JP3574461B2 - Manufacturing method of oxide superconducting wire - Google Patents

Manufacturing method of oxide superconducting wire Download PDF

Info

Publication number
JP3574461B2
JP3574461B2 JP13022193A JP13022193A JP3574461B2 JP 3574461 B2 JP3574461 B2 JP 3574461B2 JP 13022193 A JP13022193 A JP 13022193A JP 13022193 A JP13022193 A JP 13022193A JP 3574461 B2 JP3574461 B2 JP 3574461B2
Authority
JP
Japan
Prior art keywords
wire
heat treatment
oxide superconducting
bismuth
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13022193A
Other languages
Japanese (ja)
Other versions
JPH06342607A (en
Inventor
武志 加藤
謙一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Sumitomo Electric Industries Ltd
Original Assignee
Japan Science and Technology Agency
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Sumitomo Electric Industries Ltd filed Critical Japan Science and Technology Agency
Priority to JP13022193A priority Critical patent/JP3574461B2/en
Publication of JPH06342607A publication Critical patent/JPH06342607A/en
Application granted granted Critical
Publication of JP3574461B2 publication Critical patent/JP3574461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【0001】
【産業上の利用分野】
この発明は、酸化物超電導線材の製造方法に関するものであり、特に、高い臨界電流密度を有する酸化物超電導線材の製造方法に関するものである。
【0002】
【従来の技術】
近年、より高い臨界温度を示す超電導材料として、セラミック系のもの、すなわち、酸化物超電導材料が注目されている。その中で、イットリウム系は90K、ビスマス系は110K、タリウム系は120K程度の高い臨界温度を示し、実用化が期待されている。
【0003】
これらの酸化物超電導材料においては、粉末を熱処理した後金属シースにて被覆し、伸線加工および圧延加工を施した後、さらに熱処理することにより、高い臨界電流密度を有する単芯の酸化物超電導線材が得られている。また、酸化物超電導材料を主成分とする粉末を熱処理した後金属シースにて被覆し、伸線加工を施した後嵌合して多芯線とし、伸線加工および圧延加工を施した後、さらに熱処理することにより、同様に高い臨界電流密度を有する酸化物超電導多芯線材が得られている。さらに、従来、このような酸化物超電導線材の製造において、圧延加工および熱処理のステップを複数回繰り返すことにより、より高い臨界電流密度を有する酸化物超電導線材が得られることが知られている。
【0004】
【発明が解決しようとする課題】
酸化物超電導線材をケーブルやマグネットに応用する際には、高い臨界温度に加えて、高い臨界電流密度を有していることが必要である。また、長い酸化物超電導線材においては、均一な特性を持つことも必要である。
【0005】
前述した従来の方法により作製された単芯および多芯の酸化物超電導線材の臨界電流密度は、10cm程度の短尺線材においては、3万A/cm以上の高い値が得られている。
【0006】
しかしながら、長尺線材の製造においては、焼結のために行なわれる圧延後の熱処理の際に、線材が膨れてしまうという現象が生じる。短尺線材の場合には、焼結までの工程で原料粉末に吸着したガスは、熱処理の際線材の両端から抜けていくが、長尺線材の場合には、原料粉末に吸着したガスは、熱処理の際十分に抜けることがなく、線材内で膨張してしまうためである。そして、この線材の膨張により、線材の超電導特性が不均一となってしまうという問題があった。また、線材の膨張によって超電導体の組織が乱れるために、臨界電流密度が低下してしまうという問題もあった。
【0007】
これらのことから、従来の方法で製造された長尺線材、たとえば、100m級の酸化物超電導線材の臨界電流密度は、1万A/cm程度の値しか得られなかった。
【0008】
この発明の目的は、上述の問題点を解決し、高い臨界電流密度を有する長尺の酸化物超電導線材の製造方法を、提供することにある。
【0009】
【課題を解決するための手段】
請求項1の発明によるビスマス系酸化物超電導線材の製造方法は、ビスマス系酸化物超電導材料を主成分とする粉末を熱処理した後金属シースにて被覆し、伸線加工および圧延加工を施した後、さらに熱処理する、ビスマス系酸化物超電導線材の製造方法であって、伸線加工の工程において、減圧雰囲気中550℃〜760℃の温度で熱処理を施すことを特徴としている。
