JP3143903B2 - Manufacturing method of oxide superconducting wire - Google Patents

Manufacturing method of oxide superconducting wire

Info

Publication number
JP3143903B2
JP3143903B2 JP01289788A JP28978889A JP3143903B2 JP 3143903 B2 JP3143903 B2 JP 3143903B2 JP 01289788 A JP01289788 A JP 01289788A JP 28978889 A JP28978889 A JP 28978889A JP 3143903 B2 JP3143903 B2 JP 3143903B2
Authority
JP
Japan
Prior art keywords
superconducting wire
wire
oxide
raw material
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01289788A
Other languages
Japanese (ja)
Other versions
JPH03152810A (en
Inventor
威 日方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP01289788A priority Critical patent/JP3143903B2/en
Publication of JPH03152810A publication Critical patent/JPH03152810A/en
Application granted granted Critical
Publication of JP3143903B2 publication Critical patent/JP3143903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、酸化物超電導体またはその原料を塑性加
工して線材化する酸化物超電導線材の製造方法に関する
ものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconducting wire rod by plastically processing an oxide superconductor or a raw material thereof into a wire.

[従来の技術] 従来の酸化物超電導線材は、一般に金属パイプに酸化
物原料粉末を充填し、押出し、伸線、圧延等の塑性加工
を経て、線材化した後、熱処理することにより製造され
ている。また、得られる線材の臨界電流密度を向上させ
るためには、このような塑性加工と熱処理とを繰返すこ
とが有効であることが知られている。
[Prior art] A conventional oxide superconducting wire is generally manufactured by filling a metal pipe with an oxide raw material powder, performing plastic processing such as extrusion, drawing, rolling, etc., forming a wire, and then performing heat treatment. I have. It is known that it is effective to repeat such plastic working and heat treatment in order to improve the critical current density of the obtained wire.

[発明が解決しようとする課題] しかしながら、このような従来の製造方法により得ら
れる酸化物超電導線材は、多結晶体または多粒子体が線
材内においてブリッジ構造を形成しており、多数の空孔
を有しているので、十分に緻密化されておらず、臨界電
流密度が不十分であるという問題があった。
[Problems to be Solved by the Invention] However, in the oxide superconducting wire obtained by such a conventional manufacturing method, a polycrystalline body or a multi-particle body forms a bridge structure in the wire, and a large number of pores are formed. Therefore, there has been a problem that densification is not sufficient and the critical current density is insufficient.

この発明の目的は、線材内部における緻密化を向上さ
せ、より高い臨界電流密度を示す酸化物超電導線材を製
造する方法を提供することにある。
An object of the present invention is to provide a method for producing an oxide superconducting wire exhibiting higher critical current density by improving densification inside the wire.

[課題を解決するための手段] この発明の製造方法は、酸化物超電導体またはその原
料を塑性加工して線材化する酸化物超電導線材の製造方
法であり、塑性加工の直前に前記酸化物超電導体または
その原料に超音波を照射することを特徴としている。
[Means for Solving the Problems] The production method of the present invention is a method for producing an oxide superconducting wire in which an oxide superconductor or a raw material thereof is plastically processed into a wire, and the oxide superconducting wire is formed immediately before plastic working. It is characterized by irradiating the body or its raw material with ultrasonic waves.

この発明において、酸化物超電導体またはその原料は
金属部材で包んだ形態で、または金属部材で挾んだ形態
で塑性加工することができる。この場合この金属部材
は、たとえば銀もしくは銀合金からなる金属部材を用い
ることができる。
In the present invention, the oxide superconductor or its raw material can be plastically worked in a form wrapped by a metal member or in a form sandwiched by metal members. In this case, a metal member made of, for example, silver or a silver alloy can be used as the metal member.

