 A JP2006332711 A JP 2006332711A JP 2006332711 A JP2006332711 A JP 2006332711A JP 2008147012 A JP2008147012 A JP 2008147012A
Authority
JP
Japan
Prior art keywords
superconducting
wire
precursor
precursor powder
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006332711A
Other languages
Japanese (ja)
Inventor
Naoki Ayai
直樹 綾井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006332711A priority Critical patent/JP2008147012A/en
Publication of JP2008147012A publication Critical patent/JP2008147012A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of achieving an organization where a superconducting crystal is highly oriented in an oxide superconducting wire, and a uniform superconducting filament shape, and thereby manufacturing an oxide superconducting wire having a high critical current value. <P>SOLUTION: This manufacturing method of an oxide superconducting wire comprises: a process of filling a metal pipe with precursor powder of a (Bi, Pb) 2223 superconductor; a process of plastically processing the metal pipe filled with the precursor powder; and a heat treatment process of heat-treating a wire after the plastically processing process. The manufacturing method is characterized by compressively molding the precursor powder into a plate-like shape, and thereafter filling the metal pipe with the plate-like precursor powder, and increases a critical current value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超電導ケーブル、超電導コイル、超電導変圧器、超電導電力貯蔵装置等の超電導応用機器に用いられる(Bi,Pb)2Sr2Ca2Cu310±δ(δは0.1程度の数:以下(Bi,Pb)2223とする)相を含む酸化物超電導線材の製造方法に関し、詳しくは(Bi,Pb)2223超電導線材の臨界電流値向上を目的とする酸化物超電導線材の製造方法に関する。 The present invention is used in (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O 10 ± δ (δ is about 0.1) used in superconducting application equipment such as superconducting cables, superconducting coils, superconducting transformers, and superconducting power storage devices. Number: The manufacturing method of an oxide superconducting wire containing a phase (hereinafter referred to as (Bi, Pb) 2223), and more specifically, a manufacturing method of an oxide superconducting wire for the purpose of improving the critical current value of the (Bi, Pb) 2223 superconducting wire About.

金属シース法で作製された(Bi,Pb)2223相を主成分とする酸化物超電導線材は高い臨界温度を持ちかつ、液体窒素温度等の比較的簡単な冷却下でも高い臨界電流値を示す有用な線材である(たとえば、非特許文献1を参照)。それゆえ更なる性能(臨界電流値)の向上が実現すれば、より実用に供される範囲が広がる。   An oxide superconducting wire mainly composed of (Bi, Pb) 2223 phase produced by a metal sheath method has a high critical temperature and a useful value showing a high critical current value even under relatively simple cooling such as liquid nitrogen temperature. (For example, refer nonpatent literature 1). Therefore, if further improvement in performance (critical current value) is realized, the range of practical use is expanded.

また上記(Bi,Pb)2223超電導材線材を使用することによって、従来の常伝導導体を用いるよりはるかにエネルギー損失を低減することが可能であると考えられている。そのため(Bi,Pb)2223超電導材線材を導体として用いた超電導ケーブル、超電導コイル、超電導変圧器、超電導電力貯蔵装置等の超電導応用機器開発も同時に進められている。   In addition, it is considered that by using the (Bi, Pb) 2223 superconducting wire, it is possible to reduce energy loss far more than when using a conventional normal conductor. Therefore, development of superconducting application equipment such as a superconducting cable, a superconducting coil, a superconducting transformer, a superconducting power storage device using a (Bi, Pb) 2223 superconducting material wire as a conductor is being promoted at the same time.

超電導線材の臨界電流値を上げる方法としては、(Bi,Pb)2223系超電導線材を加圧された雰囲気下において焼結する方法が採用されている(特許文献1および非特許文献1を参照)。これにより液体窒素温度での臨界電流値は約100Aから120A級に向上している。
特開2002−093252号公報 SEIテクニカルレビュー、2004年3月 第164号 p36−42
As a method for increasing the critical current value of a superconducting wire, a method of sintering a (Bi, Pb) 2223 series superconducting wire in a pressurized atmosphere is employed (see Patent Document 1 and Non-Patent Document 1). . As a result, the critical current value at the liquid nitrogen temperature is improved from about 100 A to 120 A class.
JP 2002-093252 A SEI Technical Review, March 2004, No. 164, p36-42

上記の技術によっても、臨界電流値向上の効果は認められる。しかしながら、今後の市場からのニーズを考えれば、さらなる臨界電流値の増大が望まれる。そこで本発明はより臨界電流値の高い酸化物超電導線材の製造方法を提供することを目的とする。   The effect of improving the critical current value is also recognized by the above technique. However, considering the needs from the future market, further increase of the critical current value is desired. Therefore, an object of the present invention is to provide a method for producing an oxide superconducting wire having a higher critical current value.

本発明者らは、(Bi,Pb)2223線材の製造工程中における前駆体粉末の形態に特徴をもたせることによって、臨界電流値を向上させる超電導線材の製造方法を見出した。具体的には以下のとおりである。   The present inventors have found a method for producing a superconducting wire that improves the critical current value by characterizing the form of the precursor powder during the production process of the (Bi, Pb) 2223 wire. Specifically, it is as follows.

本発明は、(Bi,Pb)2223超電導体の前駆体粉末を金属管に充填する工程と、前記前駆体粉末が充填された金属管を塑性加工する工程と、前記塑性加工工程後の線材を熱処理する熱処理工程とを備えた酸化物超電導線材の製造方法であって、該前駆体粉末を板状に圧縮成形した後、板状前駆体粉末を金属管に充填することを特徴とする酸化物超電導線材の製造方法である。   The present invention includes a step of filling a metal tube with a precursor powder of (Bi, Pb) 2223 superconductor, a step of plastically processing the metal tube filled with the precursor powder, and a wire rod after the plastic processing step. An oxide superconducting wire manufacturing method comprising a heat treatment step for heat treatment, wherein the precursor powder is compression-molded into a plate shape, and then the plate-like precursor powder is filled into a metal tube It is a manufacturing method of a superconducting wire.

本発明において、前記板状前駆体に含まれる超電導結晶のa−b面方向が金属管の長手方向にそろうように、該板状前駆体粉末を金属管に充填することが好ましい。   In the present invention, it is preferable to fill the metal pipe with the plate precursor powder so that the ab plane direction of the superconducting crystal contained in the plate precursor is aligned with the longitudinal direction of the metal pipe.

本発明において、前記圧縮成型は圧延によって行われることが好ましい。   In the present invention, the compression molding is preferably performed by rolling.

また本発明において、前記圧縮成形された前駆体粉末を熱処理した後、金属管に充填することが好ましい。   In the present invention, the metal powder is preferably filled after heat-treating the compression-molded precursor powder.

本発明において、前記(Bi,Pb)2223超電導体の前駆体粉末は、正方晶Bi2212相が主相であることが好ましい。   In the present invention, the precursor powder of the (Bi, Pb) 2223 superconductor preferably has a tetragonal Bi2212 phase as a main phase.