【0010】
請求項2の発明によるビスマス系酸化物超電導線材の製造方法は、ビスマス系酸化物超電導材料を主成分とする粉末を熱処理した後金属シースにて被覆し、伸線加工を施した後嵌合して多芯線とし、伸線加工および圧延加工を施した後、さらに熱処理する、ビスマス系酸化物超電導線材の製造方法であって、嵌合して多芯線とした後の伸線加工の工程において、減圧雰囲気中550℃〜760℃の温度で熱処理を施すことを特徴としている。
【0011】
請求項3の発明によるビスマス系酸化物超電導線材の製造方法は、請求項2の発明において、嵌合して多芯線とする前の伸線加工の工程においても、減圧雰囲気中550℃〜760℃の温度で熱処理を施すことを特徴としている。
【0012】
【作用】
この発明によれば、伸線加工の工程において、減圧雰囲気中熱処理が施される。この減圧雰囲気下での熱処理によって、原料粉末の吸着ガスを取除くことができ、従来のように圧延後の熱処理の際に生じる線材の膨張を防ぐことができる。
【0013】
この脱ガスを目的とした熱処理は、原料粉末を金属シースにて被覆した後の伸線加工の工程において行なわれる。そのため、一旦取除かれたガスが、再び原料粉末に吸着することがない。また、この脱ガスのための熱処理は、圧延加工によって原料粉末の密度が高くなる前に行なわれる。そのため、吸着ガスを効率よく取除くことができる。
【0014】
また、この発明によれば、この伸線加工の工程における熱処理は、550℃〜760℃の温度で行なわれる。そのため、原料粉末の特性に影響を及ぼすことなく、吸着ガスを効率よく取除くことができる。
【0015】
一般に、原料粉末の真空雰囲気での融点は約760℃であり、熱処理は融点以下で行なうことが好ましい。一方、550℃より低い温度で熱処理を行なうと、超電導相が分解して非超電導相ができることにより臨界電流密度が減少してしまうため、熱処理は550℃以上で行なうことが好ましい。
【0016】
【実施例】
(実施例1)
Bi、PbO、SrCO、CaCOおよびCuOを用いて、Bi:Pb:Sr:Ca:Cu=1.81:0.40:1.98:2.21:3.03の組成比になるように、これらを配合した。この配合した粉末を、大気中において、750℃で12時間、800℃で8時間、さらに、減圧雰囲気1Torrにおいて、760℃で8時間、の順に熱処理を施した。なお、各熱処理後において、粉砕を行なった。このような熱処理および粉砕を経て得られた粉末を、さらに、ボールミルにより粉砕し、サブミクロンの粉末を得た。この粉末を800℃で2時間熱処理を施した後、外径12mm、内径9mmの銀パイプ中に充填した。
【0017】
この銀パイプ中に充填された粉末を、直径9mmまで伸線した後、3Torrの減圧雰囲気中、400、500、550、600、650、700、750および800℃の各温度で、10時間の熱処理を施した。続いて、このようにして得られたものを、直径1.0mmになるまでさらに伸線加工した。
【0018】
次に、この伸線加工後の線材を、厚さ0.17mmになるように圧延加工した後、850℃で50時間の熱処理を施した。その後、さらに、厚さ0.14mmになるまで圧延加工し、850℃で50時間の熱処理を施した。
【0019】
このようにして、長さ10mの長尺の酸化物超電導線材を作製し、得られた線材の臨界電流密度を測定した。その結果を図1に示す。図1において、横軸は伸線加工の工程において行なった熱処理の際の温度(℃)を示し、縦軸は得られた線材の臨界電流密度(×10A/cm)を示している。また、熱処理を施さなかった場合の結果を、熱処理温度が0℃のときとみなして、併せて示している。
【0020】
図1から明らかなように、減圧雰囲気中550℃〜760℃の温度で熱処理を施すことにより、酸化物超電導線材の臨界電流密度が向上することがわかる。
【0021】
一方、伸線加工途中に熱処理を施さないほかは同様の条件で、長さ10cmの短尺の酸化物超電導線材を作製した。得られた線材の臨界電流密度を測定したところ、2.7×10A/cmであった。
【0022】
このことから、長尺線材を製造する際、伸線加工の工程において、減圧雰囲気中550℃〜760℃の温度で熱処理を施すことにより、短尺線材とほぼ同等の性能が得られることがわかる。
【0023】
(実施例2)
伸線加工の工程において行なう熱処理について、熱処理時間が臨界電流密度の向上に及ぼす影響について調べるため、以下の実験を行なった。
【0024】
伸線加工の工程において行なう熱処理条件以外は実施例1と同様にして、長さが10mの酸化物超電導線材を作製した。熱処理は、3Torrの減圧雰囲気中650℃の温度で、それぞれ2.5、5、10、50および100時間の条件で行なった。
【0025】
このようにして得られた線材の臨界電流密度を測定した。その結果を図2に示す。図2において、横軸は伸線加工の工程において行なった熱処理時間(hr)を示し、縦軸は得られた線材の臨界電流密度(×10A/cm)を示している。また、熱処理を施さなかった場合の結果を、熱処理時間が0時間として、併せて示す。
【0026】
図2から明らかなように、650℃での熱処理は、約5時間以上行なえば臨界電流密度の向上に十分な効果があり、それ以上熱処理時間が長くなっても、効果に差はないことがわかる。
【0027】
(実施例3)
