JPH0489366A - Production of functionally gradient material - Google Patents
Production of functionally gradient materialInfo
- Publication number
- JPH0489366A JPH0489366A JP2204617A JP20461790A JPH0489366A JP H0489366 A JPH0489366 A JP H0489366A JP 2204617 A JP2204617 A JP 2204617A JP 20461790 A JP20461790 A JP 20461790A JP H0489366 A JPH0489366 A JP H0489366A
- Authority
- JP
- Japan
- Prior art keywords
- mixture
- mixing
- heating
- temperature
- heated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000004544 sputter deposition Methods 0.000 claims abstract description 6
- 239000000126 substance Substances 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 77
- 238000004093 laser heating Methods 0.000 abstract description 7
- 230000006866 deterioration Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Laminated Bodies (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、傾斜機能材料の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a functionally graded material.
傾斜機能材料は一面から他面にかけて組成勾配をもつ、
機能が傾斜した例えば板状の材料であり、前記−面と前
記他面との間に連続的あるいは段階的に組成が変化する
層が介在している。Functionally graded materials have a composition gradient from one side to the other.
It is, for example, a plate-shaped material with graded functions, and a layer whose composition changes continuously or stepwise is interposed between the negative side and the other side.
その製造方法としてはPVD C池野:第2回傾斜機
能材料に関するシンポジウム予稿集、(1988) P
I3)及びCVO(佐々木その他:第3回傾斜機能材料
シンポジウム講演集、(1989) P61)を用いて
組成比を連続的に変化させる方法があるが、厚みは最大
で21TII11程度である。The manufacturing method is PVD. C. Ikeno: Proceedings of the 2nd Symposium on Functional Gradient Materials, (1988) P
There is a method of continuously changing the composition ratio using I3) and CVO (Sasaki et al.: Proceedings of the 3rd Functionally Gradient Materials Symposium, (1989) P61), but the maximum thickness is about 21TII11.
厚み数肛程度の傾斜機能材料を製造する方法としては以
下の例がある。川崎ら〔第3回傾斜機能材料シンポジウ
ム講演集、(1989) Pd2)は、両面が夫々ジル
コニア及びステンレスであり、その両面間にジルコニア
及びステンレス夫々の粉末の混合比を段階的に変えた混
合物を積層し、成形、焼結を行い、傾斜機能材料を製造
した。また堤〔第2回傾斜機能材料に関するシンポジウ
ム予稿集、(1988) P39)はMo粉末及びSi
とSiJ、との混合粉末(混合比6:4)の混合比を段
階的に変えて容器内に積層充填し、成形、焼結を行い製
造した。Examples of methods for manufacturing a functionally gradient material having a thickness of several inches are as follows. Kawasaki et. A functionally gradient material was produced by laminating, molding, and sintering. Furthermore, Tsutsumi [Proceedings of the 2nd Symposium on Functionally Gradient Materials, (1988) P39] reported that Mo powder and Si
A mixed powder of SiJ and SiJ (mixing ratio: 6:4) was stacked and filled into a container while changing the mixing ratio stepwise, and the mixture was then molded and sintered.
前述の堤の製造方法では焼結による混合体の寸法変化で
残留応力が生じ、亀裂が生じた。川崎らの製造方法では
最適設計により亀裂の発生、混合体の界面の剥離を防止
することができたが、その場合でも計算により板厚方向
に200MPa程度の残留応力が生じていることが示さ
れた。このように残留応力があると混合体の界面強度が
低下する虞れがある。In the above-described embankment manufacturing method, residual stress was generated due to dimensional changes in the mixture due to sintering, resulting in cracks. Kawasaki et al.'s manufacturing method was able to prevent the occurrence of cracks and peeling of the interface of the mixture through optimal design, but calculations showed that even in that case, residual stress of approximately 200 MPa was generated in the thickness direction. Ta. If such residual stress exists, there is a risk that the interfacial strength of the mixture will decrease.
また、混合比が段階的に変わる粉末混合物を焼結すると
き、あるいは既に焼結しであるものを接合するときには
全体を一様に加熱するが、混合体によってはその加熱温
度が高過ぎることがあり、好ましくない化学変化が生じ
、混合体の特性が損なわれることがあった。例えば成形
したものとして溶射単体を用いた場合、溶射特有のボイ
ドが消滅してしまい都合が悪い。Also, when sintering a powder mixture with a stepwise change in mixing ratio, or when joining already sintered materials, the whole is heated uniformly, but depending on the mixture, the heating temperature may be too high. However, undesirable chemical changes could occur and the properties of the mixture could be impaired. For example, if thermal spraying alone is used as a molded product, voids peculiar to thermal spraying will disappear, which is inconvenient.
本発明は斯かる事情に鑑みてなされたものであり、成形
された混合体の表面を、高真空、常温下でスパッタリン
グし、予め加熱してから接合することにより、界面強度
が高く、不必要な加熱を受けていないため特性が損なわ
れることな(、使用時にも残留応力が作用しない傾斜機
能材料を提供することを目的とする。The present invention has been made in view of the above circumstances, and by sputtering the surface of the molded mixture at room temperature in a high vacuum and heating it in advance before joining, the interfacial strength is high and unnecessary The purpose of the present invention is to provide a functionally graded material whose properties are not impaired because it is not subjected to severe heating (and which is free from residual stress during use).
本発明に係る傾斜機能材料の製造方法は、厚み方向に複
数種の物質の混合体複数が積層されており、その混合比
が段階的に変化する傾斜機能材料を製造する方法におい
て、成形された混合体の表面を、高真空、常温下でスパ
ッタリングし、予め加熱して順次的に接合することを特
徴とする。The method for producing a functionally graded material according to the present invention is a method for producing a functionally graded material in which a plurality of mixtures of a plurality of substances are laminated in the thickness direction, and the mixing ratio thereof changes stepwise. It is characterized in that the surface of the mixture is sputtered in a high vacuum at room temperature, heated in advance, and bonded sequentially.
〔作用]
常温接合法は高真空中で接合する表面をスパッタリング
するので、表面が清浄化され、また表面層原子が活性化
されるから常温で容易に接合することができる。従って
全体−様の高温加熱を行わず接合できるので傾斜機能材
料を構成する各混合体の特性が損なわれることがない。[Function] In the room temperature bonding method, the surfaces to be bonded are sputtered in a high vacuum, so the surfaces are cleaned and surface layer atoms are activated, so bonding can be easily performed at room temperature. Therefore, the properties of each mixture constituting the functionally-gradient material are not impaired because it is possible to join without heating the whole body to a high temperature.
そして接合した混合体の界面の強度が大きくなる。The strength of the interface of the bonded mixture increases.
また、傾斜機能材料の実際の使用温度において残留応力
が作用しないように、一方の混合体を加熱すべき温度を
決定し、該混合体を加熱してから接合しているので残留
応力の発生を防止することができる。また、その時の加
熱温度は焼結時の温度はもとより実際に使用する温度よ
りも低く、接合する界面を酸化物等の生成により汚すこ
とはない。In addition, in order to prevent residual stress from acting at the actual operating temperature of the functionally graded material, the temperature at which one of the mixtures should be heated is determined, and the mixture is heated before joining, which prevents the generation of residual stress. It can be prevented. Furthermore, the heating temperature at this time is lower than the temperature during sintering as well as the temperature at which it is actually used, so that the interface to be joined will not be contaminated by the formation of oxides or the like.
[実施例] 以下、本発明を具体的に説明する。[Example] The present invention will be explained in detail below.
隣り合う混合体の混合比の変化率は10%以下にし、1
0段階以上に混合比を変化させた各混合体を所要の大き
さ及び厚みに成形する。このとき、接合時の密着面積を
大きくするため、各混合体の機械研磨及び電解研磨を行
い、圧縮残留応力を除去し、また平坦度を高める。The rate of change in the mixing ratio of adjacent mixtures should be 10% or less, and 1
Each mixture in which the mixing ratio is changed over 0 stages is molded into a desired size and thickness. At this time, in order to increase the adhesion area during bonding, each mixture is subjected to mechanical polishing and electrolytic polishing to remove compressive residual stress and improve flatness.
第1図は本発明方法の実施状態を示す模式図である。図
中1,2は真空チャンバー内に設置された混合体保持台
であり、その上面には混合体と大きさが略等しい凹所が
設けられており、ねし等の固定部材により該凹所に混合
体を保持できるように構成されている。FIG. 1 is a schematic diagram showing the implementation state of the method of the present invention. In the figure, reference numerals 1 and 2 are mixture holding stands installed in the vacuum chamber, and a recess approximately the same size as the mixture is provided on the upper surface of the stand, and the recess is held by a fixing member such as a screw. It is constructed so that it can hold the mixture at
混合体保持台1と2とは蝶番構造を有した回転導入端子
3により接続されている。そして混合体保持台1,2に
は夫々図示しない回転棒が接続されており、該回転棒は
真空チャンバー外に引き出されている。従って前記回転
導入端子3及び前記回転棒により、混合体保持台1.2
を夫々の凹所が対向するように回転させることができる
。The mixture holding tables 1 and 2 are connected by a rotation introduction terminal 3 having a hinge structure. Rotating rods (not shown) are connected to the mixture holding tables 1 and 2, respectively, and the rotating rods are drawn out of the vacuum chamber. Therefore, the rotation introduction terminal 3 and the rotation rod allow the mixture holding table 1.2
can be rotated so that the respective recesses face each other.
真空チャンバーの上部にはAr原子ビーム発生器4.4
が移動可能に設けられており、混合体保持台1,2が夫
々の凹所を上に向けるようにして固定されているとき、
混合体保持台1.2の上方に移動される。At the top of the vacuum chamber is an Ar atomic beam generator 4.4.
is movably provided, and when the mixture holding tables 1 and 2 are fixed with their respective recesses facing upward,
It is moved above the mixture holding table 1.2.
また、レーザー加熱源5も真空チャンバーの上部に移動
可能に設けられており、混合体保持台2がその凹所を上
に向けるようにして固定されているとき、混合体保持台
2の上方に移動される。A laser heating source 5 is also movably provided at the top of the vacuum chamber, and when the mixture holder 2 is fixed with its recess facing upward, the laser heating source 5 is provided above the mixture holder 2. will be moved.
このように構成された装置を使用して接合する場合は、
第1図(イ)に示したように、混合体保持台1及び2を
夫々の凹所が上を向くように固定し、混合体保持台1の
凹所に混合体11を、混合体保持台2の凹所に混合体1
2を保持させる。When joining using a device configured in this way,
As shown in FIG. 1 (a), fix the mixture holding tables 1 and 2 with their respective recesses facing upward, and place the mixture 11 in the recess of the mixture holding table 1. Mixture 1 in the recess of stand 2
Hold 2.
そして真空チャンバー内を高真空(〜107Torr)
にする。このとき、Ar原子ビーム発生器4.4を混合
体保持台1及び2の上方に移動させ、混合体保持台1に
保持されている混合体11の上面及び混合体保持台2に
保持されている混合体12の上面に計原子ビームを照射
し、スパッタリングを行う。Then, the inside of the vacuum chamber is under high vacuum (~107 Torr).
Make it. At this time, the Ar atomic beam generator 4.4 is moved above the mixture holders 1 and 2, and the upper surface of the mixture 11 held on the mixture holder 1 and the mixture 11 held on the mixture holder 2 are moved. The upper surface of the mixture 12 is irradiated with an atomic beam to perform sputtering.
次に第1図(ロ)に示したように混合体保持台2の上方
にレーザー加熱源5を移動させ、混合体保持台2に保持
されている混合体12にレーザーを照射し、加熱する。Next, as shown in FIG. 1(B), the laser heating source 5 is moved above the mixture holding table 2, and the mixture 12 held on the mixture holding table 2 is irradiated with the laser and heated. .
加熱後、即座に第1図(ハ)に示したように混合体保持
台2を混合体保持台1に合わせるように回転させ、混合
体11と混合体12とを接合させ軽く加圧する。Immediately after heating, the mixture holder 2 is rotated to match the mixture holder 1 as shown in FIG. 1(c), and the mixture 11 and the mixture 12 are joined together and lightly pressurized.
そして第1図(ニ)に示したように次に接合する混合体
13を混合体保持台2上に保持し、上述の工程を繰り返
す。Then, as shown in FIG. 1(d), the mixture 13 to be joined next is held on the mixture holder 2, and the above-mentioned steps are repeated.
第1図(ロ)に示した加熱については、使用温度におけ
る残留応力の作用を防止するため本来は接合する両方の
混合体を使用温度まで加熱することが望ましいが、高温
に加熱すると高真空状態においても接合界面が汚れるの
で好ましくない。Regarding the heating shown in Figure 1 (b), it is desirable to heat both mixtures to be joined to the working temperature in order to prevent the effects of residual stress at the working temperature, but if heated to a high temperature, a high vacuum state will occur. This is also undesirable because the bonding interface becomes dirty.
そこで本発明では一方の混合体を加熱することにしてい
るが、その加熱温度は以下のようにして決定する。Therefore, in the present invention, one of the mixtures is heated, and the heating temperature is determined as follows.
第2図は2つの材料A、Bの長さの変化を示した図であ
り、(イ)は常温における長さを示した図であり、(ロ
)は使用温度における長さを示した図である。Figure 2 is a diagram showing changes in the length of two materials A and B, (a) is a diagram showing the length at room temperature, and (b) is a diagram showing the length at operating temperature. It is.
第2回(イ)において、材料A、Bの長さは夫々a、b
である。2つの材料A、Bの線膨張率を夫々α、β(α
〉β)とすると、第2図C口)に示した使用温度(常温
+ΔT、)では材料A、 Bの長さは夫々a(1+α
・ΔT、、)、b(1+β・ΔT、)である。In the second lesson (a), the lengths of materials A and B are a and b, respectively.
It is. Let the coefficients of linear expansion of the two materials A and B be α and β(α
〉β), then at the operating temperature (room temperature + ΔT) shown in Figure 2 (C), the lengths of materials A and B are a(1+α).
・ΔT, ,), b(1+β・ΔT,).
この材料A、Bを接合したとき使用温度で材料A、Bの
長さが等しいとすると、a(1+α・ΔTr)−b(1
+β・ΔT、)であるから次式(1)%式%
ここでAのみを加熱してAの長さをBの長さbに等しく
させることにし、この加熱温度をΔTとすると次式(2
)が成立する。When these materials A and B are joined, assuming that the lengths of materials A and B are equal at the operating temperature, a(1+α・ΔTr)−b(1
+β・ΔT, ), so the following formula (1) % formula %Here, we will heat only A to make the length of A equal to the length b of B, and if this heating temperature is ΔT, then the following formula ( 2
) holds true.
a(1+α・ΔT)−す
式(+)、 (2)よりa / bを消去するとΔTは
で表される。a(1+α・ΔT)−S formula (+), by eliminating a/b from (2), ΔT is expressed as.
例えばジルコニアセラミックスZrO□・3YzO3と
ステンレス鋼とを、ZrO□・3Y20:lの重量成分
比が100%から0%まで10%きざみに変化するよう
に混合体を夫々配合し、これらを接合して温度500°
Cで使用する場合、ZrO□・3Y203、ステンレス
鋼の線膨張係数は夫々I Xl0−5に一’ 1.3
X10−5にであることを考慮し、弐(3)より各混合
体を接合するときの加熱すべき温度ΔTを求めると八T
はいづれの混合体接合においても約10゛Cである。For example, a mixture of zirconia ceramics ZrO□・3YzO3 and stainless steel is mixed so that the weight component ratio of ZrO□・3Y20:l changes from 100% to 0% in 10% increments, and these are joined. temperature 500°
When used in C, the coefficient of linear expansion of ZrO□・3Y203 and stainless steel is 1.3 to IXl0-5, respectively.
Considering that X10-5, the temperature ΔT at which each mixture should be heated when bonding is calculated from 2 (3).
The temperature is about 10°C for both mixture junctions.
従って接合する前に、ステンレス鋼の重量成分比がより
大きい方の混合体を常温より10°C高い温度で加熱す
ればよい。Therefore, before joining, the mixture having a higher weight component ratio of stainless steel may be heated to a temperature 10° C. higher than room temperature.
以上のようにして一方の混合体を低温で加熱することに
より、高温である使用温度において残留応力が作用する
ことを防止できる。By heating one of the mixtures at a low temperature as described above, it is possible to prevent residual stress from acting at high operating temperatures.
[数値例〕
以下にステンレス鋼5llS316とジルコニアセラミ
、クスZr0z・3Y20:lとを使用して傾斜機能材
料を製造した具体例を示す。[Numerical Example] A specific example in which a functionally gradient material was manufactured using stainless steel 511S316, zirconia ceramic, and Cuc Zr0z.3Y20:1 will be shown below.
平均粒径0,18μmのZrO□・3Y203粉末と平
均粒径3μmのステンレス調粉末とを、ZrO□・3Y
ZO3の重量成分比が100%から0%まで10%きざ
みに変化するように配合し、この混合体夫々を100t
’lPaで金型成形したのち、200MPaでコールド
アイソスタティック成形した。このときZrO□・3Y
20:l純品、ステンレス鋼純品の厚みを夫々2,5画
にし、中間の混合体の厚みを夫々1.5卸にする。ZrO□・3Y203 powder with an average particle size of 0.18 μm and stainless steel-like powder with an average particle size of 3 μm were mixed into ZrO□・3Y
The weight component ratio of ZO3 was mixed in 10% increments from 100% to 0%, and 100 tons of each mixture was mixed.
After molding with a mold at 1Pa, cold isostatic molding was performed at 200MPa. At this time, ZrO□・3Y
The thickness of the 20:1 pure product and the pure stainless steel product are 2 and 5 strokes, respectively, and the thickness of the intermediate mixture is 1.5 strokes, respectively.
次に各混合体の表面を平坦化するため、機械研磨及び電
解研磨を行った。Next, mechanical polishing and electrolytic polishing were performed to flatten the surface of each mixture.
そして接合する混合体を第1図に示した真空チャンバー
内の混合体保持台1.2に保持させた。The mixture to be bonded was then held on a mixture holder 1.2 in the vacuum chamber shown in FIG.
このときZrO□・3Y203の重量成分比の大きい方
から順次混合体保持台1.2に保持させる。At this time, the ZrO□.3Y203 mixtures are held on the mixture holding table 1.2 in order of increasing weight component ratio.
真空チャンバー内を10− ’Torrの圧力にし、混
合体の接合する側の表面を夫々Ar原子ビーム発生器4
.4によりスパッタリングした。The pressure inside the vacuum chamber was set to 10-'Torr, and the surface of the mixture to be joined was heated with an Ar atomic beam generator 4.
.. Sputtering was performed using 4.
次にステンレス鍜の重量成分比がより太き(、混合体保
持台2に保持されている混合体にレーザー加熱源5より
赤外線レーザーを照射し、常温より20〜30°C高い
温度に加熱した。このとき前述の計算により求めた加熱
温度は常温よりlo’c高い温度であったが、実際に接
合するときは加熱しない方の混合体がその前の混合体接
合により長さが少し長くなっているので、これを考慮し
、常温より20〜30°C高い温度に設定した。そして
加熱後直ちに接合し、略10 kg f / mm ”
の加圧を略5分行った。Next, the mixture held on the mixture holding table 2 was irradiated with an infrared laser from the laser heating source 5 and heated to a temperature 20 to 30°C higher than room temperature. At this time, the heating temperature determined by the above calculation was lo'c higher than room temperature, but when actually joining, the length of the mixture that was not heated was slightly longer due to the joining of the previous mixture. Taking this into consideration, we set the temperature to 20 to 30°C higher than room temperature.Then, we bonded immediately after heating, and the bonding temperature was approximately 10 kg f/mm.
The pressure was applied for approximately 5 minutes.
接合した混合体が充分冷却したら次に接合する混合体を
混合体保持台2に保持し、上述の操作を繰り返す。After the joined mixture has sufficiently cooled, the next mixture to be joined is held on the mixture holding table 2, and the above-mentioned operation is repeated.
比較例としてスパッタリング後、レーザー加熱源5によ
る加熱を行わず接合を行った。As a comparative example, bonding was performed without heating by the laser heating source 5 after sputtering.
さらに、従来方法による接合も行った。ZrO□・3Y
2(h粉末とステンレス鋼粉末とを、Zr(h ・3Y
zOtの重量成分比が100%から0%まで10%きざ
みに変化するように配合して順次積層し、全体を100
MPaで金型成形したのち200MPaでコールドアイ
ソスタティック成形した。そしてI X 10− ’T
orrの圧力下、1350°Cで1時間焼結を行った。Furthermore, bonding was also performed using a conventional method. ZrO□・3Y
2(h powder and stainless steel powder, Zr(h ・3Y
The weight component ratio of zOt is mixed in 10% increments from 100% to 0% and laminated sequentially, making the whole 100%
After molding with a mold at MPa, cold isostatic molding was performed at 200 MPa. and I X 10-'T
Sintering was carried out at 1350° C. for 1 hour under a pressure of orr.
実施例の方法、比較例の方法及び従来方法により製造し
た傾斜機能材料の引張(密着)強度を評価するため、引
張試験を行った。第3図に引張試験の実施状態を示す縦
断面図を示す。A tensile test was conducted to evaluate the tensile (adhesion) strength of the functionally gradient materials produced by the method of the example, the method of the comparative example, and the conventional method. FIG. 3 shows a longitudinal sectional view showing the state in which the tensile test was carried out.
第3図中21.21は治具であり、治具21,21の間
には接着剤層23.23を介し、試験材料22が挟持さ
れている。この試験では治具21,21により試験材料
22を上下方向に引っ張り、試験材料が破断したときの
圧力を求める。この試験を行った結果を第4図に示す。In FIG. 3, reference numeral 21.21 indicates a jig, and the test material 22 is held between the jigs 21, 21 with an adhesive layer 23.23 interposed therebetween. In this test, the test material 22 is pulled vertically using jigs 21, 21, and the pressure at which the test material breaks is determined. The results of this test are shown in FIG.
第4図より実施例の方法により製造した傾斜機能材料は
従来方法により製造した材料と比較して引張強度が向上
しており、実施例の方法により製造した材料は室温では
比較例の方法により製造した材料より引張強度が劣るが
、300°C及び500°Cの使用温度では優れている
ことがわかる。従って、本発明方法により製造した傾斜
機能材料は使用温度において残留応力の発生が防止され
、それゆえに高い界面強度が得られていることが証明さ
れた。Figure 4 shows that the functionally graded material manufactured by the method of the example has improved tensile strength compared to the material manufactured by the conventional method, and the material manufactured by the method of the example is different from the material manufactured by the method of the comparative example at room temperature. It can be seen that although the tensile strength is inferior to that of the other materials, it is superior at the operating temperatures of 300°C and 500°C. Therefore, it has been proven that the functionally graded material produced by the method of the present invention prevents the generation of residual stress at the operating temperature and therefore has high interfacial strength.
前述の実施例では傾斜機能材料として板状である材料を
製造する場合につき説明しているが、何らこれに限定さ
れるものではなく、円柱状など他の形状の材料にも適用
し得ることは言うまでもない。In the above-mentioned example, the case where a plate-shaped material is manufactured as a functionally graded material is explained, but the present invention is not limited to this in any way, and may be applied to materials of other shapes such as a columnar shape. Needless to say.
〔効果]
以上の如く本発明方法により製造した傾斜機能材料は成
形した混合体の表面を高真空、常温下でスパッタリング
し、予め加熱してから接合しているので、接合した混合
体の界面の強度が高く、高温の加熱を受けていないため
、各混合体の特性が損なわれていない。また実際に使用
する温度において残留応力が作用しない等、優れた効果
を奏するものである。[Effects] As described above, the functionally graded material produced by the method of the present invention is sputtered on the surface of the molded mixture at room temperature in a high vacuum, and is heated beforehand before being bonded, so that the interface of the bonded mixture is It has high strength and is not heated to high temperatures, so the properties of each mixture are not impaired. Further, it has excellent effects such as no residual stress acting at the temperature actually used.
第1図は本発明方法の実施状態を示す模式図、第2図は
2つの材料の長さの変化を示した図、第3図は引張試験
の実施状態を示す縦断面図、第4図は引張試験の結果を
示す図である。
1.2・・・材料保持台 3・・・回転導入端子4・・
・計原子ビーム発生器 5−・・レーザー加熱源時 許
出願人 住友金属工業株式会社代理人 弁理士
河 野 登 夫C口)
第
図
常温
使用温度(常温+ΔTr)
(イ)
(ロ)
第
図
第
図
(ハ)
第
図Fig. 1 is a schematic diagram showing how the method of the present invention is carried out, Fig. 2 is a diagram showing changes in the length of two materials, Fig. 3 is a longitudinal cross-sectional view showing how a tensile test is carried out, and Fig. 4 is a diagram showing the results of a tensile test. 1.2... Material holding stand 3... Rotation introduction terminal 4...
・Atomic beam generator 5-... Laser heating source Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney
Noboru Kono C) Fig. Room temperature operating temperature (room temperature + ΔTr) (A) (B) Fig. Fig. (C) Fig.
Claims (1)
おり、その混合比が段階的に変化する傾斜機能材料を製
造する方法において、 成形された混合体の表面を、高真空、常温 下でスパッタリングし、予め加熱して順次的に接合する
ことを特徴とする傾斜機能材料の製造方法。[Claims] 1. In a method for manufacturing a functionally graded material in which a plurality of mixtures of a plurality of substances are laminated in the thickness direction and the mixture ratio thereof changes stepwise, the surface of the molded mixture A method for manufacturing a functionally graded material, which comprises sputtering the following in a high vacuum at room temperature, heating in advance, and sequentially bonding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2204617A JPH0489366A (en) | 1990-07-31 | 1990-07-31 | Production of functionally gradient material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2204617A JPH0489366A (en) | 1990-07-31 | 1990-07-31 | Production of functionally gradient material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0489366A true JPH0489366A (en) | 1992-03-23 |
Family
ID=16493445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2204617A Pending JPH0489366A (en) | 1990-07-31 | 1990-07-31 | Production of functionally gradient material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0489366A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014038694A1 (en) * | 2012-09-07 | 2014-03-13 | 京セラ株式会社 | Composite substrate and method for producing same |
-
1990
- 1990-07-31 JP JP2204617A patent/JPH0489366A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014038694A1 (en) * | 2012-09-07 | 2014-03-13 | 京セラ株式会社 | Composite substrate and method for producing same |
JPWO2014038694A1 (en) * | 2012-09-07 | 2016-08-12 | 京セラ株式会社 | Composite substrate and manufacturing method thereof |
US9711418B2 (en) | 2012-09-07 | 2017-07-18 | Kyocera Corporation | Composite substrate with a high-performance semiconductor layer and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5350637A (en) | Microlaminated composites and method | |
CN112170852A (en) | Metal/ceramic/metal sealing insulating material with symmetrical gradient structure and preparation method thereof | |
JPS5849672A (en) | Jointed body comprising metal layer and ceramic layer and manufacture | |
US4645115A (en) | Method of bonding ceramic article | |
WO2023097868A1 (en) | Diamond product and manufacturing method therefor | |
JPH06506187A (en) | Method of manufacturing ceramic bodies | |
JP2950436B2 (en) | Manufacturing method of composite material | |
JPH0489366A (en) | Production of functionally gradient material | |
JPH0193474A (en) | Bonding of ceramic | |
JP2803111B2 (en) | Ceramic joining method | |
JPH0446070A (en) | Method for joining metal member to ceramics or cermet member | |
JPH07164592A (en) | Hybrid composite material land its manufacture | |
JP2568332B2 (en) | Method for producing composite material at least partially composed of an intermetallic compound | |
JPH01224280A (en) | Ceramic-metal conjugate form | |
JP3035230B2 (en) | Manufacturing method of multilayer ceramics | |
JP3084081B2 (en) | Laminated sintered body | |
JPH02296778A (en) | Production of ceramic superconductor | |
JPS61117171A (en) | Heat stress alleviator | |
JPH04158994A (en) | Cold joining method by superfine particles | |
US5603788A (en) | Method of manufacturing a ceramics-type vacuum vessel | |
JPS6357734A (en) | Fiber reinforced metal and its production | |
JP4243437B2 (en) | Method for producing metal-ceramic composite material having a pore-less surface | |
JPH06305846A (en) | Box-like member made of silicon nitride-based ceramic | |
CN117681510A (en) | Anti-perovskite/metal-metal laminated composite material with zero expansion, directional high thermal conductivity and toughness and preparation thereof | |
JPS63179733A (en) | Joining structure of ceramics and metal and manufacture thereof |