また本発明は、上記のいずれかに記載の製造方法により製造された酸化物超電導線材を導体として含む超電導機器である。   Moreover, this invention is a superconducting apparatus which contains the oxide superconducting wire manufactured by the manufacturing method in any one of said as a conductor.

本発明の製造方法によれば、高い臨界電流値を有する(Bi,Pb)2223酸化物超電導線材を得ることができる。また本発明の酸化物超電導線材を導体として用いることにより、高性能な超電導ケーブル、超電導コイル、超電導変圧器、超電導電力貯蔵装置等の超電導機器を実現できる。   According to the production method of the present invention, a (Bi, Pb) 2223 oxide superconducting wire having a high critical current value can be obtained. Moreover, by using the oxide superconducting wire of the present invention as a conductor, it is possible to realize superconducting equipment such as a high-performance superconducting cable, a superconducting coil, a superconducting transformer, and a superconducting power storage device.

(実施の形態)
図1は、酸化物超電導線材の構成を模式的に示す部分断面斜視図である。図1を参照して、例えば、多芯線の酸化物超電導線材について説明する。酸化物超電導線材11は、長手方向に伸びる複数本の酸化物超電導体フィラメント12と、それらを被覆するシース部13とを有している。複数本の酸化物超電導体フィラメント12の各々の材質は、Bi−Pb−Sr−Ca−Cu−O系の組成が好ましく、特に(Bi,Pb):Sr:Ca:Cuの原子比がほぼ2:2:2:3の比率で近似して表される(Bi,Pb)2223相を含む材質が最適である。シース部13の材質は、例えば銀や銀合金等の金属から構成される。
(Embodiment)
FIG. 1 is a partial cross-sectional perspective view schematically showing the configuration of an oxide superconducting wire. For example, a multi-core oxide superconducting wire will be described with reference to FIG. The oxide superconducting wire 11 has a plurality of oxide superconductor filaments 12 extending in the longitudinal direction and a sheath portion 13 covering them. The material of each of the plurality of oxide superconductor filaments 12 is preferably a Bi—Pb—Sr—Ca—Cu—O based composition, and the atomic ratio of (Bi, Pb): Sr: Ca: Cu is particularly about 2. The material including the (Bi, Pb) 2223 phase expressed by the ratio of 2: 2: 3 is optimal. The material of the sheath part 13 is comprised from metals, such as silver and a silver alloy, for example.

次に、上記の酸化物超電導線材の製造方法について説明する。   Next, the manufacturing method of said oxide superconducting wire is demonstrated.

図2は、本発明の実施の形態における酸化物超電導線材の製造工程を示すフロー図である。また図3〜7は、図2の各工程を示す図である。   FIG. 2 is a flowchart showing a manufacturing process of the oxide superconducting wire in the embodiment of the present invention. 3 to 7 are diagrams showing each step of FIG.

図2および図3を参照して、まず、酸化物超電導体の前駆体粉末31を金属管34に充填する(ステップS1)。この酸化物超電導体の前駆体粉末31は、たとえば(Bi,Pb)2Sr2Ca1Cu28±δ(δは0.1に近い数:以下(Bi,Pb)2212と呼ぶ)相やBi2Sr2Ca1Cu28±δ(δは0.1に近い数:以下Bi2212と呼ぶ)相を主相とし、(Bi,Pb)2223相等の超電導相32、アルカリ土類酸化物(例えば、(Ca,Sr)CuO2、(Ca,Sr)2CuO3、(Ca,Sr)14Cu2441等)、Pb酸化物(例えば、Ca2PbO4、(Bi,Pb)3Sr2Ca2Cu1z)等の非超電導相33を含む材質よりなっている。なお、金属管34としては銀や銀合金を用いることが好ましい。これは前駆体粉末と金属管が反応して化合物を形成することによる、前駆体粉末の組成ずれを防ぐためである。本発明はこの充填時における前駆体粉末の形態に特徴を持たせたものである。この特徴、効果については後述する。 Referring to FIGS. 2 and 3, first, oxide superconductor precursor powder 31 is filled into metal tube 34 (step S1). This oxide superconductor precursor powder 31 has, for example, a (Bi, Pb) 2 Sr 2 Ca 1 Cu 2 O 8 ± δ (δ is a number close to 0.1: hereinafter referred to as (Bi, Pb) 2212) phase. And Bi 2 Sr 2 Ca 1 Cu 2 O 8 ± δ (δ is a number close to 0.1; hereinafter referred to as Bi2212) phase as a main phase, superconducting phase 32 such as (Bi, Pb) 2223 phase, alkaline earth oxidation (For example, (Ca, Sr) CuO 2 , (Ca, Sr) 2 CuO 3 , (Ca, Sr) 14 Cu 24 O 41 etc.), Pb oxide (for example, Ca 2 PbO 4 , (Bi, Pb)) 3 Sr 2 Ca 2 Cu 1 O z ) or the like, and is made of a material including the non-superconducting phase 33. Note that silver or a silver alloy is preferably used as the metal tube 34. This is to prevent compositional deviation of the precursor powder due to the reaction between the precursor powder and the metal tube to form a compound. The present invention is characterized by the form of the precursor powder at the time of filling. This feature and effect will be described later.

次に、図2および図4に示すように、上記前駆体粉末が充填された金属管41を所望の直径まで伸線加工し、前駆体42を芯材として銀などの金属に被覆された単芯線43を作製する(ステップS2)。   Next, as shown in FIG. 2 and FIG. 4, the metal tube 41 filled with the precursor powder is drawn to a desired diameter, and the precursor 42 is used as a core material and coated with a metal such as silver. The core wire 43 is produced (step S2).

次に、図2および図5に示すように、この単芯線51を多数束ねて、例えば銀等からなる金属管52内に嵌合する(多芯嵌合:ステップS3)。これにより、前駆体粉末を芯材として多数有する多芯構造材が得られる。   Next, as shown in FIGS. 2 and 5, a large number of single core wires 51 are bundled and fitted into a metal tube 52 made of, for example, silver (multi-core fitting: step S3). Thereby, the multi-core structure material which has many precursor powders as a core material is obtained.

次に、図2および図6に示すように、多芯構造材61を所望の直径まで伸線加工し、前駆体粉末62が金属シース部63に埋め込まれ、断面形状が円状あるいは多角形状の等方的多芯母線64を作製する(ステップS4)。これにより、酸化物超電導線材の前駆体粉末62を金属で被覆した形態を有する等方的多芯母線64が得られる。   Next, as shown in FIGS. 2 and 6, the multi-core structural member 61 is drawn to a desired diameter, the precursor powder 62 is embedded in the metal sheath portion 63, and the cross-sectional shape is circular or polygonal. An isotropic multi-core bus 64 is produced (step S4). Thereby, an isotropic multi-core bus 64 having a form in which the precursor powder 62 of the oxide superconducting wire is covered with a metal is obtained.

