JPH0353902A - Manufacture of oxide superconductive coil - Google Patents

Manufacture of oxide superconductive coil

Info

Publication number
JPH0353902A
JPH0353902A JP1188889A JP18888989A JPH0353902A JP H0353902 A JPH0353902 A JP H0353902A JP 1188889 A JP1188889 A JP 1188889A JP 18888989 A JP18888989 A JP 18888989A JP H0353902 A JPH0353902 A JP H0353902A
Authority
JP
Japan
Prior art keywords
coil
rolling
rolled
composite
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1188889A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Naoki Uno
直樹 宇野
Kenji Enomoto
憲嗣 榎本
Kiyoshi Nemoto
清 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1188889A priority Critical patent/JPH0353902A/en
Publication of JPH0353902A publication Critical patent/JPH0353902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To prevent the occurrence of cracks in the outside of a coil by rolling a composition in making it pass through between a pair of different diameter rolls, at the same time, plastic-deforming it into a coil form. CONSTITUTION:Provisional baked powders 6 for a superconductor, in which a polycrystalline substance of YBa2Cu3O7-delta obtained by mixing with each predetermined material powder and provisionally baking them is ground and finely powdered, are filled into a metallic sheath 3, and they are elongation-worked into a composite wire by swaging process, furthermore, rolled into a tape form by rolling. And, it is rolled by a rolling process in use of a pair of different diameter rolls 1, 2, at the same time, molded into a spiral coil from. A composition 4 molded herein is wound up by a guide rod 7 immediately and wound over into 5 layers. Next, in order to ceramic-bake the provisionally baked powders 6 of a superconductor in the coil, a heat treatment therefor is conducted in an oxidizing atmosphere.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば発電機に使われる強力磁界発生用コイ
ルの製造に応用されて好適な酸化物系超電導コイルの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing an oxide-based superconducting coil suitable for application to, for example, manufacturing a strong magnetic field generating coil used in a generator.

[従来の技術コ L n−B a−C u−O Xを始めとするBi系、
T1系等の近年発見された比較的高温で超電導状態に遷
移する合金酸化物は、酸化物系高温超電導体と呼ばれ、
超電導遷移温度の高さから幅広い分野での応用が期待さ
れている。特に発電機やモータ等において強力な磁界を
発生させるためのコイルへの応用が注目されていて、こ
れらの材料の線材加工方7去やコイル成形方法が種々考
案されて実用化されつつある。
[Conventional technology Bi system including L n-B a-C u-O
Alloy oxides that have been discovered in recent years, such as the T1 system, that transition to a superconducting state at relatively high temperatures are called oxide-based high-temperature superconductors.
Due to its high superconducting transition temperature, it is expected to be applied in a wide range of fields. In particular, the application to coils for generating strong magnetic fields in generators, motors, etc. is attracting attention, and various wire processing methods and coil forming methods for these materials are being devised and put into practical use.

ところで、酸化物系高温超電導体は、結晶格子間の相互
移動を容易とする金属結合を持たず、Ili云8移動を
もって説明される塑性変形を期待できない、いわゆるセ
ラミックスの一種であって、きわめてもろい性質を持つ
から、一般の金属電線材料のような圧延や引抜き等の減
面加工による線材加工はもちろんのこと、線材をコイル
状に巻くことも殆ど不可能である。また、酸化物系高温
超電導体は、比較的不安定な結晶構造を有し、大気中の
酸素や水分により超電導遷移温度等の物性か容易に変化
するから、コイル表面を大気に対して密封する必要があ
る。
By the way, oxide-based high-temperature superconductors are a type of so-called ceramics that do not have metallic bonds that facilitate mutual movement between crystal lattices and cannot be expected to undergo plastic deformation as explained by Ili movement, and are extremely brittle. Because of these properties, it is almost impossible to process the wire into a coil by rolling or drawing to reduce its area like general metal wire materials. In addition, oxide-based high-temperature superconductors have a relatively unstable crystal structure, and physical properties such as superconducting transition temperature change easily due to oxygen and moisture in the atmosphere, so the coil surface must be sealed from the atmosphere. There is a need.

従って、酸化物系超電導コイルの製造方法としては、金
属シース法を応用して、微細な粉末状態の原料調整体を
金属製のパイプに詰め、このパイプもろとも最終的なコ
イル形状まで成形した後で熱処理して金属シース内の原
料調整体を焼結させる方法が一般的である。
Therefore, the manufacturing method for oxide-based superconducting coils is to apply the metal sheath method, fill a metal pipe with a fine powdered raw material preparation, and then shape the pipe and the final coil shape. A common method is to sinter the raw material conditioning body inside the metal sheath by heat-treating it.

また、この原料調整体としては、超電導体の各成分原料
を微粉末とし、これを適正な割合で調合して混合し、適
当な温度と雰囲気中で熱処理を加えて合金酸化物化して
、例えばY B ,2c u30 7−6等の多結晶体
とし、これを再度粉砕して微粉末化したものが一般的で
ある。また、適正な割合で調合した各成分原料の混合体
を直接用いる場合もあるが、合金酸化物化にともなう体
積変化による成形物の破壊が発生するので一般的でない
In addition, this raw material preparation body is prepared by finely powdering the raw materials for each component of the superconductor, mixing them in appropriate proportions, and heat-treating them in an appropriate temperature and atmosphere to form an alloy oxide, for example. It is generally made into a polycrystalline body such as Y B , 2c u30 7-6, etc., which is then ground again to form a fine powder. In some cases, a mixture of raw materials for each component prepared in appropriate proportions is used directly, but this is not common because the molded product may break due to the change in volume accompanying the formation of an alloy oxide.

金属シース法を応用した具体的な酸化物系超電導コイル
の製造方法としては、銀または銀合金のパイプに原料調
整体を詰めて複合体化し、この複合体を減面加工する線
材加工を行い、得られた線材を所定直径を有する円柱の
表面に巻付けて、そのまま熱処理する方法が知られてい
る。
A specific method for manufacturing oxide-based superconducting coils using the metal sheath method involves filling a silver or silver alloy pipe with a raw material conditioning body to form a composite, and then processing the composite into a wire by reducing its area. A method is known in which the obtained wire is wound around the surface of a cylinder having a predetermined diameter and then heat treated as it is.

[発明が解決しようとする課題] 金属シース法により酸化物系超電導コイルの製造を行う
場合、金属シース内の原料調整体は、減面加工やコイル
巻加工に応して直径方向および軸方向に円滑に移動して
金属シース内を隙間なく均一な密度で満たず必要がある
。しかし、粉体の流動性には限界があるため、上述した
円柱に線材を巻付ける酸化物系超電導コイルの製造方法
においては、巻付けによるコイル外側部分の伸びにより
金属シース内の原料調整体に微細な隙間(クラツク)を
生じる。これは、熱処理後の酸化物超電導体の実質断面
積を減少させてコイルの電流容量を損なわせるとともに
、応力集中点となってコイル強度を低下させる。
[Problems to be Solved by the Invention] When manufacturing oxide superconducting coils by the metal sheath method, the raw material conditioning body in the metal sheath is diametrically and axially modified in accordance with area reduction processing and coil winding processing. It must move smoothly and fill the metal sheath with uniform density without any gaps. However, since there is a limit to the fluidity of powder, in the above-mentioned manufacturing method of oxide-based superconducting coils in which a wire is wound around a cylinder, the stretching of the outer part of the coil due to winding causes the raw material adjustment body in the metal sheath to This creates minute gaps (cracks). This reduces the effective cross-sectional area of the oxide superconductor after heat treatment, impairing the current capacity of the coil, and becomes a stress concentration point, reducing the strength of the coil.