Bi、PbO、SrCO、CaCOおよびCuOを用いて、Bi:Pb:Sr:Ca:Cu=1.81:0.40:1.98:2.21:3.03の組成比になるように、これらを配合した。この配合した粉末を、大気中において、750℃で12時間、800℃で8時間、さらに、減圧雰囲気1Torrにおいて、760℃で8時間、の順に熱処理を施した。なお、各熱処理後において、粉砕を行なった。このような熱処理および粉砕を経て得られた粉末を、さらに、ボールミルにより粉砕し、サブミクロンの粉末を得た。この粉末を800℃で2時間熱処理を施した後、外径12mm、内径10mmの銀パイプ中に充填した。
【0028】
この銀パイプ中に充填された粉末を、1mmまで伸線加工した後、外径12mm、内径9mmの銀パイプに嵌合して、61芯の多芯線とした。その後、この多芯線に対して、1Torrの減圧雰囲気中、400、500、550、600、650、700、750および800℃の各温度で、10時間の熱処理を施した。続いて、このようにして得られたものを、直径1.0mmになるまでさらに伸線加工した。
【0029】
この伸線加工後の多芯線材を、厚さ0.22mmになるように圧延加工した後、850℃で50時間の熱処理を施した。その後、さらに、厚さ0.20mmになるまで圧延加工し、850℃で50時間の熱処理を施した。
【0030】
このようにして、長さ50mの長尺の酸化物超電導多芯線材を作製し、得られた線材の臨界電流密度を測定した。その結果を図3に示す。図3において、横軸は伸線加工の工程において行なった熱処理の際の温度(℃)を示し、縦軸は得られた線材の臨界電流密度(×10A/cm)を示している。また、熱処理を施さなかった場合の結果を、熱処理温度が0℃のときとして、併せて示している。
【0031】
図3から明らかなように、減圧雰囲気中550℃〜760℃の温度で熱処理を施すことにより、酸化物超電導線材の臨界電流密度が向上することがわかる。
【0032】
一方、伸線加工途中に熱処理を施さないほかは同様の条件で、長さ10cmの短尺の酸化物超電導多芯線材を作製した。得られた線材の臨界電流密度を測定したところ、2.3×10A/cmであった。
【0033】
このことから、長尺の多芯線材を製造する際、嵌合して多芯線とした後の伸線加工の工程において、減圧雰囲気中550℃〜760℃の温度で熱処理を施すことにより、短尺の多芯線材に近い性能が得られることがわかる。
【0034】
(実施例4)
実施例3において、銀パイプ中に充填した粉末を嵌合して多芯線とする前の伸線加工の工程においても、3Torrの減圧雰囲気中、650℃で10時間の熱処理を施した。他の条件は実施例3と同様にして、長さが50mの酸化物超電導多芯線材を作製した。
【0035】
このようにして得られた線材について、臨界電流密度を測定した。その結果を図4に示す。図4において、横軸は伸線加工の工程において行なった熱処理の際の温度(℃)を示し、縦軸は得られた線材の臨界電流密度(×10A/cm)を示している。また、熱処理を施さなかった場合の結果を、熱処理温度が0℃のときとみなして、併せて示している。
【0036】
図4から明らかなように、嵌合して多芯線とする前の伸線加工の工程においても熱処理を施すことにより、酸化物超電導線材の臨界電流密度は、さらに向上することがわかる。
【0037】
なお、以上の実施例に関する開示は、本発明の単なる具体例にすぎず、本発明の技術的範囲を何ら制限するものではない。
【0038】
本発明は、ビスマス系酸化物超電導線材の製造に限られるものではなく、タリウム系およびイットリウム系酸化物超電導線材の製造に対しても適用可能である。しかしながら、イットリウム系酸化物超電導線材の製造においては、熱処理による酸素の脱離の可能性があり、一方、タリウム系酸化物超電導線材の製造においては、熱処理によるタリウムの蒸発の可能性がある。したがって、本発明は、ビスマス系酸化物超電導線材の製造への適用が、最も効果がある。
【0039】
また、本発明において、伸線加工の工程における熱処理の際の真空度は、大気圧よりも減圧であれば有効であるが、数Torr以下であれば、より効率よく脱ガスを行なうことができる。
【0040】
【発明の効果】
以上説明したように、この発明によれば、焼結のために行なわれる圧延後の熱処理の際に、線材が膨張することがない。
【0041】
そのため、超電導特性の均一な長尺の線材を作製することができる。また、線材の膨張によって超電導体の組織が乱されることもないために、臨界電流密度の高い酸化物超電導線材が得られる。
【0042】
したがって、この発明により製造された酸化物超電導線材は、ケーブルやマグネットへの適用が可能である。
【図面の簡単な説明】
【図1】熱処理温度と得られる酸化物超電導線材の臨界電流密度との関係を示す図である。
【図2】熱処理時間と得られる酸化物超電導線材の臨界電流密度との関係を示す図である。
【図3】熱処理温度と得られる酸化物超電導線材の臨界電流密度との関係を示す図である。
【図4】熱処理温度と得られる酸化物超電導線材の臨界電流密度との関係を示す図である。
[0001]
[Industrial applications]
The present invention relates to a method for producing an oxide superconducting wire, and more particularly to a method for producing an oxide superconducting wire having a high critical current density.
[0002]
[Prior art]