次に、図2および図7に示すように、この等方的多芯母線71を圧延する(1次圧延:ステップS5)。これによりテープ状前駆体線材72が得られる。   Next, as shown in FIGS. 2 and 7, the isotropic multi-core bus bar 71 is rolled (primary rolling: step S5). Thereby, the tape-shaped precursor wire 72 is obtained.

次に、テープ状前駆体線材を熱処理する(1次熱処理:ステップS6)。この熱処理は、たとえば大気圧下、または1MPa以上50MPa以下の加圧雰囲気において約830℃の温度で行われる。熱処理によって前駆体粉末から目的とする(Bi,Pb)2223超電導相が生成される。   Next, the tape-shaped precursor wire is heat-treated (primary heat treatment: step S6). This heat treatment is performed at a temperature of about 830 ° C., for example, under atmospheric pressure or in a pressurized atmosphere of 1 MPa to 50 MPa. The target (Bi, Pb) 2223 superconducting phase is generated from the precursor powder by heat treatment.

その後、再び線材を圧延する(2次圧延:ステップS7)。このように、2次圧延を行うことにより、1次熱処理で生じたボイドが除去される。   Thereafter, the wire is rolled again (secondary rolling: step S7). Thus, by performing secondary rolling, voids generated by the primary heat treatment are removed.

続いて、例えば830℃の温度で線材を熱処理する(2次熱処理:ステップS8)。このときも、大気圧下、または加圧雰囲気で熱処理する。以上の製造工程により、図1に示す酸化物超電導線材が得られる。   Subsequently, for example, the wire is heat-treated at a temperature of 830 ° C. (secondary heat treatment: step S8). Also at this time, heat treatment is performed under atmospheric pressure or in a pressurized atmosphere. The oxide superconducting wire shown in FIG. 1 is obtained by the above manufacturing process.

以下、本発明の特徴であるステップS1における前駆体粉末について詳細を記す。酸化物超電導線材において高臨界電流密度化を図るには超電導結晶粒の高度な配向化が重要である。そのためにステップS6の圧延が施される。これは線材を一軸方向に変形させテープ状にし、(Bi,Pb)2223超電導結晶のa−b面方向をテープ面と平行になるよう配向させるものである。上記のよう圧延工程によって大半の超電導結晶粒を配向化させることは可能であるが、圧延による外力が働きにくい各フィラメント内の金属被覆から離れた中央部結晶粒は、配向化が不十分であることが多い。これを解消するには伸線加工時に配向化させるか、あるいはその前段階である充填時から配向している前駆体粉末を用いればフィラメント中央部も配向しやすい。   Hereinafter, details of the precursor powder in step S1 which is a feature of the present invention will be described. In order to achieve a high critical current density in an oxide superconducting wire, high orientation of superconducting crystal grains is important. For this purpose, rolling in step S6 is performed. In this method, the wire is deformed in a uniaxial direction into a tape shape, and the ab plane direction of the (Bi, Pb) 2223 superconducting crystal is oriented so as to be parallel to the tape surface. Although most of the superconducting crystal grains can be oriented by the rolling process as described above, the orientation of the central crystal grains separated from the metal coating in each filament, where external force due to rolling is difficult to work, is insufficiently oriented. There are many cases. In order to solve this, if the orientation is performed at the time of wire drawing, or if the precursor powder that has been oriented since filling is used, the center portion of the filament is easily oriented.

そこで本発明のように、前駆体粉末を板状に圧縮成形すれば、伸線加工によって配向化されやすい形態で前駆体粉末を充填することが可能となる。圧縮成形方法として、一軸方向のプレス加工や、圧延加工を用いることにより板状の前駆体粉末が得られる。板の厚さは1mm程度以下が好ましい。厚さを1mm程度以下に設定するのは、線材圧延時の効果と同じように中央部まで配向させた形態を得やすくするためである。このような形態において板状前駆体粉末内では(Bi,Pb)2212やBi2212結晶粒がそのa−b面方向を板面と平行になるよう配向し存在している。板厚が大きすぎると中央部まで配向させることが難しくなる。   Therefore, if the precursor powder is compression-molded into a plate shape as in the present invention, the precursor powder can be filled in a form that is easily oriented by wire drawing. As a compression molding method, a plate-like precursor powder can be obtained by using uniaxial pressing or rolling. The thickness of the plate is preferably about 1 mm or less. The reason why the thickness is set to about 1 mm or less is to make it easy to obtain a form oriented to the center as in the effect during wire rolling. In such a form, (Bi, Pb) 2212 and Bi2212 crystal grains are present in the plate-like precursor powder so that the ab plane direction is parallel to the plate surface. If the plate thickness is too large, it is difficult to orient the center part.

図8は本発明の前駆体成型から充填までの工程を模式的にあらわした図である。超電導相32と非超電導相33を含む前駆体粉末31を圧延ロール81間にとおし、板状前駆体82を得る。この板状前駆体82をそのまま金属管に充填できるならそのまま使用してもよいし、分割して板状チップ83として使用してもよい。この際、充填される板状前駆体82あるいは板状チップ83は板厚より長い方向(以下、長手方向という)が存在する形状であることが重要である。この長手方向に超電導結晶のa−b面方向が向いている。板状にされた前駆体の内部構造は後に説明する。   FIG. 8 is a diagram schematically showing the steps from precursor molding to filling according to the present invention. Precursor powder 31 containing superconducting phase 32 and non-superconducting phase 33 is passed between rolling rolls 81 to obtain plate-like precursor 82. If this plate-like precursor 82 can be filled in a metal tube as it is, it may be used as it is, or may be divided and used as a plate-like chip 83. At this time, it is important that the plate precursor 82 or the plate chip 83 to be filled has a shape in which a direction longer than the plate thickness (hereinafter referred to as a longitudinal direction) exists. The ab plane direction of the superconducting crystal faces this longitudinal direction. The internal structure of the plate-like precursor will be described later.

図9は板状にされた前駆体粉末内部の様子を模式的にあらわした部分断面斜視図である。図9中破線は板状前駆体82、板状チップ83の輪郭を表した線である。また断面部は超電導相32が配向している様子や、非超電導相33が認識しやすいように隙間を空けて描写されているが、実際は隙間無く詰まっている。図9に表されるように板状前駆体82内および板状チップ83内では超電導相32のa−b面方向が板面と略平行になるよう配向している。   FIG. 9 is a partial cross-sectional perspective view schematically showing the inside of the plate-like precursor powder. In FIG. 9, the broken line is a line representing the outline of the plate-like precursor 82 and the plate-like chip 83. The cross section is depicted with a gap so that the superconducting phase 32 is oriented and the non-superconducting phase 33 can be easily recognized, but is actually packed without a gap. As shown in FIG. 9, in the plate-like precursor 82 and the plate-like chip 83, the ab surface direction of the superconducting phase 32 is oriented so as to be substantially parallel to the plate surface.

以下に板状に成型された前駆体粉末を金属管に充填する効果を記す。まず圧縮成型されているので充填時の密度がある程度高くなる。板状にされた前駆体粉末は数mm角、厚さ1mm程度に解砕し充填する。このように充填した場合、板状前駆体間にある程度隙間ができてしまうが、板状に圧縮しない前駆体粉末を充填するよりは密度を高くできる。圧縮しない前駆体粉末を充填する場合、限界値のほぼ20%までしか密度を上げられない。本方法によれば30%から40%まで高めることができる。   The effect of filling the metal tube with the precursor powder molded into a plate shape will be described below. First, since it is compression molded, the density at the time of filling increases to some extent. The precursor powder made into a plate shape is pulverized into a few mm square and a thickness of about 1 mm and filled. When filled in this way, gaps are formed to some extent between the plate-like precursors, but the density can be made higher than when filling the precursor powder that is not compressed into a plate-like shape. When filling the uncompressed precursor powder, the density can only be increased to approximately 20% of the limit value. According to this method, it can be increased from 30% to 40%.

この隙間を有していることが、伸線加工における配向化を促すひとつの要因となる。図10は伸線加工において配向化する様子を模式的にあらわした図である。前記したように伸線加工によって隙間を埋めるように前駆体粉末が流動し密度が上がっていく。伸線加工時に、金属管34内の板状前駆体82には、縮径が行われるダイス101部を通過する際に、外周部から中心方向に向いた外力がかかる。よって板状前駆体82はその長さ方向が外力方向と垂直(伸線方向とは平行)になるよう倒れていく。すなわち板状前駆体82内の超電導結晶のa−b面方向が伸線された線材の長手方向と平行になるように加工される。このような効果は前駆体が板状でありかつ、板厚より長い方向が存在する形状であることから誘発されるものである。   Having this gap is one factor that promotes orientation in wire drawing. FIG. 10 is a diagram schematically showing the orientation in the wire drawing process. As described above, the precursor powder flows and the density increases so as to fill the gap by wire drawing. At the time of wire drawing, the plate-like precursor 82 in the metal tube 34 is subjected to an external force from the outer peripheral portion toward the center when passing through the die 101 portion where the diameter is reduced. Therefore, the plate-like precursor 82 falls down so that its length direction is perpendicular to the external force direction (parallel to the wire drawing direction). That is, it is processed so that the ab plane direction of the superconducting crystal in the plate-like precursor 82 is parallel to the longitudinal direction of the drawn wire. Such an effect is induced because the precursor is plate-shaped and has a shape with a direction longer than the plate thickness.

より好ましい充填方法は、板状前駆体に含まれる超電導結晶((Bi,Pb)2212やBi2212の結晶)のa−b面方向が充填時から金属管の長手方向にそろうように、板状前駆体を金属管に充填することである。上記のようにすれば充填段階から配向化された状態が得られ、より効果的である。以下にその充填方法の一例を説明する。   A more preferable filling method is such that the ab surface direction of the superconducting crystal ((Bi, Pb) 2212 or Bi2212 crystal) contained in the plate precursor is aligned with the longitudinal direction of the metal tube from the time of filling. Filling the body with metal tubes. As described above, an oriented state is obtained from the filling stage, which is more effective. An example of the filling method will be described below.

図11は充填時に板状前駆体に含まれる超電導結晶のa−b面方向を揃えるための前駆体成型から充填までの工程を模式的にあらわした図である。超電導相32と非超電導相33を含む前駆体粉末31を圧延ロール81間にとおし、板状前駆体82を得る。この板状前駆体82をそのまま使用してもよいし、分割して板状チップ83として使用してもよい。この際、充填される板状前駆体82あるいは板状チップ83は板厚より長く、かつ充填する金属管34の内径の2倍以上の長さを持つ方向が存在する形状であることが重要である。上記のように形成された板状前駆体82や板状チップ83は金属管内径の2倍以上の大きさをもつので、金属管34内で板状前駆体82や板状チップ83の長手方向は、金属管34の長手方向とほぼ同じ方向をむくことになる。なお板状前駆体82や板状チップ83の長手方向が金属管34内で倒れないように充填できる方法であれば、充填方法は上記に限らない。   FIG. 11 is a diagram schematically showing steps from precursor molding to filling for aligning the ab plane direction of the superconducting crystal contained in the plate-like precursor during filling. Precursor powder 31 containing superconducting phase 32 and non-superconducting phase 33 is passed between rolling rolls 81 to obtain plate-like precursor 82. This plate-like precursor 82 may be used as it is, or may be divided and used as a plate-like chip 83. At this time, it is important that the plate-like precursor 82 or the plate-like chip 83 to be filled has a shape that is longer than the plate thickness and has a direction having a length that is at least twice the inner diameter of the metal tube 34 to be filled. is there. Since the plate-like precursor 82 and the plate-like chip 83 formed as described above have a size that is at least twice the inner diameter of the metal tube, the longitudinal direction of the plate-like precursor 82 and the plate-like chip 83 in the metal tube 34 Will peel in the same direction as the longitudinal direction of the metal tube 34. The filling method is not limited to the above as long as the longitudinal direction of the plate-like precursor 82 and the plate-like chip 83 can be filled so as not to fall in the metal tube 34.

本発明によれば、伸線加工時あるいは充填時から前駆体が配向した金属管を得ることができるので、超電導線材内の結晶をより配向化させることができ高い臨界電流値をもつ超電導線材が実現できる。   According to the present invention, it is possible to obtain a metal tube in which the precursor is oriented at the time of wire drawing or filling, so that a superconducting wire having a high critical current value can be obtained because the crystals in the superconducting wire can be more oriented. realizable.

本発明によれば伸線加工後にも配向化された金属管が得られることで別の効果も生じる。つまり圧延加工を施さなくてもある程度高い臨界電流値が得られることにある。前記したように、従来法では前駆体粉末中の結晶粒を配向化させるために圧延加工を施す。圧延加工を行うことで線材の最終断面形状は略テープ状、略矩形状にならざるを得ない。しかしながらテープ状線材では、複数本撚り合わせて螺旋状に集合する導体(ツイスト導体)を形成する等には不向きである。よって円形、六角形等の等方的な断面形状を有する線材が有効な場合もある。そこで本発明を利用すれば、比較的高い臨界電流値を持つ断面が円形、六角形等の等方的形状をもつ線材を製造できる。   According to the present invention, another effect can be obtained by obtaining an oriented metal tube even after wire drawing. In other words, a high critical current value can be obtained to some extent without rolling. As described above, in the conventional method, rolling is performed in order to orient the crystal grains in the precursor powder. By carrying out the rolling process, the final cross-sectional shape of the wire has to be substantially tape-like or substantially rectangular. However, the tape-shaped wire is not suitable for forming a conductor (twisted conductor) that is twisted together to form a spiral. Therefore, a wire having an isotropic sectional shape such as a circle or a hexagon may be effective. Therefore, by using the present invention, it is possible to produce a wire having an isotropic shape such as a circle or a hexagonal cross section having a relatively high critical current value.

前駆体粉末の板状への圧縮成形は圧延加工がより適している。これは圧延時におけるロールギャップを設定すれば常に同じ厚さの板状前駆体が得られ、分割時に一定の大きさの板状チップを作製できるからである。一定の大きさを持つことでより板状チップの方向を揃えやすい充填が可能になる。   A rolling process is more suitable for the compression molding of the precursor powder into a plate shape. This is because a plate-like precursor having the same thickness can always be obtained by setting a roll gap during rolling, and a plate-like chip having a constant size can be produced during division. By having a certain size, it is possible to perform filling that facilitates aligning the direction of the plate-shaped chip.

さらに配向度を上げるには、板状前駆体を熱処理することが効果的である。板状前駆体を700℃から800℃程度の温度で、酸素が含まれる雰囲気下で1から5時間程度熱処理すると、前駆体内に含まれる(Bi,Pb)2212やBi2212結晶粒が肥大化する。このような肥大化した結晶粒は塑性加工によって、より線材長手方向にa−b面方向を向けて倒れやすい。   In order to further increase the degree of orientation, it is effective to heat-treat the plate precursor. When the plate-like precursor is heat-treated at a temperature of about 700 ° C. to 800 ° C. for about 1 to 5 hours in an atmosphere containing oxygen, (Bi, Pb) 2212 and Bi2212 crystal grains contained in the precursor are enlarged. Such enlarged crystal grains are more likely to fall by plastic working with the ab plane direction oriented in the longitudinal direction of the wire.

さらには、前駆体粉末を構成する成分により、この熱処理での結晶粒の成長度合いが影響を受ける。充填される前駆体粉末中には、斜方晶である(Bi,Pb)2212相と正方晶であるBi2212相の2つの2212相が混在する。これらの割合は前駆体粉末を作製する段階で調整できる。Bi2212相は周りに存在するPb化合物からPbを吸収し、(Bi,Pb)2212相にかわることができる。この反応がおこる際に、Bi2212相から非常に大きな(Bi,Pb)2212相が生成されやすい。よって前駆体粉末は、正方晶Bi2212相が主相であることが好ましく、それに対して熱処理を施すとより効果的である。   Furthermore, the degree of crystal grain growth in this heat treatment is affected by the components constituting the precursor powder. In the precursor powder to be filled, two 2212 phases of (Bi, Pb) 2212 phase which is orthorhombic and Bi2212 phase which is tetragonal are mixed. These ratios can be adjusted at the stage of preparing the precursor powder. The Bi 2212 phase absorbs Pb from the surrounding Pb compound and can replace the (Bi, Pb) 2212 phase. When this reaction occurs, a very large (Bi, Pb) 2212 phase is easily generated from the Bi 2212 phase. Therefore, it is preferable that the precursor powder has a tetragonal Bi2212 phase as a main phase, and it is more effective to heat-treat it.

上記のようにして、配向化された前駆体粉末を金属管に充填することにより、伸線加工や、圧延加工の塑性加工後においても高度な配向化組織と均一なフィラメント形状を有する等方的多芯母線やテープ状前駆体線材が得られる。この高度に配向化された線材をベースにステップS6以降の熱処理工程を行うと、高い臨界電流値を有する超電導線材を製造することができる。   By filling the metal tube with the oriented precursor powder as described above, it is isotropic with a highly oriented structure and a uniform filament shape even after plastic processing of wire drawing and rolling. Multi-core bus bars and tape-shaped precursor wires are obtained. When the heat treatment process after step S6 is performed on the basis of this highly oriented wire, a superconducting wire having a high critical current value can be manufactured.

また本発明にかかる超電導機器は、上記のような臨界電流値の高い超電導線材から構成されるため、優れた超電導特性を有する。ここで、超電導機器は、上記超電導線材を含むものであれば特に制限なく、超電導ケーブル、超電導コイル、超電導マグネット、超電導変圧器、超電導電力貯蔵装置などが挙げられる。例えば、交流用途で使用される超電導ケーブルや、超電導変圧器では臨界電流値の向上により、運転電流値における損失が減少する。一方、超電導マグネットや超電導電力貯蔵装置のような直流使用が主な機器は、最大発生磁場や最大蓄積エネルギーが大幅に増大する。   Moreover, since the superconducting device according to the present invention is composed of the superconducting wire having a high critical current value as described above, it has excellent superconducting characteristics. Here, the superconducting device is not particularly limited as long as it includes the superconducting wire, and examples thereof include a superconducting cable, a superconducting coil, a superconducting magnet, a superconducting transformer, and a superconducting power storage device. For example, in superconducting cables and superconducting transformers used in AC applications, the loss in operating current value decreases due to the improvement of the critical current value. On the other hand, the maximum generated magnetic field and the maximum stored energy are greatly increased in devices mainly using DC, such as a superconducting magnet and a superconducting power storage device.

図12は一例としての超電導ケーブルの内部構造を示す斜視図である。フォーマー121の周りに本発明にかかる酸化物超電導線材127が螺旋状に巻きつけられ、導体層122を形成している。その外には絶縁層123を配し、その外周に酸化物超電導線材127が螺旋状に巻きつけられ磁気シールド層124を形成する。それらは断熱層125で覆われ、外管126に収容される。   FIG. 12 is a perspective view showing the internal structure of a superconducting cable as an example. An oxide superconducting wire 127 according to the present invention is spirally wound around the former 121 to form a conductor layer 122. In addition, an insulating layer 123 is disposed, and an oxide superconducting wire 127 is spirally wound around the outer periphery thereof to form a magnetic shield layer 124. They are covered with a heat insulating layer 125 and accommodated in the outer tube 126.

図13は代表的な超電導マグネットの例を示す模式図である。本発明にかかる酸化物超電導線材をパンケーキ状に巻き、コイル131を形成する。そのコイル131を目的に応じて複数個、電気的に接続する。これらに電極132から電流を通電するとコイル131内に磁場が発生する。また、電極132間を酸化物超電導線材で作製された永久電流スイッチ133で結合し、目的の磁場まで励磁したのち永久電流スイッチ133をONにすれば、コイル131−永久電流スイッチ133のループ内に永久電流が流れる。この電流は減衰することがほとんどなく磁場としてエネルギーを貯蔵できる。必要に応じて、永久電流スイッチ133をOFFにして、電極132側へ電流が流れるようにすれば、電流が取り出せる。このように使用すれば超電導電力貯蔵装置として利用できる。   FIG. 13 is a schematic diagram showing an example of a typical superconducting magnet. The oxide superconducting wire according to the present invention is wound in a pancake shape to form a coil 131. A plurality of the coils 131 are electrically connected according to the purpose. When a current is passed through the electrode 132, a magnetic field is generated in the coil 131. In addition, if the electrodes 132 are coupled by a permanent current switch 133 made of an oxide superconducting wire and excited to a target magnetic field, the permanent current switch 133 is turned on, and then the coil 131-permanent current switch 133 enters the loop. Permanent current flows. This current hardly attenuates and can store energy as a magnetic field. If necessary, the current can be taken out by turning off the permanent current switch 133 so that the current flows to the electrode 132 side. If used in this way, it can be used as a superconducting power storage device.

図14は代表的な超電導変圧器の例を示す模式図である。鉄等でできたコア145を介して一次側超電導コイル141、二次側超電導コイル142が磁気的に結合されている。一次側超電導コイル141には一次側電極143から交流電流が与えられる。その交流電流によって一次側超電導コイル141に交流磁場が発生し、コア145を通じて二次側超電導コイル142内にも磁場が誘起される。その誘起した交流磁場に誘導され二次側超電導コイル142に交流電圧が発生し、それを二次側電極144で取り出す。一次側超電導コイル141と二次側超電導コイル144のターン数を変えておくことで、一次側と異なる電圧を二次側で発生させることが可能である。   FIG. 14 is a schematic diagram showing an example of a typical superconducting transformer. A primary superconducting coil 141 and a secondary superconducting coil 142 are magnetically coupled via a core 145 made of iron or the like. An alternating current is applied to the primary superconducting coil 141 from the primary electrode 143. The alternating current generates an alternating magnetic field in the primary superconducting coil 141, and a magnetic field is also induced in the secondary superconducting coil 142 through the core 145. An AC voltage is induced in the secondary superconducting coil 142 induced by the induced AC magnetic field, and is taken out by the secondary electrode 144. By changing the number of turns of the primary superconducting coil 141 and the secondary superconducting coil 144, it is possible to generate a voltage different from the primary side on the secondary side.

(実施例)
以下、実施例に基づき、本発明をさらに具体的に説明する。
(Example)
Hereinafter, based on an Example, this invention is demonstrated further more concretely.

原料粉末(Bi23,PbO,SrCO3,CaCO3,CuO)をBi:Pb:Sr:Ca:Cu=1.8:0.3:1.9:2.0:3.0の比率で混合し、大気中で700℃×8時間の熱処理、粉砕、800℃×10時間の熱処理、粉砕、820℃×4時間の熱処理、粉砕の処理を施し前駆体粉末を得る。また、5種類の原料粉末が溶解した硝酸水溶液を、加熱された炉内に噴射することにより、金属硝酸塩水溶液の粒子の水分が蒸発し、硝酸塩の熱分解、そして金属酸化物同士の反応、合成を瞬時に起こさせる噴霧熱分解法で前駆体粉末を作製することもできる。こうして作製された前駆体粉末は、Bi2212相が主体となった粉末である。また一部は熱処理条件を変更し、(Bi,Pb)2212相が主相となった前駆体粉末を得る。 Raw material powder (Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , CuO) is in a ratio of Bi: Pb: Sr: Ca: Cu = 1.8: 0.3: 1.9: 2.0: 3.0 The mixture is subjected to heat treatment at 700 ° C. for 8 hours, pulverization, heat treatment at 800 ° C. for 10 hours, pulverization, heat treatment at 820 ° C. for 4 hours, and pulverization in the air to obtain a precursor powder. In addition, by injecting a nitric acid aqueous solution in which five types of raw material powders are dissolved into a heated furnace, the water in the particles of the metal nitrate aqueous solution evaporates, the thermal decomposition of the nitrate, and the reaction and synthesis of metal oxides. Precursor powder can also be produced by a spray pyrolysis method that instantly raises. The precursor powder thus produced is a powder mainly composed of the Bi2212 phase. In addition, a part of the heat treatment conditions is changed to obtain a precursor powder in which the (Bi, Pb) 2212 phase is the main phase.

Bi2212相が主相となった前駆体粉末を2グループに分け、ひとつはそのまま圧縮成形をせず使用する(前駆体1:比較例)。もう一方はロール圧延成形を施し、厚さ約1.0mmの板状に押し固めた後、一部は長さ5mm×幅2〜5mm程度の大きさを持つ板状チップに分割して使用する(前駆体2:実施例)。残りは長さ50mm×幅2〜5mm程度の大きさを持つ板状チップに分割して使用する(前駆体3:実施例)。さらに前駆体3の一部に温度760℃、全圧1気圧(0.1MPa)、酸素分圧0.0001MPaの条件下で2時間の熱処理を施し使用する(前駆体4:実施例)。(Bi,Pb)2212相が主相となった前駆体粉末は、上記前駆体4と同じ工程を施し使用する(前駆体5:実施例)。   The precursor powder in which the Bi2212 phase is the main phase is divided into two groups, and one is used as it is without compression molding (precursor 1: comparative example). The other is roll-rolled and pressed into a plate having a thickness of about 1.0 mm, and then a part is divided into plate-like chips having a length of about 5 mm × width of about 2 to 5 mm. (Precursor 2: Example). The remainder is divided into plate-like chips having a length of about 50 mm × width of about 2 to 5 mm (precursor 3: example). Further, a part of the precursor 3 is heat-treated for 2 hours under conditions of a temperature of 760 ° C., a total pressure of 1 atm (0.1 MPa), and an oxygen partial pressure of 0.0001 MPa (precursor 4: example). The precursor powder in which the (Bi, Pb) 2212 phase is the main phase is used after being subjected to the same steps as the precursor 4 (precursor 5: example).

上記により作製された各前駆体をそれぞれ外径25mm、内径22mmの銀パイプに充填する。前駆体2は特に板状チップの向きを揃えず充填し、前駆体3、4、5は各チップの長手方向が金属管の長手方向に揃うように充填する。この段階でそれぞれ前駆体粉末がどれだけ充填されたかを知るために銀パイプの重量を測定し、銀パイプの内容積から充填密度を算出する。その結果を表1に示す。その後、充填された銀パイプを直径2.4mmまで伸線して単芯線を作製する。この単芯線を55本束ねて外径25mm、内径22mmの銀パイプに挿入し、直径1.5mmまで伸線し、多芯(55芯)線材とする。このようにして異なる前駆体が充填された5種の線材を得る。(線材1:前駆体1:比較例)、(線材2:前駆体2:実施例)、(線材3:前駆体3:実施例)、(線材4:前駆体4:実施例)、(線材5:前駆体5:実施例)。   Each precursor prepared as described above is filled in a silver pipe having an outer diameter of 25 mm and an inner diameter of 22 mm. In particular, the precursor 2 is filled without aligning the direction of the plate-shaped tips, and the precursors 3, 4 and 5 are filled so that the longitudinal direction of each tip is aligned with the longitudinal direction of the metal tube. At this stage, in order to know how much the precursor powder is filled, the weight of the silver pipe is measured, and the filling density is calculated from the inner volume of the silver pipe. The results are shown in Table 1. Thereafter, the filled silver pipe is drawn to a diameter of 2.4 mm to produce a single core wire. 55 single-core wires are bundled and inserted into a silver pipe having an outer diameter of 25 mm and an inner diameter of 22 mm, and drawn to a diameter of 1.5 mm to obtain a multi-core (55-core) wire. In this way, five kinds of wires filled with different precursors are obtained. (Wire 1: Precursor 1: Comparative Example), (Wire 2: Precursor 2: Example), (Wire 3: Precursor 3: Example), (Wire 4: Precursor 4: Example), (Wire 5: Precursor 5: Example).

5種の多芯線材を圧延し、厚み0.25mmのテープ状線材に加工する。得られたテープ状線材を全圧1気圧(0.1MPa)、酸素分圧8kPaの雰囲気中で830℃、30時間〜50時間の1次熱処理を施す。   Five types of multi-core wires are rolled and processed into a tape-like wire having a thickness of 0.25 mm. The obtained tape-shaped wire is subjected to primary heat treatment at 830 ° C. for 30 to 50 hours in an atmosphere having a total pressure of 1 atm (0.1 MPa) and an oxygen partial pressure of 8 kPa.

1次熱処理後のテープ状線材を厚み0.23mmになるように再圧延する。再圧延後のテープ状線材に酸素分圧8kPaを含む、全圧30MPaの加圧雰囲気下にて830℃、50時間〜100時間の2次熱処理を施す。   The tape-shaped wire after the primary heat treatment is re-rolled to a thickness of 0.23 mm. The tape-shaped wire after re-rolling is subjected to a secondary heat treatment at 830 ° C. for 50 to 100 hours in a pressurized atmosphere containing an oxygen partial pressure of 8 kPa and a total pressure of 30 MPa.

作製された線材の臨界電流値(Ic)を測定した。臨界電流値は、温度77K、ゼロ磁場中、四端子法で電流―電圧曲線を測定し、その曲線から線材1cmあたり1×10-6Vの電圧を発生させる電流を臨界電流値と定義した。その結果を表1に記す。 The critical current value (Ic) of the produced wire was measured. For the critical current value, a current-voltage curve was measured by the four probe method at a temperature of 77 K and in a zero magnetic field, and a current that generates a voltage of 1 × 10 −6 V per 1 cm of wire was defined as the critical current value. The results are shown in Table 1.

また、(Bi,Pb)2223結晶の配向性評価として、以下の平均配向ずれ角αを測定する。平均配向ずれ角αとは、各々の(Bi,Pb)2223結晶のa軸とb軸により形成される面と、線材のテープ面(幅×長さ方向の面)とのなす角度の平均をいう。(Bi,Pb)2223結晶の平均配向ずれ角αが小さいほど、(Bi,Pb)2223結晶の配向性が高いことを示す。(Bi,Pb)2223結晶の平均配向ずれ角αは、(Bi,Pb)2223層の(0,0,24)面に由来する回折ピークの半価幅の1/2として算出される。αを表1に記す。   Further, as an evaluation of the orientation of the (Bi, Pb) 2223 crystal, the following average misalignment angle α is measured. The average misalignment angle α is the average angle formed between the surface formed by the a-axis and the b-axis of each (Bi, Pb) 2223 crystal and the tape surface (width × length surface) of the wire. Say. The smaller the average misorientation angle α of (Bi, Pb) 2223 crystal, the higher the orientation of (Bi, Pb) 2223 crystal. The average misorientation angle α of the (Bi, Pb) 2223 crystal is calculated as ½ of the half width of the diffraction peak derived from the (0,0,24) plane of the (Bi, Pb) 2223 layer. α is shown in Table 1.

Figure 2008147012
Figure 2008147012

線材1(比較例)は、前駆体粉末に圧縮成型を施していない。線材2〜5(実施例)は圧縮成型が施されている。線材2〜5と線材1を比較すると、充填密度、平均配向ずれ角(α)、臨界電流値のいずれでも、線材2〜5の方が良好な結果が得られている。特に充填密度では大きな違いが現れる。線材2と線材3の比較から、金属パイプへ前駆体の向きを揃えて充填する方が高い臨界電流値を得られることがわかる。これは配向度(α)の違いに起因すると考えられる。   In the wire 1 (comparative example), the precursor powder is not compression-molded. Wires 2 to 5 (Examples) are compression molded. When the wires 2 to 5 and the wire 1 are compared, the wires 2 to 5 have better results in any of the packing density, the average misalignment angle (α), and the critical current value. In particular, a large difference appears in the packing density. From comparison between the wire 2 and the wire 3, it can be seen that a higher critical current value can be obtained by filling the metal pipe with the orientation of the precursors aligned. This is considered due to the difference in the degree of orientation (α).

線材3と4の比較から、前駆体を熱処理する方が高い臨界電流値を得られることがわかる。これも上記と同じく配向度(α)の違いと、さらには充填密度の違いに起因すると考えられる。また同じく熱処理を施した場合でも前駆体粉末の主相を変える(線材4と5の比較)と、Bi2212相を主相としたほうが効果の強いことが判る。   From comparison between the wires 3 and 4, it can be seen that a higher critical current value can be obtained by heat-treating the precursor. It is considered that this is also caused by the difference in the degree of orientation (α) and the difference in packing density as described above. Similarly, when the heat treatment is performed, if the main phase of the precursor powder is changed (comparison between the wires 4 and 5), it is understood that the Bi2212 phase is more effective.

今回開示された実施の形態および実施例は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

酸化物超電導線材の構成を模式的に示す部分断面斜視図である。It is a partial section perspective view showing typically the composition of an oxide superconducting wire. 本発明の実施の形態における酸化物超電導線材の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the oxide superconducting wire in embodiment of this invention. 図2中S1ステップを示す図である。It is a figure which shows S1 step in FIG. 図2中S2ステップを示す図である。It is a figure which shows S2 step in FIG. 図2中S3ステップを示す図である。It is a figure which shows S3 step in FIG. 図2中S4ステップを示す図である。It is a figure which shows S4 step in FIG. 図2中S5ステップを示す図である。It is a figure which shows S5 step in FIG. 本発明の前駆体成型から充填までの工程を模式的にあらわした図である。It is the figure which represented typically the process from the precursor shaping | molding of this invention to filling. 板状にされた前駆体粉末内部の様子を模式的にあらわした部分断面斜視図である。FIG. 3 is a partial cross-sectional perspective view schematically showing the inside of a plate-like precursor powder. 伸線加工において配向化する様子を模式的にあらわした図である。It is the figure which showed typically a mode that it orientated in a wire drawing process. 充填時に板状前駆体に含まれる超電導結晶のa−b面方向を揃えるための前駆体成型から充填までの工程を模式的にあらわした図である。It is the figure which represented typically the process from precursor shaping | molding for aligning the ab surface direction of the superconducting crystal contained in a plate-shaped precursor at the time of filling. 一例としての超電導ケーブルの内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the superconducting cable as an example. 代表的な超電導マグネットの例を示す模式図である。It is a schematic diagram which shows the example of a typical superconducting magnet. 代表的な超電導変圧器の例を示す模式図である。It is a schematic diagram which shows the example of a typical superconducting transformer.

符号の説明Explanation of symbols

11 酸化物超電導線材、12 酸化物超電導フィラメント、13 シース部、31 前駆体粉末、32 超電導相、33 非超電導相、34 金属管 41 前駆体粉末が充填された金属管、42 前駆体、43 単芯線、51 単芯線、52 金属管、61 多芯構造材、62 前駆体原料粉末、63 金属シース部、64 等方的多芯母線、71 等方的多芯母線、72 テープ状前駆体線材 81 圧延ロール、82 板状前駆体、83 板状チップ、101 ダイス、121 フォーマー、122 導体層、123 絶縁層、124 磁気シールド層、125 断熱層、126 外管、 127 酸化物超電導線材、131 コイル、132 電極、133 永久電流スイッチ、141 一次側超電導コイル、142 二次側超電導コイル、143 一次側電極、144 二次側電極、 145 コア。   11 Oxide Superconducting Wire, 12 Oxide Superconducting Filament, 13 Sheath Part, 31 Precursor Powder, 32 Superconducting Phase, 33 Non-Superconducting Phase, 34 Metal Tube 41 Metal Tube Filled with Precursor Powder, 42 Precursor, 43 Single Core wire, 51 Single core wire, 52 Metal tube, 61 Multi-core structure material, 62 Precursor raw material powder, 63 Metal sheath part, 64 Isotropic multi-core bus wire, 71 Isotropic multi-core bus wire, 72 Tape-shaped precursor wire 81 Rolling roll, 82 plate precursor, 83 plate chip, 101 dice, 121 former, 122 conductor layer, 123 insulation layer, 124 magnetic shield layer, 125 heat insulation layer, 126 outer tube, 127 oxide superconducting wire, 131 coil, 132 electrodes, 133 permanent current switch, 141 primary superconducting coil, 142 secondary superconducting coil, 143 primary power Pole, 144 secondary electrode, 145 core.

Claims (6)

(Bi,Pb)2223超電導体の前駆体粉末を金属管に充填する工程と、
前記前駆体粉末が充填された金属管を塑性加工する工程と、
前記塑性加工工程後の線材を熱処理する熱処理工程とを備えた酸化物超電導線材の製造方法であって、
前記前駆体粉末を板状に圧縮成形した後、該板状前駆体粉末を金属管に充填することを特徴とする酸化物超電導線材の製造方法。
Filling a metal tube with a precursor powder of (Bi, Pb) 2223 superconductor;
Plastically processing a metal tube filled with the precursor powder;
A method of manufacturing an oxide superconducting wire comprising a heat treatment step of heat treating the wire after the plastic working step,
A method for producing an oxide superconducting wire, comprising compressing and molding the precursor powder into a plate shape, and then filling the plate precursor powder into a metal tube.
前記板状前駆体に含まれる超電導結晶のa−b面方向が金属管の長手方向にそろうように、該板状前駆体粉末を金属管に充填することを特徴とする請求項1に記載の酸化物超電導線材の製造方法。   The plate precursor powder is filled into the metal tube so that the ab plane direction of the superconducting crystal contained in the plate precursor is aligned with the longitudinal direction of the metal tube. Manufacturing method of oxide superconducting wire. 前記圧縮成型は圧延によって行われることを特徴とする請求項1または請求項2に記載の酸化物超電導線材の製造方法。   The method for producing an oxide superconducting wire according to claim 1 or 2, wherein the compression molding is performed by rolling. 前記圧縮成形された前駆体粉末を熱処理した後、金属管に充填することを特徴とする請求項1ないし請求項3のいずれかに記載の酸化物超電導線材の製造方法。   The method for producing an oxide superconducting wire according to any one of claims 1 to 3, wherein the metal powder is filled after the compression-molded precursor powder is heat-treated. 前記(Bi,Pb)2223超電導体の前駆体粉末は、正方晶Bi2212相が主相であることを特徴とする請求項1ないし請求項4のいずれかに記載の酸化物超電導線材の製造方法。   The method for producing an oxide superconducting wire according to any one of claims 1 to 4, wherein the precursor powder of the (Bi, Pb) 2223 superconductor has a tetragonal Bi2212 phase as a main phase. 請求項1から請求項5までのいずれかに記載の製造方法により製造された酸化物超電導線材を導体として含む超電導機器。   A superconducting device comprising, as a conductor, an oxide superconducting wire manufactured by the manufacturing method according to any one of claims 1 to 5.
JP2006332711A 2006-12-11 2006-12-11 Manufacturing method of oxide superconducting wire, and superconducting apparatus Withdrawn JP2008147012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006332711A JP2008147012A (en) 2006-12-11 2006-12-11 Manufacturing method of oxide superconducting wire, and superconducting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006332711A JP2008147012A (en) 2006-12-11 2006-12-11 Manufacturing method of oxide superconducting wire, and superconducting apparatus

Publications (1)

Publication Number Publication Date
JP2008147012A true JP2008147012A (en) 2008-06-26

Family

ID=39606941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006332711A Withdrawn JP2008147012A (en) 2006-12-11 2006-12-11 Manufacturing method of oxide superconducting wire, and superconducting apparatus

Country Status (1)

Country Link
JP (1) JP2008147012A (en)

Similar Documents

Publication Publication Date Title
JP2986871B2 (en) Oxide superconductor, oxide superconducting wire and superconducting coil
Balachandran et al. The powder-in-tube processing and properties of Bi-2223
US7213325B2 (en) Method of manufacturing Fe-sheathed MgB2 wires and solenoids
JP4752505B2 (en) Method for manufacturing oxide superconducting wire and method for modifying oxide superconducting wire
JP2008171666A (en) Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
JP4038813B2 (en) Superconducting wire manufacturing method
Motowidlo et al. The influence of filament size and atmosphere on the microstructure and J/sub c/of round multifilament Bi/sub 2/Sr/sub 2/Ca/sub 1/Cu/sub 2/O/sub x/wires
JP2003331660A (en) Metal-sheathed superconductor wire, superconducting coil, and its manufacturing method
JP2008147012A (en) Manufacturing method of oxide superconducting wire, and superconducting apparatus
JP2007149416A (en) Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
JP4893117B2 (en) Oxide superconducting wire manufacturing method and superconducting equipment
JPWO2005001852A1 (en) Bismuth oxide superconducting wire and method for producing the same
JP4715672B2 (en) Oxide superconducting wire and method for producing the same
JP2008153140A (en) Manufacturing method of oxide superconductive wire
JPH0917249A (en) Oxide superconducting wire and its manufacture
JP2006107843A (en) Tape-shaped superconductive wire
JP2003242847A (en) Method of manufacturing superconducting wire material
JP2009170276A (en) Manufacturing method of bi2223 superconducting wire rod, and bi2223 superconducting wire rod
JP2007165207A (en) Manufacturing method of oxide superconducting wire rod
JP2009181817A (en) Manufacturing method of oxide superconductive wire rod, and oxide superconductive wire rod
US6240619B1 (en) Thermomechanical means to improve the critical current density of BSCCO tapes
JP2007335100A (en) Manufacturing method of oxide superconducting wire and superconducting equipment
JP2007165206A (en) Manufacturing method of oxide superconductive wire rod
JP5343526B2 (en) Superconducting wire manufacturing method
JP4595813B2 (en) Oxide superconducting wire, manufacturing method thereof and superconducting equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110302