本発明は、高電流容量でばらつきの少ない超電導コイル
が得られ、コイル外側部分のクラツク発生も少ない酸化
物系超電導コイルの製造方法を提供する。
The present invention provides a method for manufacturing an oxide-based superconducting coil, which provides a superconducting coil with a high current capacity and little variation, and also reduces occurrence of cracks in the outer portion of the coil.

[課題を解決するための手段コ 本発明の請求項(1)に係る酸化物超電導コイルの製造
方法は、粉末状の原料調整体を金属シース内に装填した
複合体をコイル状に成形した後に熱処理を行う、金属シ
ース法による酸化物超電導コイルの製造方法において、 前記複合体を一対の外径の異なるロール間を通して、圧
延すると同時にコイル状に塑性変形させるロール圧延工
程を有することを特徴とするものである。
[Means for Solving the Problems] The method for manufacturing an oxide superconducting coil according to claim (1) of the present invention includes forming a composite body in which a powdered raw material preparation body is loaded into a metal sheath into a coil shape; A method for manufacturing an oxide superconducting coil by a metal sheath method, which performs heat treatment, characterized by comprising a roll rolling step in which the composite is rolled and simultaneously plastically deformed into a coil shape through a pair of rolls having different outer diameters. It is something.

また、本発明の請求項(2)に係る酸化物超電導コイル
の製造方法は、本発明の請求項(1)に係る酸化物超電
導コイルの製造方法における一対のロルとして、 前記複合体がコイルピッチ方向にも同時に塑性変形され
るように、対向間隔を幅方向で異ならせた一対のロール
を用いることを特徴とするものである。
Further, the method for manufacturing an oxide superconducting coil according to claim (2) of the present invention is such that the composite body has a coil pitch as a pair of rolls in the method for manufacturing an oxide superconducting coil according to claim (1) of the present invention. It is characterized by the use of a pair of rolls whose facing distances are different in the width direction so that they can be plastically deformed in both directions at the same time.

[作用] 本発明の請求項(1)に係る酸化物超電導コイルの製造
方法では、例えば微粉末化により、流動性が高まるよう
に調整した原料調整体を金属シー゛ス内に装填して複合
体とする。
[Function] In the method for manufacturing an oxide superconducting coil according to claim (1) of the present invention, a raw material preparation body adjusted to have increased fluidity, for example, by pulverization, is loaded into a metal sheath and then composited. body.

次に、この複合体を一対の外径の異なるロール間に通し
て、圧延と同時に曲げ加工を行いコイル形状にまで一気
に成形する。このとき、外径の小さなロール側での金属
シースの伸びは、外径の大きなロール側での伸びよりも
小さくなるからJ複合体は外径の小さなロールの側に一
定の曲率で曲げられる。この曲率は、複合体の金属シー
スの形状や機械的性質に合せて各ロールの直径や対向間
隔を調整して制御する。また、一対の外径の異なるロー
ル間を通して複合体を曲げる過程では、複合体の金属シ
ース内の原料調整体は、コイル外側部分もコイル内側部
分と等しい圧延力で締められるから、従来例で述べた円
柱に線材を巻付ける方法と比較してクランクを生じにく
い。しかし、このロール圧延加工を行なう前に、適当な
減面加工(線材加工)を行い、金属シース内で原料調整
体をある程度均一に締めておくことは望ましい。
Next, this composite is passed between a pair of rolls having different outer diameters, and simultaneously rolled and bent to form it into a coil shape all at once. At this time, the elongation of the metal sheath on the roll side with a smaller outer diameter is smaller than the elongation on the roll side with a larger outer diameter, so the J composite is bent with a constant curvature toward the roll with a smaller outer diameter. This curvature is controlled by adjusting the diameter and facing distance of each roll in accordance with the shape and mechanical properties of the metal sheath of the composite. In addition, in the process of bending the composite through a pair of rolls with different outer diameters, the outer part of the coil of the raw material conditioning body in the metal sheath of the composite is tightened with the same rolling force as the inner part of the coil, as described in the conventional example. This method is less likely to cause cranking than the method of wrapping wire around a cylinder. However, before performing this roll rolling process, it is desirable to perform an appropriate area reduction process (wire process) to tighten the raw material adjusting body to some extent uniformly within the metal sheath.

次に、金属シースとともにコイル状に成形された原判調
整体を焼結させて成形セラくツク化させるための熱処理
を行い、最終製品の酸化物超電導コイルを得る。一方、
原料調整体として各成分原料の混合体を直接用いた場合
はここで合金酸化物化か行われる。
Next, heat treatment is performed to sinter the original adjustment body formed into a coil shape together with the metal sheath to form a ceramic material, thereby obtaining an oxide superconducting coil as a final product. on the other hand,
When a mixture of each component raw material is directly used as a raw material preparation body, alloy oxide formation is performed here.

次に、本発明の請求項(2)に係る酸化物超電導コイル
の製造方法における一対のロールの対向間隔は、幅方向
で異なるくさび状となっていて、圧延された複合体がこ
の対向間隔の広い側に逃げるから、上述のようなコイル
直径方向の曲がりに加えてこれと直角なコイルピッチ方
向にも同時に塑性変形を生じ、成形されるコイルの各条
はコイルビッヂ方向に所定のピッチで自動的に整列する
Next, in the method for manufacturing an oxide superconducting coil according to claim (2) of the present invention, the opposing distance between the pair of rolls is wedge-shaped, which differs in the width direction, and the rolled composite is shaped like a wedge, which is different in the width direction. Because of the escape to the wide side, in addition to the bending in the coil diameter direction as described above, plastic deformation occurs simultaneously in the coil pitch direction perpendicular to this bending, and each strip of the formed coil automatically bends at a predetermined pitch in the coil pitch direction. Align.

ここで、コイルピッチ方向の塑性変形の量は、くさひ状
の対向間隔の開き具合に依存するから、対向間隔の傾き
角度(ロール軸交差角等)を調整してコイルピッチを調
節、制御できる。
Here, since the amount of plastic deformation in the coil pitch direction depends on the degree of opening of the wedge-shaped opposing gaps, the coil pitch can be adjusted and controlled by adjusting the inclination angle of the opposing gaps (roll axis crossing angle, etc.) .

[発明の実施例] 本発明の実施例を図面を参照して説明する。[Embodiments of the invention] Embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の実施例に係る酸化物超電導コイルの
製造方法におけるコイル成形のためのロル圧延工程を示
す。
FIG. 1 shows a roll rolling process for forming a coil in a method for manufacturing an oxide superconducting coil according to an embodiment of the present invention.

所定の各原料粉を混合し、仮焼威して得られたY B 
a2c u30 7 J 多結晶体を粉砕して微粉末と
した超電導体の仮焼成粉6を金属シース(外径20mm
、内径15mmの銀合金パイプを採用した)3に充填し
、これをスウェージング加工により外径5mmの複合線
に伸線加工し、さらにロール圧延により厚さ0.5mm
までテープ状に圧延加工した。これを第1図に示される
、外径の異なる一対のロル(それぞれ外径が100mm
と4 0 mm,対向間隔5が0.3mm)1、2を用
いたロール圧延加工により、厚さ0.3mmまで圧延す
ると同時に渦巻コイル形状に成形した。ここで、成形さ
れた複合体4は直ちにガイト棒(直径50mm)7に巻
取られる構成で、成形された複合体4をガイド棒7に5
層巻重ねた。次に、この渦巻コイル内の超電導体の仮焼
成粉6をセラよツク焼成するために、9o0℃の酸化雰
囲気中で10時間の熱処理を行い試験用コイルとした。
YB obtained by mixing specified raw material powders and calcining
7
, a silver alloy pipe with an inner diameter of 15 mm was used) 3, which was drawn into a composite wire with an outer diameter of 5 mm by swaging, and further rolled into a wire with a thickness of 0.5 mm.
It was rolled into a tape shape. This is shown in Figure 1, a pair of rolls with different outer diameters (each with an outer diameter of 100 mm).
The sample was rolled to a thickness of 0.3 mm and simultaneously formed into a spiral coil shape by rolling using rolls 1 and 2 (with a diameter of 40 mm and a facing interval 5 of 0.3 mm). Here, the molded composite 4 is immediately wound around a guide rod (diameter 50 mm) 7, and the molded composite 4 is wrapped around the guide rod 7.
Layered. Next, in order to ceramically sinter the superconductor pre-sintered powder 6 in this spiral coil, it was heat-treated for 10 hours in an oxidizing atmosphere at 9°C to obtain a test coil.

この試験用コイルを液体窒素中に浸漬して特性測定を行
ったところ、臨界電流密度JCが3400A/cm2(
LN20G)、またコイル電流1c30Aにおける発生
磁場は240Gという結果を得た。
When this test coil was immersed in liquid nitrogen and its characteristics were measured, the critical current density JC was 3400A/cm2 (
LN20G), and the generated magnetic field at a coil current of 1c30A was 240G.

次に、同じ複合体(厚さ0.5mmのテープ体)を別の
ローラ圧延装置により0.3mmまで圧延した後、この
直線状のテープを別のガイト棒(直径5 0 mm)に
5層巻重ねて渦巻コイル形状に成形した。この渦巻コイ
ルについても同様に900’Cの酸化雰囲気中て1o時
間の熱処理を行い比較用コイルとした。
Next, the same composite (0.5 mm thick tape) was rolled to 0.3 mm using another roller rolling device, and then this straight tape was rolled in 5 layers onto another guide rod (50 mm in diameter). It was rolled up and formed into a spiral coil shape. This spiral coil was similarly heat-treated for 10 hours in an oxidizing atmosphere at 900'C, and was used as a comparison coil.

この比較用コイルを液体窒素中に浸漬して特性測定を行
ったところ、臨界電流密度J。が98OA/Cm’(L
N2 0G)、またコイル電流1c 9Aにおける発生
磁場は70Gという結果を得た。
When this comparison coil was immersed in liquid nitrogen and its characteristics were measured, the critical current density J was found. is 98OA/Cm'(L
N2 0G), and the generated magnetic field at a coil current of 1c 9A was 70G.

また、X線透視観察の結果、この比較用コイル内部の酸
化物超電導体には多くの微細クラックが認められた。
Further, as a result of X-ray fluoroscopic observation, many fine cracks were observed in the oxide superconductor inside this comparative coil.

第2図は、本発明の別の実施例に係る酸化物超電導コイ
ルの製造方法におけるコイル成形のためのロール圧延工
程を示す。ここで、第1図の実施例と同様な構成と機能
を有する部材には同一の符号を付した。
FIG. 2 shows a roll rolling process for forming a coil in a method for manufacturing an oxide superconducting coil according to another embodiment of the present invention. Here, members having the same configuration and function as those in the embodiment shown in FIG. 1 are given the same reference numerals.

第2図の実施例では、′f.1実施例の圧延ローラの出
口側にガイド治具8を設け、圧延された複合体を、コイ
ルピッチ方向に所定量シフトするように塑性変形させる
構成てある。これにより、例えば、第1図の実施例のよ
うに複合体3を圧延しても、渦巻状に成形された複合体
4bの各条は、重ならずにらせん状にガイドされて直線
ソレノイト状のコイルとなる。
In the embodiment of FIG. 2, 'f. A guide jig 8 is provided on the exit side of the rolling roller of the first embodiment, and the rolled composite is plastically deformed so as to be shifted by a predetermined amount in the coil pitch direction. As a result, even if the composite body 3 is rolled as in the embodiment shown in FIG. 1, for example, each strip of the spirally formed composite body 4b is guided in a spiral shape without overlapping, and is shaped like a straight solenoid. becomes a coil.

第3図は、本発明のさらに別の実施例に係る酸化物超電
導コイルの製造方法におけるコイル成形のためのロール
圧延工程を示す。ここでも、第1図の実施例と同様な構
成と機能を有する部材には同一の符号を付した。
FIG. 3 shows a roll rolling process for forming a coil in a method for manufacturing an oxide superconducting coil according to yet another embodiment of the present invention. Here again, the same reference numerals are given to the members having the same structure and function as those in the embodiment shown in FIG.

第3図の実施例では、対向する各ロール1b、2の軸を
平行からずらせて(交差角度θ)、ロル1b、2の対向
間隔5bをテーバ状とした。これにより、矢印9で示さ
れるように複合体を送って第1図の実施例と同様な圧延
を行っても、圧延された複合体は対向間隔5bの広い方
向に曲げを受けるから、コイルの各条は重ならずにらせ
ん状にガイドされて直線ソレノイド状のコイルが形成さ
れる。
In the embodiment shown in FIG. 3, the axes of the opposing rolls 1b and 2 are shifted from parallel (crossing angle θ), and the facing interval 5b between the rolls 1b and 2 is made into a tapered shape. As a result, even if the composite is sent in the direction indicated by the arrow 9 and rolled in the same manner as in the embodiment of FIG. Each strip is guided spirally without overlapping to form a linear solenoid-like coil.

第2図、第3図の実施例においては、ガイド治具8の位
置または各ロール1b、2の交差角を調整して円筒コイ
ルのピッチを自由に、例えば各条が一部重なり合うよう
にでも設定できる。また、コイルの中心に巻枠(芯材)
を設置して一緒に回転させ、軸方向にこの巻枠を移動さ
せながら巻取るようにすれば、コイルピッチや直径の制
御はより厳密になる。この場合、各条間にスペーサを挿
入する等して後で絶縁層を形成できるような隙間を形成
すると良い。
In the embodiments shown in FIGS. 2 and 3, the pitch of the cylindrical coil can be adjusted freely by adjusting the position of the guide jig 8 or the intersection angle of each roll 1b, 2, for example, the pitch of each strip may be partially overlapped. Can be set. In addition, there is a winding frame (core material) in the center of the coil.
If the winding frame is installed and rotated together, and the winding frame is moved in the axial direction while being wound, the coil pitch and diameter can be controlled more precisely. In this case, it is preferable to insert a spacer between each strip to form a gap in which an insulating layer can be formed later.

以上の各実施例では薄板状の複合体3をコイル成形する
場合を述べたが、ロール1、1b52に1 1 適当な形状のガイド溝を形成する等すれは、円、楕円、
多角形等自由に複合体の断面形状を選択できる。また、
酸化物超電導体層(仮焼成粉6)は単芯、多芯どちらで
もコイル威形が可能であり、酸化物超電導体層(仮焼成
粉6)原料、金属シス材料も自由に選択できる。ただし
、コイル成形以後のクラック発生を防止するため、本発
明に係るコイル成形は、金属シース塑性加工の最終成形
工程とするのが望ましい。
In each of the above embodiments, the case where the thin plate-like composite body 3 is coil-formed is described.
You can freely select the cross-sectional shape of the composite such as polygon. Also,
The oxide superconductor layer (pre-sintered powder 6) can be formed into a coil with either a single core or multi-core, and the raw material and metal cis material for the oxide superconductor layer (pre-sintered powder 6) can be freely selected. However, in order to prevent the occurrence of cracks after coil forming, it is desirable that the coil forming according to the present invention be the final forming step of the metal sheath plastic working.

[発明の効果] 本発明に係る酸化物超電導コイルの製造方法では、粉末
状の原料調整体を金属シース内に装填した複合体を、圧
延と同時にコイル成形した後で熱処理を行い原料調整体
を成形セラミックス化させるから、塑性のない酸化物系
超電導体でもコイル戒形が可能である。また、コイル表
面は金属シースにより大気から遮断されJ酸化物系超電
導体に対する大気中の水分や酸素の影響が少ない。
[Effects of the Invention] In the method for manufacturing an oxide superconducting coil according to the present invention, a composite body in which a powdered raw material preparation body is loaded into a metal sheath is rolled and simultaneously formed into a coil, and then heat-treated to form a raw material preparation body. Since it is made into a molded ceramic, even oxide-based superconductors without plasticity can be formed into coils. Furthermore, the surface of the coil is shielded from the atmosphere by a metal sheath, so that the influence of moisture and oxygen in the atmosphere on the J oxide superconductor is reduced.

本発明の請求項(1)に係る酸化物超電導コイルの製造
方法では、一対の外径の異なるロールじよ1 2 り、シース内の原料調整体がコイル外側部分もコイル内
側部分と等しい圧延力で締められつつコイル成形される
から、従来例で述べた円柱に巻付ける方法と比較してク
ラックを生じにくい。
In the method for manufacturing an oxide superconducting coil according to claim (1) of the present invention, a pair of rolls having different outer diameters 1 2 is applied so that the raw material adjusting body in the sheath applies a rolling force that is equal to the rolling force on the outer side of the coil than on the inner side of the coil. Since the coil is formed while being tightened, cracks are less likely to occur compared to the method of wrapping around a cylinder as described in the conventional example.

次に、本発明の請求項(2)に係る酸化物超電導コイル
の製造方法では、圧延と同時にコイルピッチ方向にも塑
性変形を生しるから、特別なガイドなしでもコイルの各
条は所定のピッチで自動的に整列する。
Next, in the method for manufacturing an oxide superconducting coil according to claim (2) of the present invention, plastic deformation occurs in the coil pitch direction at the same time as rolling, so each coil coil can be formed in a predetermined manner without a special guide. Automatically align by pitch.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の酸化物超電導コイルの製造方法の実
施例を説明する模式図である。 第2図は、本発明の酸化物超電導コイルの製造方法の、
別の実施例を説明する模式的な斜視図である。 第3図は、本発明の酸化物超電導コイルの製造方法の、
さらに別の実施例を説明する模式的な斜視図である。 [主要部分の符号の説明] l・・・ロール      2・・・ロール3・・・複
合体 4・・・成形された複合体 5・・・対向間隔 6・・・仮焼成分粉
FIG. 1 is a schematic diagram illustrating an embodiment of the method for manufacturing an oxide superconducting coil of the present invention. FIG. 2 shows the method for manufacturing an oxide superconducting coil of the present invention.
It is a typical perspective view explaining another example. FIG. 3 shows the method for manufacturing an oxide superconducting coil of the present invention.
It is a typical perspective view explaining still another example. [Explanation of symbols of main parts] l...Roll 2...Roll 3...Composite 4...Molded composite 5...Opposing interval 6...Calcined component powder

Claims (2)

【特許請求の範囲】[Claims] (1)粉末状の原料調整体を金属シース内に装填した複
合体をコイル状に成形した後に熱処理を行う酸化物超電
導コイルの製造方法において、前記複合体を、一対の外
径の異なるロール間に通して、圧延すると同時にコイル
状に塑性変形させるロール圧延工程を有することを特徴
とする酸化物超電導コイルの製造方法。
(1) In a method for producing an oxide superconducting coil in which a composite body in which a powdered raw material preparation body is loaded into a metal sheath is formed into a coil shape and then heat-treated, the composite body is rolled between a pair of rolls having different outer diameters. A method for manufacturing an oxide superconducting coil, comprising a roll rolling step of simultaneously rolling and plastically deforming it into a coil shape.
(2)前記複合体をコイルピッチ方向にも同時に塑性変
形させるように、対向間隔が幅方向で異なる一対の前記
ロールを用いることを特徴とする請求項(1)記載の酸
化物超電導コイルの製造方法。
(2) Manufacturing the oxide superconducting coil according to claim (1), characterized in that a pair of the rolls are used with opposing intervals different in the width direction so as to simultaneously plastically deform the composite in the coil pitch direction. Method.
JP1188889A 1989-07-24 1989-07-24 Manufacture of oxide superconductive coil Pending JPH0353902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188889A JPH0353902A (en) 1989-07-24 1989-07-24 Manufacture of oxide superconductive coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188889A JPH0353902A (en) 1989-07-24 1989-07-24 Manufacture of oxide superconductive coil

Publications (1)

Publication Number Publication Date
JPH0353902A true JPH0353902A (en) 1991-03-07

Family

ID=16231658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188889A Pending JPH0353902A (en) 1989-07-24 1989-07-24 Manufacture of oxide superconductive coil

Country Status (1)

Country Link
JP (1) JPH0353902A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434130A (en) * 1991-03-20 1995-07-18 Sumitomo Electric Industries, Ltd. Method of preparing oxide superconducting wire
WO2000010938A1 (en) * 1998-08-22 2000-03-02 Klaus Rennebeck Method for producing hollow fibres
CN103714966A (en) * 2013-12-13 2014-04-09 绵阳市腾扬机电制品有限责任公司 Machining method for magnetic coil framework of magnetic resonance medical instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434130A (en) * 1991-03-20 1995-07-18 Sumitomo Electric Industries, Ltd. Method of preparing oxide superconducting wire
WO2000010938A1 (en) * 1998-08-22 2000-03-02 Klaus Rennebeck Method for producing hollow fibres
CN103714966A (en) * 2013-12-13 2014-04-09 绵阳市腾扬机电制品有限责任公司 Machining method for magnetic coil framework of magnetic resonance medical instrument

Similar Documents

Publication Publication Date Title
JP3253440B2 (en) Oxide superconducting wires and coils
JPH0353902A (en) Manufacture of oxide superconductive coil
EP0449316B1 (en) Oxide superconducting wire, method of preparing the same, and method of handling the same
US5550103A (en) Superconductor tapes and coils and method of manufacture
JPH02207420A (en) Manufacture of superconducting wire rod
JPH05334921A (en) Ceramic superconductor
JP3158408B2 (en) Oxide superconducting wire and manufacturing method thereof
JP2951423B2 (en) Manufacturing method of ceramic superconducting conductor
JPH05144332A (en) Ceramic superconductor
JPH04337213A (en) Manufacture of multi-layer ceramic superconductor
JP3185291B2 (en) Method for producing tape-shaped oxide superconducting wire
JPH0382105A (en) Manufacture of oxide superconducting coil
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JP3053411B2 (en) Manufacturing method of oxide superconducting wire
JP4595813B2 (en) Oxide superconducting wire, manufacturing method thereof and superconducting equipment
JP3143903B2 (en) Manufacturing method of oxide superconducting wire
JPH03145103A (en) Manufacture of oxide based superconducting coil
JPH03204131A (en) Manufacture of oxide superconducting wire rod
JPH04329217A (en) Oxide superconductive wire material and manufacture thereof
JPH05101722A (en) Manufacture of multi-conductor ceramics superconductor
JPH03173017A (en) Oxide superconducting wire-rod manufacture and coil manufacture
JPH04118816A (en) Manufacture of ceramic superconductor
JPH02192619A (en) Manufacture of oxide superconductor
JPH05274933A (en) Manufacture of oxide superconducting wire material
JPH01134810A (en) Oxide superconductor and its manufacture