In recent years, ceramic superconducting materials, that is, oxide superconducting materials, have attracted attention as superconducting materials exhibiting higher critical temperatures. Among them, yttrium shows a high critical temperature of about 90K, bismuth shows a high critical temperature of about 110K, and thallium shows a high critical temperature of about 120K, and practical application is expected.
[0003]
In these oxide superconducting materials, a single-core oxide superconducting material having a high critical current density is obtained by heat-treating a powder, coating it with a metal sheath, performing wire drawing and rolling, and further heat-treating. Wire rod is obtained. In addition, after heat-treating a powder containing an oxide superconducting material as a main component, covering with a metal sheath, performing wire drawing, fitting and forming a multi-core wire, performing wire drawing and rolling, and By performing the heat treatment, an oxide superconducting multi-core wire having a similarly high critical current density is obtained. Furthermore, conventionally, in the production of such an oxide superconducting wire, it is known that an oxide superconducting wire having a higher critical current density can be obtained by repeating the steps of rolling and heat treatment a plurality of times.
[0004]
[Problems to be solved by the invention]
When applying an oxide superconducting wire to a cable or a magnet, it is necessary to have a high critical current density in addition to a high critical temperature. In addition, a long oxide superconducting wire also needs to have uniform characteristics.
[0005]
The critical current density of the single-core and multi-core oxide superconducting wires manufactured by the above-described conventional method has a high value of 30,000 A / cm 2 or more in a short wire of about 10 cm.
[0006]
However, in the production of a long wire, a phenomenon occurs in which the wire swells during heat treatment after rolling performed for sintering. In the case of short wire rods, the gas adsorbed on the raw material powder in the process up to sintering escapes from both ends of the wire rod during the heat treatment. In this case, the wire does not come off sufficiently and expands in the wire. Then, there is a problem that the superconductivity of the wire becomes non-uniform due to the expansion of the wire. In addition, there is another problem that the critical current density is reduced because the superconductor structure is disturbed by the expansion of the wire.
[0007]
For these reasons, the critical current density of a long wire manufactured by a conventional method, for example, a 100 m-class oxide superconducting wire, was only about 10,000 A / cm 2 .
[0008]
An object of the present invention is to solve the above-mentioned problems and to provide a method for producing a long oxide superconducting wire having a high critical current density.
[0009]
[Means for Solving the Problems]
The method for producing a bismuth-based oxide superconducting wire according to the first aspect of the present invention includes the steps of: heat-treating a powder containing a bismuth-based oxide superconducting material as a main component, coating the powder with a metal sheath, and performing wire drawing and rolling. A method for producing a bismuth-based oxide superconducting wire, which is further subjected to a heat treatment, wherein the heat treatment is performed at a temperature of 550 ° C. to 760 ° C. in a reduced-pressure atmosphere in a wire drawing process.
[0010]
The method for producing a bismuth-based oxide superconducting wire according to the second aspect of the present invention is a method of manufacturing a bismuth-based oxide superconducting wire, which comprises heat-treating a powder containing a bismuth-based oxide superconducting material as a main component, coating the powder with a metal sheath, performing wire drawing, and then fitting. After multi-filament wire, after subjected to wire drawing and rolling, and further heat treatment, a method of manufacturing a bismuth-based oxide superconducting wire, in the wire drawing process after fitting and multi-core wire, The heat treatment is performed at a temperature of 550 ° C. to 760 ° C. in a reduced pressure atmosphere.
[0011]
The method of manufacturing a bismuth-based oxide superconducting wire according to the third aspect of the present invention is the method of the second aspect, wherein the wire drawing step before the fitting into a multi-core wire is performed at 550 ° C. to 760 ° C. in a reduced-pressure atmosphere. The heat treatment is performed at a temperature of
[0012]
[Action]
According to the present invention, in the wire drawing process, the heat treatment is performed in a reduced pressure atmosphere. By performing the heat treatment under the reduced pressure atmosphere, the adsorbed gas of the raw material powder can be removed, and the expansion of the wire rod that occurs during the heat treatment after rolling as in the related art can be prevented.
[0013]
The heat treatment for the purpose of degassing is performed in a wire drawing process after coating the raw material powder with a metal sheath. Therefore, the gas once removed does not adsorb again to the raw material powder. The heat treatment for degassing is performed before the density of the raw material powder is increased by rolling. Therefore, the adsorbed gas can be efficiently removed.
[0014]
Further, according to the present invention, the heat treatment in the wire drawing step is performed at a temperature of 550 ° C to 760 ° C. Therefore, the adsorbed gas can be efficiently removed without affecting the properties of the raw material powder.
[0015]
Generally, the melting point of the raw material powder in a vacuum atmosphere is about 760 ° C., and the heat treatment is preferably performed at a temperature lower than the melting point. On the other hand, if the heat treatment is performed at a temperature lower than 550 ° C., the critical current density is reduced because the superconducting phase is decomposed to form a non-superconducting phase. Therefore, the heat treatment is preferably performed at 550 ° C. or higher.
[0016]
【Example】
(Example 1)
Using Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO, a composition ratio of Bi: Pb: Sr: Ca: Cu = 1.81: 0.40: 1.98: 2.21: 3.03 These were blended so that The compounded powder was heat-treated in the air in the order of 750 ° C. for 12 hours, 800 ° C. for 8 hours, and further at 760 ° C. for 8 hours in a reduced-pressure atmosphere of 1 Torr. Note that pulverization was performed after each heat treatment. The powder obtained through such heat treatment and pulverization was further pulverized by a ball mill to obtain a submicron powder. This powder was heat-treated at 800 ° C. for 2 hours, and then filled in a silver pipe having an outer diameter of 12 mm and an inner diameter of 9 mm.
[0017]
The powder filled in the silver pipe is drawn to a diameter of 9 mm, and then heat-treated for 10 hours at a temperature of 400, 500, 550, 600, 650, 700, 750 and 800 ° C. in a reduced-pressure atmosphere of 3 Torr. Was given. Subsequently, the wire thus obtained was further drawn until the diameter became 1.0 mm.
[0018]
Next, the wire after the drawing was rolled to a thickness of 0.17 mm, and then subjected to a heat treatment at 850 ° C. for 50 hours. After that, it was further rolled to a thickness of 0.14 mm and heat-treated at 850 ° C. for 50 hours.
[0019]
Thus, a long oxide superconducting wire having a length of 10 m was prepared, and the critical current density of the obtained wire was measured. The result is shown in FIG. In FIG. 1, the horizontal axis represents the temperature (° C.) during the heat treatment performed in the wire drawing process, and the vertical axis represents the critical current density (× 10 4 A / cm 2 ) of the obtained wire. . In addition, the results when no heat treatment is performed are also shown, assuming that the heat treatment temperature is 0 ° C.
[0020]
As is clear from FIG. 1, it is found that the heat treatment at a temperature of 550 ° C. to 760 ° C. in a reduced pressure atmosphere improves the critical current density of the oxide superconducting wire.
[0021]
On the other hand, a short oxide superconducting wire having a length of 10 cm was produced under the same conditions except that the heat treatment was not performed during the wire drawing. When the critical current density of the obtained wire was measured, it was 2.7 × 10 4 A / cm 2 .
[0022]
From this fact, it can be seen that, when a long wire is manufactured, by performing a heat treatment at a temperature of 550 ° C. to 760 ° C. in a reduced pressure atmosphere in a wire drawing step, almost the same performance as that of a short wire is obtained.
[0023]
(Example 2)
The following experiment was conducted to examine the effect of the heat treatment time on the improvement of the critical current density in the heat treatment performed in the wire drawing process.
[0024]
An oxide superconducting wire having a length of 10 m was prepared in the same manner as in Example 1 except for the heat treatment conditions performed in the wire drawing process. The heat treatment was performed in a reduced pressure atmosphere of 3 Torr at a temperature of 650 ° C. for 2.5, 5, 10, 50 and 100 hours, respectively.
[0025]
The critical current density of the wire thus obtained was measured. The result is shown in FIG. In FIG. 2, the horizontal axis represents the heat treatment time (hr) performed in the wire drawing step, and the vertical axis represents the critical current density (× 10 4 A / cm 2 ) of the obtained wire. In addition, the results when no heat treatment was performed are also shown, assuming that the heat treatment time is 0 hour.
[0026]
As is clear from FIG. 2, the heat treatment at 650 ° C. has a sufficient effect for improving the critical current density if performed for about 5 hours or more, and there is no difference in the effect even if the heat treatment time is longer than that. Understand.
[0027]
(Example 3)
Using Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO, a composition ratio of Bi: Pb: Sr: Ca: Cu = 1.81: 0.40: 1.98: 2.21: 3.03 These were blended so that The compounded powder was heat-treated in the air in the order of 750 ° C. for 12 hours, 800 ° C. for 8 hours, and further at 760 ° C. for 8 hours in a reduced-pressure atmosphere of 1 Torr. Note that pulverization was performed after each heat treatment. The powder obtained through such heat treatment and pulverization was further pulverized by a ball mill to obtain a submicron powder. This powder was heat-treated at 800 ° C. for 2 hours, and then filled in a silver pipe having an outer diameter of 12 mm and an inner diameter of 10 mm.
[0028]
The powder filled in the silver pipe was drawn to 1 mm, and then fitted into a silver pipe having an outer diameter of 12 mm and an inner diameter of 9 mm to form a 61-core multicore wire. Thereafter, the multifilamentary wire was subjected to a heat treatment at 400, 500, 550, 600, 650, 700, 750 and 800 ° C. for 10 hours in a reduced-pressure atmosphere of 1 Torr. Subsequently, the wire thus obtained was further drawn until the diameter became 1.0 mm.
[0029]
The multifilamentary wire after the wire drawing was rolled to a thickness of 0.22 mm, and then subjected to a heat treatment at 850 ° C. for 50 hours. Thereafter, rolling was further performed until the thickness became 0.20 mm, and heat treatment was performed at 850 ° C. for 50 hours.
[0030]
In this way, a long oxide superconducting multi-core wire having a length of 50 m was produced, and the critical current density of the obtained wire was measured. The result is shown in FIG. In FIG. 3, the horizontal axis indicates the temperature (° C.) during the heat treatment performed in the wire drawing process, and the vertical axis indicates the critical current density (× 10 4 A / cm 2 ) of the obtained wire. . In addition, the results when no heat treatment is performed are also shown when the heat treatment temperature is 0 ° C.
[0031]
As is clear from FIG. 3, it is found that the heat treatment at a temperature of 550 ° C. to 760 ° C. in a reduced pressure atmosphere improves the critical current density of the oxide superconducting wire.
[0032]
On the other hand, a short oxide superconducting multi-core wire having a length of 10 cm was produced under the same conditions except that the heat treatment was not performed during the wire drawing. When the critical current density of the obtained wire was measured, it was 2.3 × 10 4 A / cm 2 .
[0033]
For this reason, when manufacturing a long multifilamentary wire, in the wire drawing process after fitting and forming a multifilamentary wire, by performing a heat treatment at a temperature of 550 ° C. to 760 ° C. in a reduced pressure atmosphere, It can be seen that the performance close to that of the multi-core wire can be obtained.
[0034]
(Example 4)
In Example 3, in the drawing process before fitting the powder filled in the silver pipe into a multi-core wire, a heat treatment was performed at 650 ° C. for 10 hours in a reduced-pressure atmosphere of 3 Torr. Other conditions were the same as in Example 3 to prepare a 50 m-long oxide superconducting multi-core wire.
[0035]
The critical current density of the wire thus obtained was measured. The result is shown in FIG. In FIG. 4, the horizontal axis represents the temperature (° C.) during the heat treatment performed in the wire drawing process, and the vertical axis represents the critical current density (× 10 4 A / cm 2 ) of the obtained wire. . In addition, the results when no heat treatment is performed are also shown, assuming that the heat treatment temperature is 0 ° C.
[0036]
As is clear from FIG. 4, it is found that the critical current density of the oxide superconducting wire is further improved by performing the heat treatment even in the wire drawing process before the fitting and forming the multi-core wire.
[0037]
It should be noted that the disclosure regarding the above embodiments is merely a specific example of the present invention, and does not limit the technical scope of the present invention in any way.
[0038]
The present invention is not limited to the production of bismuth-based oxide superconducting wires, but is also applicable to the production of thallium-based and yttrium-based oxide superconducting wires. However, in the production of an yttrium-based oxide superconducting wire, there is a possibility that oxygen is desorbed by heat treatment, while in the production of a thallium-based oxide superconducting wire, there is a possibility that thallium is evaporated by heat treatment. Therefore, the present invention is most effective when applied to the production of bismuth-based oxide superconducting wires.
[0039]
In the present invention, the degree of vacuum during the heat treatment in the wire drawing process is effective if the pressure is lower than the atmospheric pressure, but if the pressure is several Torr or less, degassing can be performed more efficiently. .
[0040]
【The invention's effect】
As described above, according to the present invention, the wire does not expand during the heat treatment after rolling performed for sintering.
[0041]
Therefore, a long wire having uniform superconducting characteristics can be manufactured. Further, since the structure of the superconductor is not disturbed by the expansion of the wire, an oxide superconducting wire having a high critical current density can be obtained.
[0042]
Therefore, the oxide superconducting wire manufactured according to the present invention can be applied to cables and magnets.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a heat treatment temperature and a critical current density of an obtained oxide superconducting wire.
FIG. 2 is a diagram showing a relationship between a heat treatment time and a critical current density of an obtained oxide superconducting wire.
FIG. 3 is a diagram showing a relationship between a heat treatment temperature and a critical current density of an obtained oxide superconducting wire.
FIG. 4 is a diagram showing a relationship between a heat treatment temperature and a critical current density of an obtained oxide superconducting wire.

Claims (3)

ビスマス系酸化物超電導材料を主成分とする粉末を熱処理した後金属シースにて被覆し、伸線加工および圧延加工を施した後、さらに熱処理する、ビスマス系酸化物超電導線材の製造方法であって、
前記伸線加工の工程において、減圧雰囲気中550℃〜760℃の温度で熱処理を施すことを特徴とする、ビスマス系酸化物超電導線材の製造方法。
A method for producing a bismuth-based oxide superconducting wire, which comprises applying a heat treatment to a powder containing a bismuth-based oxide superconducting material as a main component, coating with a metal sheath, performing wire drawing and rolling, and further heat-treating. ,
A method for producing a bismuth-based oxide superconducting wire, wherein a heat treatment is performed in a reduced pressure atmosphere at a temperature of 550 ° C. to 760 ° C. in the wire drawing process.
ビスマス系酸化物超電導材料を主成分とする粉末を熱処理した後金属シースにて被覆し、伸線加工を施した後嵌合して多芯線とし、伸線加工および圧延加工を施した後、さらに熱処理する、ビスマス系酸化物超電導線材の製造方法であって、
前記嵌合して多芯線とした後の伸線加工の工程において、減圧雰囲気中550℃〜760℃の温度で熱処理を施すことを特徴とする、ビスマス系酸化物超電導線材の製造方法。
After heat-treating a powder containing a bismuth-based oxide superconducting material as a main component, covering with a metal sheath, performing wire drawing and then fitting into a multi-core wire, performing wire drawing and rolling, and then further A method for producing a bismuth-based oxide superconducting wire to be heat-treated,
A method for producing a bismuth-based oxide superconducting wire, wherein a heat treatment is performed in a reduced-pressure atmosphere at a temperature of 550 ° C. to 760 ° C. in the wire drawing process after the fitting into a multi-core wire.
前記嵌合して多芯線とする前の伸線加工の工程において、減圧雰囲気中550℃〜760℃の温度で熱処理を施すことを特徴とする、請求項2に記載のビスマス系酸化物超電導線材の製造方法。3. The bismuth-based oxide superconducting wire according to claim 2, wherein a heat treatment is performed in a reduced-pressure atmosphere at a temperature of 550 ° C. to 760 ° C. in the wire drawing process before the fitting into the multi-core wire. Manufacturing method.
JP13022193A 1993-06-01 1993-06-01 Manufacturing method of oxide superconducting wire Expired - Fee Related JP3574461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13022193A JP3574461B2 (en) 1993-06-01 1993-06-01 Manufacturing method of oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13022193A JP3574461B2 (en) 1993-06-01 1993-06-01 Manufacturing method of oxide superconducting wire

Publications (2)

Publication Number Publication Date
JPH06342607A JPH06342607A (en) 1994-12-13
JP3574461B2 true JP3574461B2 (en) 2004-10-06

Family

ID=15028988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13022193A Expired - Fee Related JP3574461B2 (en) 1993-06-01 1993-06-01 Manufacturing method of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP3574461B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1528575A4 (en) 2002-08-05 2007-02-07 Sumitomo Electric Industries Method of producing superconductive wire material
JP4701631B2 (en) * 2004-05-13 2011-06-15 住友電気工業株式会社 Superconducting wire manufacturing method
JP2006012537A (en) 2004-06-24 2006-01-12 Sumitomo Electric Ind Ltd Method of producing superconducting wire

Also Published As

Publication number Publication date
JPH06342607A (en) 1994-12-13

Similar Documents

Publication Publication Date Title
JP2567505B2 (en) Method for producing bismuth oxide superconductor
US5246917A (en) Method of preparing oxide superconducting wire
JP3149441B2 (en) Method for producing bismuth-based oxide superconducting wire
JP3574461B2 (en) Manufacturing method of oxide superconducting wire
US5869430A (en) High temperature superconducting wire using oxide superconductive material
WO2006001100A1 (en) Method for producing superconducting wire
US5663120A (en) Method of preparing oxide high-temperature superconductor
JP2003203532A (en) Manufacturing method of superconducting wire
JP3051867B2 (en) Manufacturing method of oxide superconducting wire
EP0676817B1 (en) Method of preparing high-temperature superconducting wire
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JP4701631B2 (en) Superconducting wire manufacturing method
JPH06349358A (en) Manufacture of oxide high temperature superconductive wire material
JP3089641B2 (en) Bismuth-based oxide superconductor and method for producing the same
JP2861444B2 (en) Multi-core superconducting wire and its processing method
JP3109077B2 (en) Manufacturing method of oxide superconducting wire
JPH05159641A (en) Manufacture of high temperature superconductive wire
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
JP3350935B2 (en) Multi-core superconducting wire
JPH04292807A (en) High temperature superconductive wire
JPH065137A (en) Manufacture of oxide superconducting wire rod
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JPH04292805A (en) Manufacture of oxide superconductive wire
JPH01161625A (en) Manufacture of oxide superconducting wire
JPH04292817A (en) Manufacture of high temperature superconductor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees