JPH03241797A - Manufacture of magnetic shield body - Google Patents

Manufacture of magnetic shield body

Info

Publication number
JPH03241797A
JPH03241797A JP3714790A JP3714790A JPH03241797A JP H03241797 A JPH03241797 A JP H03241797A JP 3714790 A JP3714790 A JP 3714790A JP 3714790 A JP3714790 A JP 3714790A JP H03241797 A JPH03241797 A JP H03241797A
Authority
JP
Japan
Prior art keywords
cylinder
layer
linear expansion
expansion coefficient
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3714790A
Other languages
Japanese (ja)
Inventor
Mamoru Ishihara
守 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP3714790A priority Critical patent/JPH03241797A/en
Publication of JPH03241797A publication Critical patent/JPH03241797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To eliminate the problem of crack generated in production and at the same time enable shielding performance to be improved by allowing a linear expansion coefficient to be increased in an inner side second layer compared with that of an outer side second layer and by performing press treatment with working compression force. CONSTITUTION:By setting combination columns 1 and 2 to be an inner mold, setting a rubber column 3 to be an outer mold, filling an oxide superconductive powder 4 between them, performing pressing and then removing the rubber column mold 3, and then performing heat treatment, the oxide superconductive powder formed body is formed at an oxide superconductor 4'. On the other hand, a combination cylinder of a metal thin-film cylinder 5 is separately prepared at a ceramic cylinder 6 and is fit by pressing. At this time, a metal material which is of the same type as the metal thin-film cylinder 2 or that with a small difference in linear expansion coefficient is used for the metal thin-film cylinder 5 and a ceramic cylinder 6 with a smaller linear expansion coefficient than that of the ceramic cylinder 1 is selected, thus enabling a strong pressure to be applied to a superconductive coil without generating deformation or crack in a stably fixed state. Therefore, an intricate and high- performance magnetic shield body without any crack can be stably produced.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導体を用いた磁気シールド体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method of manufacturing a magnetic shield using an oxide superconductor.

(従来の技術) 従来、酸化物超電導体を用いて筒状の磁気シールド体を
作る方法としては、溶射法あるいは粉末法などがある。
(Prior Art) Conventionally, methods for making a cylindrical magnetic shield using an oxide superconductor include a thermal spraying method and a powder method.

溶射法はセラミックスまたは金属製筒状体の外側から、
酸化物超電導体を溶融し吹き付けた後、各種の熱処理を
繰り返すことにより製造する方法である。
Thermal spraying is done from the outside of a ceramic or metal cylindrical body.
This is a method of manufacturing by repeating various heat treatments after melting and spraying an oxide superconductor.

粉末法は酸化物超電導原料粉末を筒状に成形して、その
後、熱処理して筒状の磁気シールド体を製造する方法で
ある。
The powder method is a method in which oxide superconducting raw material powder is formed into a cylindrical shape and then heat treated to produce a cylindrical magnetic shielding body.

(発明が解決しようとする問題点) 上記の従来の磁気シールド体の製造方法のうち、溶射法
は溶射膜にムラが発生し易く、筒状の面全体を超電導化
する事は非常に困難である。
(Problems to be solved by the invention) Among the above-mentioned conventional methods for manufacturing magnetic shielding bodies, thermal spraying tends to cause unevenness in the sprayed film, and it is extremely difficult to make the entire cylindrical surface superconducting. be.

これに対して、粉末法は比較的容易に均一な超電導膜を
製作できる。この粉末法の欠点は、熱処理時及び室温以
下への冷却時にワレが発生し易いことである。そこで、
一般には超電導円筒の肉厚を、通常は数mm以上に、厚
くしたり、熱処理の間に加圧工程を設けてCIP (冷
間静水圧加圧)等で組織を緻密化させたりすることで超
電導体のワレを防止している。しかし、超電導円筒の肉
厚を増すことは逆に緻密化を阻害することになり、臨界
電流密度が下がり、磁気シールド性能が低下することに
なる。また、中間加圧も圧力のかけ方によってはワレを
助長する場合があり、安定に製造することは難しい。
In contrast, the powder method can relatively easily produce a uniform superconducting film. A drawback of this powder method is that cracks are likely to occur during heat treatment and during cooling to room temperature or below. Therefore,
In general, the thickness of the superconducting cylinder is increased, usually several millimeters or more, or a pressure step is provided during heat treatment to densify the structure using CIP (cold isostatic pressing), etc. Prevents cracking of the superconductor. However, increasing the thickness of the superconducting cylinder will conversely impede densification, lowering the critical current density and lowering the magnetic shielding performance. Additionally, intermediate pressure may also promote cracking depending on how pressure is applied, making stable production difficult.

本発明は、酸化物超電導体を用いた磁気シールド円筒を
粉末法によって製造する場合に発生するワレの問題を解
決し、同時にシールド性能を向上させることを目的とし
ている。
The present invention aims to solve the problem of cracks that occur when manufacturing a magnetic shield cylinder using an oxide superconductor by a powder method, and at the same time improve shielding performance.

[発明の構成] (問題点を解決するための手段) 本発明は、上記問題点を解決するために、筒状の酸化物
超電導材料の外側第1層を金属筒、最外層の第2層をセ
ラミックス筒とし、内側第1層を金属筒、最内層の第2
層をセラミックスの筒または柱とした構造で、かつ外側
第2層の線膨張係数は内側第2層の線膨張係数より小さ
なものとした組合せ体を熱処理する。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides that the first outer layer of the cylindrical oxide superconducting material is a metal tube, and the second outermost layer is a metal cylinder. is a ceramic tube, the inner first layer is a metal tube, and the innermost layer is a second layer.
A combination body having a structure in which the layers are ceramic cylinders or pillars, and in which the linear expansion coefficient of the outer second layer is smaller than that of the inner second layer, is heat-treated.

(作用) 上記のような構造の組合せ体を加熱すると、内側第2層
は外側第2層よりも線膨張係数が大きいために、内側第
2層と外側第2層の間に圧縮力が働く。この圧縮力によ
り内側第2層と外側第2層の間に挟まれた酸化物超電導
材料が加熱処理とともに加圧処理される。
(Function) When a combination of the above structures is heated, a compressive force acts between the inner second layer and the outer second layer because the inner second layer has a larger coefficient of linear expansion than the outer second layer. . Due to this compressive force, the oxide superconducting material sandwiched between the inner second layer and the outer second layer is subjected to heat treatment and pressure treatment.

本発明で使用する内枠筒状体および外枠筒状体は上記の
線膨張係数の条件の他に強度が必要とされる。セラミッ
クスは適当な材料の一つである。
The inner frame cylindrical body and the outer frame cylindrical body used in the present invention are required to have strength in addition to the above-mentioned coefficient of linear expansion. Ceramics are one suitable material.

例えば、Si3N4.5iC1A1203、Zr02(
含むY2O3)、MgO等が使用可能である。これらの
材料の線膨張係数の順を下記の不等式に示す。
For example, Si3N4.5iC1A1203, Zr02(
Y2O3), MgO, etc. can be used. The order of linear expansion coefficients of these materials is shown in the inequality below.

S i3N4<S i C<A 1203<Zr02(
Y2O3を含む)<MgOこれらの材料を、線膨張係数
に応じて適宜組み合わせて用いればよい。
S i3N4<S i C<A 1203<Zr02(
(including Y2O3)<MgO These materials may be used in appropriate combinations depending on their linear expansion coefficients.

(実施例) 以下に本発明の超電導コイル製造方法の一実施例を図面
に基づいて説明する。
(Example) An example of the superconducting coil manufacturing method of the present invention will be described below based on the drawings.

■セラミックス円柱1の外側に金属製薄肉円筒23 を焼バメまたは冷シバメまたは圧入により嵌合する。こ
こで使用される金属としては、例えば、AulAg1C
u1Ni1Feまたはその合金などが用いられる。また
、セラミックス円柱1のかわりにセラミックス円筒を用
いても良い。
■A thin metal cylinder 23 is fitted to the outside of the ceramic cylinder 1 by shrink fitting, cold fitting, or press fitting. The metal used here includes, for example, AulAg1C
u1Ni1Fe or an alloy thereof is used. Moreover, a ceramic cylinder may be used instead of the ceramic cylinder 1.

■第1図に示すように、この組合せ円柱を内型とし、ゴ
ム製円筒3を外型として、その間に酸化物超電導粉末(
原料粉または仮焼粉)4を充填する。
■As shown in Figure 1, this combined cylinder serves as the inner mold, the rubber cylinder 3 serves as the outer mold, and oxide superconducting powder (
Fill with raw material powder or calcined powder) 4.

そしてこれに冷間静水圧加圧(CI P)を加え、酸化
物超電導粉末4を加圧成形する。成形後には、スプリン
グバックによりゴム製円筒型は容易に外れ、金属製薄肉
円筒2の外側に酸化物超電導粉末の成形体が形成される
Then, cold isostatic pressing (CIP) is applied to this to form the oxide superconducting powder 4 under pressure. After molding, the rubber cylindrical mold is easily removed due to springback, and a molded body of oxide superconducting powder is formed on the outside of the thin metal cylinder 2.

■次にこれを熱処理することにより、酸化物超電導粉末
成形体は焼結体または部分溶融体または溶融凝固体の酸
化物超電導体4′が形成される。
(2) Next, by heat-treating this, the oxide superconducting powder compact forms an oxide superconductor 4' in the form of a sintered body, a partially melted body, or a molten solidified body.

■一方、第3図のように、セラミックス円筒6に金属製
薄肉円筒5を焼バメまたは冷シバメまたは圧入した組合
せ円筒を別途準備し、これを第2図の組合せ円柱の外側
に焼バメまたは冷シバメまたは圧入により嵌合させる。
■On the other hand, as shown in Fig. 3, a combination cylinder is separately prepared in which the thin metal cylinder 5 is shrink-fitted, cold-sealed, or press-fitted into the ceramic cylinder 6, and this is shrunk-fitted or cold-fitted to the outside of the combination cylinder shown in Fig. 2. Fit by crimping or press fitting.

第4図は嵌合させた状態を示す図である。FIG. 4 is a diagram showing a fitted state.

なお、金属製薄肉円筒5は金属製薄肉円筒2と同一種な
いしは線膨張係数の差が小さい金属材料が使用される。
Note that the thin metal cylinder 5 is made of the same type as the thin metal cylinder 2 or a metal material with a small difference in coefficient of linear expansion.

また、セラミックス円筒6は線膨張係数がセラミックス
円柱1のそれよりも小さいものを選定する。セラミック
スとしては高温強度の高い構造用セラミックス、例えば
SiC,5i3N41 A 1203. Z r 02
 (含むY2O3)+ MgOなどのが使用できる。
Further, the ceramic cylinder 6 is selected to have a coefficient of linear expansion smaller than that of the ceramic cylinder 1. Ceramics include structural ceramics with high high temperature strength, such as SiC, 5i3N41 A 1203. Z r 02
(including Y2O3) + MgO, etc. can be used.

■これを酸化物超電導体の熱処理温度、通常は800℃
以上、で熱処理する。この時、セラミックス円筒6とセ
ラミックス円柱1の線膨張係数の差により、熱処理また
は昇降温時に酸化物超電導粉末の酸化物超電導体4′は
圧縮加圧され、組織が緻密化する。
■This is the heat treatment temperature for oxide superconductors, usually 800℃.
Heat treatment is performed as above. At this time, due to the difference in coefficient of linear expansion between the ceramic cylinder 6 and the ceramic cylinder 1, the oxide superconductor 4' of the oxide superconductor powder is compressed during heat treatment or temperature raising/lowering, and its structure becomes dense.

■冷却後にセラミックス円柱1を引き抜く。さらに酸化
物超電導体4′を緻密化するためには、第5図に示すよ
うに、セラミックス円柱1より外径の大きいセラミック
ス円筒7を焼バメまたは冷シバメまたは圧入によって組
み込み、再度、■の処理を施せばよい。
■After cooling, pull out the ceramic cylinder 1. In order to further densify the oxide superconductor 4', as shown in FIG. All you have to do is

■加工処理を終えた組合せ円筒体を室温以下に冷却する
ことにより、外側のセラミックス円筒6が抜け、第6図
のごとく、金属で包まれた薄肉の磁気シールド円筒が完
成する。
(2) By cooling the assembled cylindrical body after processing to below room temperature, the outer ceramic cylinder 6 is removed, and a thin magnetic shield cylinder wrapped in metal is completed as shown in FIG.

なお、外側のセラミックス円筒、内側のセラミックス円
筒の場合は最終的に残しておいてもよい。
In addition, in the case of the outer ceramic cylinder and the inner ceramic cylinder, they may be left in the final state.

[発明の効果コ 本発明の製造方法により、安定に固定した状態で、変形
や割れを発生させることなく超電導コイルに対して強い
圧力をかけることができるため、ワレの発生のない、緻
密で高性能な磁気シールド体が安定的に製造できる効果
がある。
[Effects of the Invention] The manufacturing method of the present invention makes it possible to apply strong pressure to the superconducting coil while it is stably fixed without causing deformation or cracking. This has the effect of stably manufacturing a high-performance magnetic shield body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は本発明の製造方法の一例を示す説明図
である。 1・・・セラミックス円柱、2,5・・・金属製円筒、
3・・・ゴム製円筒、4・・・酸化物超電導粉末、4′
・・・酸化物超電導体、6.7・・・セラミックス円第
3図 第4図 第5図 第6図
FIGS. 1 to 6 are explanatory diagrams showing an example of the manufacturing method of the present invention. 1... Ceramic cylinder, 2, 5... Metal cylinder,
3... Rubber cylinder, 4... Oxide superconducting powder, 4'
...Oxide superconductor, 6.7... Ceramic circle Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)酸化物超電導材料を用いて磁気シールド体を製造
する方法において、酸化物超電導材料の外側第1層を金
属筒、最外層の第2層をセラミックス筒とし、内側第1
層を金属筒、最内層の第2層をセラミックス筒または柱
とした構造で、かつ前記内側第2層の線膨張係数は前記
外側第2層の線膨張係数より大きなものとした組合せ体
を熱処理する工程を含むことを特徴とする磁気シールド
体の製造方法。
(1) In a method for manufacturing a magnetic shield using an oxide superconducting material, the first outer layer of the oxide superconducting material is a metal tube, the second outermost layer is a ceramic tube, and the inner first layer is a metal tube.
Heat treatment of a combination body having a structure in which the layer is a metal tube and the innermost second layer is a ceramic tube or column, and the linear expansion coefficient of the inner second layer is larger than the linear expansion coefficient of the outer second layer. A method for manufacturing a magnetic shielding body, comprising the step of:
JP3714790A 1990-02-20 1990-02-20 Manufacture of magnetic shield body Pending JPH03241797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3714790A JPH03241797A (en) 1990-02-20 1990-02-20 Manufacture of magnetic shield body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3714790A JPH03241797A (en) 1990-02-20 1990-02-20 Manufacture of magnetic shield body

Publications (1)

Publication Number Publication Date
JPH03241797A true JPH03241797A (en) 1991-10-28

Family

ID=12489500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3714790A Pending JPH03241797A (en) 1990-02-20 1990-02-20 Manufacture of magnetic shield body

Country Status (1)

Country Link
JP (1) JPH03241797A (en)

Similar Documents

Publication Publication Date Title
JP2018145528A (en) Thermal spray molding
JPH03241797A (en) Manufacture of magnetic shield body
JPH03241706A (en) Manufacture of superconducting coil
CN110386823A (en) Preparation method based on selective laser sintering ceramic-based complex structural member
JP2005079511A5 (en)
JPH06318412A (en) Manufacture of oxide superconducting molded body
JPH03241722A (en) Manufacture of oxide superconducting coil
JPH046163A (en) Production of carrier consisting of aluminium nitride
WO2022095111A1 (en) Manufacturing method for mandrel part, mandrel part, and textile machinery applying same
JP3088830B2 (en) Reforming method of oxide superconductor molded body
JP3765694B2 (en) Cemented carbide sleeve roll
JPS63166954A (en) Method for forming ceramic member
JPH03122061A (en) Production of oxide superconductive coil
RU1557950C (en) Method of production of superconducting ceramics on base of barium cuprate
JPH02129812A (en) Manufacture of ceramic superconductor product
CN109365824A (en) A kind of preparation method of 6.5wt% high-silicon electrical steel thin-walled hollow tubing
JPH01149905A (en) Manufacture of powder sintered member
JP2021155807A (en) Antioxidation alloy, and production method of antioxidation alloy
JPH04104970A (en) Bonding or mending oxide superconductor
JPH11300459A (en) Sleeve for die casting machine
JP2001020001A (en) Method for sintering powder compacted body
JPH03247552A (en) Production of oxide superconductor
JPS6299451A (en) Manufacture of heat insulating piston
JPH0489366A (en) Production of functionally gradient material
JPH0446064A (en) Production of ceramics and acid treating apparatus therefor