この発明において、酸化物超電導体またはその原料に
超音波を照射するには、金属部材を介して酸化物超電導
体またはその原料と接するように超音波発生器を設け、
この超音波発生器により超音波を発生することができ
る。また、超音波を有効に超電導体またはその原料に照
射するため、超音波発生器は、金属部材に有限の圧力で
密着させることが好ましい。
In the present invention, to irradiate the ultrasonic wave to the oxide superconductor or its raw material, an ultrasonic generator is provided so as to be in contact with the oxide superconductor or its raw material via a metal member,
Ultrasonic waves can be generated by this ultrasonic generator. Further, in order to effectively irradiate the superconductor or the raw material thereof with the ultrasonic wave, it is preferable that the ultrasonic generator is brought into close contact with the metal member with a finite pressure.

この発明が適用される酸化物超電導体としては特に限
定されるものではなく、たとえばY−Ba−Cu系酸化物超
電導体、Bi−Sr−Ca−Cu系酸化物超電導体、およびTl−
Ba−Ca−Cu系酸化物超電導体などを挙げることができ、
これらの中の一部の元素を他の元素で置換したものであ
ってもよい。
The oxide superconductor to which the present invention is applied is not particularly limited. For example, Y-Ba-Cu-based oxide superconductor, Bi-Sr-Ca-Cu-based oxide superconductor, and Tl-
Ba-Ca-Cu-based oxide superconductors and the like,
Some of these elements may be replaced with other elements.

[作用] 超音波照射せずに塑性加工する従来の製造方法では、
第3図に模式図で示すように、内部の結晶粒子4はブリ
ッジ構造を形成しており多数の空孔を有し、緻密な構造
ではなかった。この発明に従い、塑性加工する直前に超
音波を照射すれば、内部の結晶粒子は細かく振動し流動
性が高くなる。このような状態で塑性加工を加えると、
最も安定した位置に結晶粒子が移動し、第2図に模式図
で示すように、結晶粒子4が配列し空孔が少なくなる。
このため、この発明に従えば、内部の緻密度が向上し、
塑性加工後線材を熱処理した際、粒界同士が密着し、電
流の流れる経路が増加して、高い臨界電流密度を示す線
材が得られることになる。
[Action] In the conventional manufacturing method of performing plastic working without ultrasonic irradiation,
As shown in the schematic diagram of FIG. 3, the internal crystal grains 4 formed a bridge structure, had many vacancies, and were not a dense structure. According to the present invention, if ultrasonic waves are applied immediately before plastic working, the crystal grains inside vibrate finely and the fluidity increases. When plastic working is performed in such a state,
The crystal particles move to the most stable position, and as shown in the schematic diagram of FIG. 2, the crystal particles 4 are arranged and the number of pores is reduced.
Therefore, according to the present invention, the internal density is improved,
When the wire is heat-treated after plastic working, the grain boundaries are in close contact with each other and the number of paths through which the current flows increases, so that a wire having a high critical current density can be obtained.

また、結晶粒子の流動性が向上することにより、塑性
加工の際の断線等を無視することができ、線材の長手方
向にわたって、密度および臨界電流密度の均一な線材を
得ることができる。
In addition, since the fluidity of the crystal particles is improved, disconnection or the like during plastic working can be ignored, and a wire having a uniform density and critical current density can be obtained over the longitudinal direction of the wire.

[実施例] 第1図は、この発明の一実施例を説明するための概略
側面図である。第1図を参照して、酸化物超電導体は圧
延ローラ2aおよび2bにより挾まれ塑性加工を受け線材化
される。酸化物超電導体1が圧延ローラ2aおよび2bに挾
まれる直前の箇所には、酸化物超電導体1に接するよう
にして超音波発生器3が設けられている。この超音波発
生器3から超音波が酸化物超電導体1に照射され、その
直後に圧延ローラ2aおよび2bにより塑性加工を受ける。
Embodiment FIG. 1 is a schematic side view for explaining one embodiment of the present invention. Referring to FIG. 1, the oxide superconductor is sandwiched between rolling rollers 2a and 2b and subjected to plastic working to be converted into a wire. An ultrasonic generator 3 is provided immediately before the oxide superconductor 1 is sandwiched between the rolling rollers 2a and 2b so as to be in contact with the oxide superconductor 1. Ultrasonic waves are emitted from the ultrasonic generator 3 to the oxide superconductor 1, and immediately thereafter, the oxide superconductor 1 is subjected to plastic working by the rolling rollers 2a and 2b.

第1図に示すような装置を用いて、以下の実験を行な
った。
The following experiment was conducted using an apparatus as shown in FIG.

実施例1 Bi2O3,PbO,SrCO3,CaCO3,およびCuOを、Bi:Pb:Sr:Ca:C
u=1.8:0.4:2:2.2:3の組成比となるようにそれぞれの粉
末を混合し、800℃で8時間、860℃で8時間熱処理し
た。熱処理後粉砕して粉末化し、この粉末を内径4mm、
外径6mmの銀パイプ中に充填した。これを直径1mmとなる
まで伸線し、得られた線材を第1図に示すような圧延ロ
ーラで、厚み0.5mmまで圧延加工を施した。なおこの
際、圧延加工の直前において、振動数2000Hz,振幅5μ
mの超音波を照射した。次に、840℃×50時間の熱処理
を施し、さらに0.3mmの厚みまで圧延加工を施した後熱
処理を施した。
Example 1 Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO were converted to Bi: Pb: Sr: Ca: C
The respective powders were mixed so that u = 1.8: 0.4: 2: 2.2: 3, and heat-treated at 800 ° C. for 8 hours and at 860 ° C. for 8 hours. After heat treatment, it is pulverized by pulverization.
It was filled in a silver pipe with an outer diameter of 6 mm. This was drawn to a diameter of 1 mm, and the obtained wire was rolled to a thickness of 0.5 mm with a rolling roller as shown in FIG. In this case, immediately before the rolling, the vibration frequency was 2000 Hz and the amplitude was 5 μm.
m of ultrasonic waves. Next, a heat treatment was performed at 840 ° C. for 50 hours, and a rolling process was performed to a thickness of 0.3 mm, and then a heat treatment was performed.

なお、比較として圧延加工の直前に超音波を照射しな
いこと以外は上記実施例と同様にして線材を作製した。
As a comparison, a wire was produced in the same manner as in the above example except that no ultrasonic wave was applied immediately before the rolling.

得られた線材について臨界電流密度を測定した。臨界
電流密度は77.3K、零磁場における臨界電流密度を測定
した。
The critical current density of the obtained wire was measured. The critical current density was 77.3K, and the critical current density at zero magnetic field was measured.

その結果、この発明に従い圧延加工の直前に超音波を
照射した場合には、15,120A/cm2の臨界電流密度が得ら
れたのに対し、比較の超音波を照射しない線材では5,30
0A/cm2の臨界電流密度であり、この発明に従うことによ
り約3倍高い臨界電流密度を示す酸化物超電導線材を得
ることができた。
As a result, when irradiated with ultrasonic waves immediately before rolling according to the present invention, a critical current density of 15,120 A / cm 2 was obtained, whereas in the case of the comparative non-irradiated ultrasonic wires, 5,30 A / cm 2 was obtained.
According to the present invention, an oxide superconducting wire having a critical current density of 0 A / cm 2 and about three times higher critical current density was obtained.

実施例2 上記実施例1で作製した熱処理後の粉末を内径8mm、
外径12mmの銀合金パイプ中に充填し伸線加工した。この
際、どのくらいの組成の直径まで伸線加工すれば断線す
るかを調べた。伸線加工前に、振動数5000Hz,振幅2μ
mの超音波を照射した場合には、外径0.05mmとなるまで
断線することなく伸線することができた。これに対し伸
線加工前に超音波を照射しない場合には、直径0.2mmの
外径に伸線しようとした段階において断線した。
Example 2 The heat-treated powder produced in Example 1 was used for an inner diameter of 8 mm.
It was filled into a silver alloy pipe with an outer diameter of 12 mm and drawn. At this time, it was examined to what extent the diameter of the composition required to wire the wire to cause wire breakage. Before drawing wire, frequency 5000Hz, amplitude 2μ
When the ultrasonic wave of m was irradiated, the wire could be drawn without breaking until the outer diameter became 0.05 mm. On the other hand, when the ultrasonic wave was not irradiated before drawing, the wire was broken at the stage of drawing to an outer diameter of 0.2 mm.

実施例3 実施例1で得られた酸化物超電導線材について、長手
方向に電極管端子の距離を1cm、5cmおよび50cmで変化さ
せて配置し、77Kにおける臨界電流密度を測定した。ま
た、比較として超音波照射せずに塑性加工した線材につ
いても同様に臨界電流密度を測定した。結果を表1に示
す。なお、表1では、電極端子間距離が1cmの場合の臨
界電流密度を1として規格化し、相対値で臨界電流密度
を示した。
Example 3 With respect to the oxide superconducting wire obtained in Example 1, the distance between the electrode tube terminals was changed at 1 cm, 5 cm and 50 cm in the longitudinal direction, and the critical current density at 77K was measured. Further, as a comparison, the critical current density was similarly measured for a wire rod plastically processed without ultrasonic irradiation. Table 1 shows the results. In Table 1, the critical current density in the case where the distance between the electrode terminals is 1 cm is standardized as 1, and the critical current density is shown as a relative value.

表1 電極端子間 1cm 5cm 50cm 超音波照射 1 0.95 0.9 超音波未照射 1 0.8 0.5 表1から明らかなように、この発明に従い塑性加工の
直前で超音波照射したものは、超音波照射しないものに
比べ、電極端子間の距離を長くしても臨界電流密度の低
下の少ないことが確認された。
Table 1 Between the electrode terminals 1cm 5cm 50cm Ultrasonic irradiation 1 0.95 0.9 Ultrasonic non-irradiation 10.8 0.5 As is evident from Table 1, the ultrasonic irradiation immediately before plastic working according to the present invention is the one without ultrasonic irradiation. In comparison, it was confirmed that even when the distance between the electrode terminals was increased, the critical current density did not decrease much.

[発明の効果] 以上説明したように、この発明に従い塑性加工の直前
に超音波を照射することにより、内部の酸化物超電導体
またはその原料が互いに近接し合って緻密化するので、
従来よりも高い臨界電流密度を得ることができる。また
長手方向にわたって密度の均一な線材が得られるので、
従来よりも長手方向に沿って均一な線材を得ることがで
きる。したがって、この発明の製造方法は、高温超電導
ケーブルやマグネットなど、特に長尺の高温超電導線材
を使用する分野で有用である。
[Effects of the Invention] As described above, by irradiating ultrasonic waves immediately before plastic working according to the present invention, the internal oxide superconductors or the raw materials thereof become close to each other and are densified.
A higher critical current density than before can be obtained. Also, since a wire with a uniform density can be obtained in the longitudinal direction,
A more uniform wire can be obtained along the longitudinal direction than before. Therefore, the manufacturing method of the present invention is useful particularly in the field of using a long high-temperature superconducting wire, such as a high-temperature superconducting cable and a magnet.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明の一実施例を説明するための概略側
面図である。 第2図は、この発明に従い超音波照射して塑性加工した
ときの結晶粒子の状態を示す模式図である。 第3図は、超音波を照射せずに塑性加工したときの結晶
粒子の状態を示す模式図である。 図において、1は酸化物超電導体、2a,2bは圧延ロー
ラ、3は超音波発生器を示す。
FIG. 1 is a schematic side view for explaining one embodiment of the present invention. FIG. 2 is a schematic diagram showing a state of crystal grains when plastic processing is performed by irradiating ultrasonic waves according to the present invention. FIG. 3 is a schematic diagram showing a state of crystal grains when plastic working is performed without irradiating ultrasonic waves. In the figure, 1 is an oxide superconductor, 2a and 2b are rolling rollers, and 3 is an ultrasonic generator.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超電導体またはその原料を塑性加工
して線材化する酸化物超電導線材の製造方法において、 前記塑性加工の直前に前記酸化物超電導体またはその原
料に超音波を照射することを特徴とする、酸化物超電導
線材の製造方法。
1. A method for producing an oxide superconducting wire, which comprises forming a wire by plastically processing an oxide superconductor or a raw material thereof, comprising: irradiating the oxide superconductor or a raw material thereof with ultrasonic waves immediately before the plastic working. A method for producing an oxide superconducting wire, characterized in that:
【請求項2】前記酸化物超電導体またはその原料を金属
部材で包んだ形態で、または金属部材で挾んだ形態で塑
性加工する、請求項1に記載の酸化物超電導線材の製造
方法。
2. The method for producing an oxide superconducting wire according to claim 1, wherein said oxide superconductor or its raw material is plastically worked in a form wrapped by a metal member or sandwiched by a metal member.
【請求項3】金属部材が銀もしくは銀合金からなる、請
求項2に記載の酸化物超電導線材の製造方法。
3. The method for producing an oxide superconducting wire according to claim 2, wherein the metal member is made of silver or a silver alloy.
【請求項4】前記酸化物超電導体またはその原料が、多
結晶体または多粒子体からなる、請求項1に記載の酸化
物超電導線材の製造方法。
4. The method for producing an oxide superconducting wire according to claim 1, wherein said oxide superconductor or a raw material thereof comprises a polycrystal or a polyparticle.
【請求項5】前記金属部材を介して前記酸化物超電導体
またはその原料と接するように設けられる超音波発生器
により、前記酸化物超電導体またはその原料に超音波を
照射する、請求項2に記載の酸化物超電導線材の製造方
法。
5. The oxide superconductor or the raw material thereof is irradiated with ultrasonic waves by an ultrasonic generator provided so as to be in contact with the oxide superconductor or the raw material thereof via the metal member. The method for producing an oxide superconducting wire according to the above.
JP01289788A 1989-11-07 1989-11-07 Manufacturing method of oxide superconducting wire Expired - Fee Related JP3143903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01289788A JP3143903B2 (en) 1989-11-07 1989-11-07 Manufacturing method of oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01289788A JP3143903B2 (en) 1989-11-07 1989-11-07 Manufacturing method of oxide superconducting wire

Publications (2)

Publication Number Publication Date
JPH03152810A JPH03152810A (en) 1991-06-28
JP3143903B2 true JP3143903B2 (en) 2001-03-07

Family

ID=17747778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01289788A Expired - Fee Related JP3143903B2 (en) 1989-11-07 1989-11-07 Manufacturing method of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP3143903B2 (en)

Also Published As

Publication number Publication date
JPH03152810A (en) 1991-06-28

Similar Documents

Publication Publication Date Title
JPH04292819A (en) Manufacture of oxide superconductive wire
DE3880947T2 (en) Process for the production of an oxide superconductor without sheathing and an oxide superconductor produced by this process.
JPH04237910A (en) Manufacture of bismuth oxide superconducting wire rod
JP3143903B2 (en) Manufacturing method of oxide superconducting wire
EP0397943B1 (en) Method of producing a superconductive oxide cable and wire
JPH04292820A (en) Manufacture of oxide superconductive wire
JP3721392B2 (en) Manufacturing method of high-temperature superconducting wire
JPH01134822A (en) Manufacture of oxide superconductive wire
US5429791A (en) Silver-high temperature superconductor composite material manufactured based on powder method, and manufacturing method therefor
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JPH04337213A (en) Manufacture of multi-layer ceramic superconductor
JP3053411B2 (en) Manufacturing method of oxide superconducting wire
JPH06223650A (en) Manufacture of bi oxide superconducting wire
JPH06342607A (en) Manufacture of oxide superconductive wire rod
JP3109076B2 (en) Manufacturing method of oxide superconducting wire
JPH0353902A (en) Manufacture of oxide superconductive coil
SU1590051A3 (en) Method of producing continuous superconductor
DE3882871T2 (en) A method for producing an oxide superconducting conductor and an oxide superconducting conductor produced by this method.
JP2595309B2 (en) Manufacturing method of oxide superconducting wire
JP3062557B2 (en) Method for producing bismuth-based oxide superconductor
JPH09295813A (en) Oxide superconducting material, production of superconducting material and superconducting wire rod
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JPH0612929A (en) Manufacture of oxide superconductive wire rod
JPH05274933A (en) Manufacture of oxide superconducting wire material
JPH01128317A (en) Manufacture of superconductive wire material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees