JPH03238875A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPH03238875A
JPH03238875A JP3468290A JP3468290A JPH03238875A JP H03238875 A JPH03238875 A JP H03238875A JP 3468290 A JP3468290 A JP 3468290A JP 3468290 A JP3468290 A JP 3468290A JP H03238875 A JPH03238875 A JP H03238875A
Authority
JP
Japan
Prior art keywords
silicon wafer
semiconductor substrate
nitride film
pressure sensor
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3468290A
Other languages
Japanese (ja)
Inventor
Yasuna Nakamura
中村 靖奈
Kenji Kusakabe
日下部 兼治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3468290A priority Critical patent/JPH03238875A/en
Publication of JPH03238875A publication Critical patent/JPH03238875A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a boundary stress-strain layer on the boundary between a semiconductor substrate and a film being different in a thermal expansion coefficient from the semiconductor substrate and thereby to prevent substantially the breakdown of a recessed part even when a pressure is applied to this part, by providing this film on the surface of the recessed part of the semiconductor substrate. CONSTITUTION:A metal impurity is diffused in a silicon wafer 1 by heat treatment and then a nitride film 8 having a thickness of about 1mum is formed by CVD on the rear side of the silicon wafer 1 including the surface of a recessed part for forming a diaphragm part 7. When the wafer 1 is coold to a normal temperature after the formation of the nitride film 8, an interface stress-strain layer 100 having no dislocation is formed on the boundary between the silicon wafer 1 and the nitride film 8 due to the difference in a thermal expansion coefficient between the silicon wafer 1 and the nitride film 8. When a semiconductor pressure sensor is employed in a high temperature, the metal impurity 100 to cause a crystal defect is subjected to segregation by the gettering action of the boundary stress-strain layer 100, according to this constitution, and thereby the breakdown of the diaphragm part 7 being thin the thickness is prevented when a pressure is applied to the recessed part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体圧力センサに関し、特に使用時にゲッ
タリング作用を行う半導体圧力センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor pressure sensor, and more particularly to a semiconductor pressure sensor that performs a gettering action during use.

〔従来の技術〕[Conventional technology]

第3図は従来の半導体圧力センサの断面図である。図に
おいて、1はシリコンウェハ、2はシリコンウェハ1上
に形成された所定位置に窓を有する酸化膜、3は前記窓
を介してシリコンウェハ1中に形成されたボロン拡散領
域、4aはボロン拡散領域3上に形成されたコンタクト
ホールを有する酸化膜、4bはシリコンウェハ1の裏面
に形成された酸化膜、5aは酸化膜2.4a上に形成さ
れた窒化膜、5bはシリコンウェハ1の裏面の酸化膜4
b上に形成された窒化膜、6はボロン拡散領域3と前記
コンタクトホールを介してコンタクトをとるA1配線、
7はダイヤフラム部である。
FIG. 3 is a sectional view of a conventional semiconductor pressure sensor. In the figure, 1 is a silicon wafer, 2 is an oxide film formed on the silicon wafer 1 and has a window at a predetermined position, 3 is a boron diffusion region formed in the silicon wafer 1 through the window, and 4a is a boron diffusion region. 4b is an oxide film formed on the back surface of silicon wafer 1; 5a is a nitride film formed on oxide film 2.4a; 5b is the back surface of silicon wafer 1. oxide film 4
a nitride film formed on b; 6 is an A1 wiring that makes contact with the boron diffusion region 3 through the contact hole;
7 is a diaphragm portion.

次に製造工程の概略について説明する。シリコンウェハ
1の表面に周知の方法により酸化膜2゜ボロン拡散層3
.窒化膜5a、Aj)配線6を順次形成する。このとき
ボロンドライブ時に酸化膜4a、4bが、また窒化膜5
a形威時に窒化膜5bが各々形成される(第4図)。そ
して、ボロン拡散領域3が形成されたシリコンウェハ1
の表面部分が素子領域となる。次に、酸化膜4b、窒化
膜5bに写真製版を施し前記素子領域に対応する領域の
酸化膜4b、窒化膜5bを除去する。その後、KOHを
用いシリコンウェハ1をエツチングすることにより、第
3図に示すようなダイヤフラム部7を有する半導体圧力
センサを得る。このダイヤフラム部7の厚さは約30μ
mと薄い。このようにして得られたウェハをダイシング
し、アセンブリし、製品化する。
Next, an outline of the manufacturing process will be explained. An oxide film 2 and a boron diffusion layer 3 are formed on the surface of the silicon wafer 1 by a well-known method.
.. Nitride films 5a, Aj) and interconnections 6 are sequentially formed. At this time, during the boron drive, the oxide films 4a, 4b and the nitride film 5
A nitride film 5b is formed during the a-form heating (FIG. 4). Then, a silicon wafer 1 on which a boron diffusion region 3 is formed.
The surface portion becomes the element region. Next, the oxide film 4b and the nitride film 5b are subjected to photolithography to remove the oxide film 4b and the nitride film 5b in the region corresponding to the element region. Thereafter, by etching the silicon wafer 1 using KOH, a semiconductor pressure sensor having a diaphragm portion 7 as shown in FIG. 3 is obtained. The thickness of this diaphragm portion 7 is approximately 30μ
Thin as m. The wafer thus obtained is diced, assembled, and manufactured into a product.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体圧力センサは以上のような工程で製造され
ており、この製造工程中で行われる熱処理により酸化膜
5a、5bの表面より不要の金属不純物がシリコンウェ
ハ1内部に拡散される。この金属不純物がシリコンウェ
ハ1内部に混入すると結晶欠陥となり、厚さの薄いダイ
ヤフラム部7に圧力を加えた場合、結晶欠陥の存在が原
因でダイヤフラム部7が破損しやすいという問題点があ
った。
A conventional semiconductor pressure sensor is manufactured through the steps described above, and unnecessary metal impurities are diffused into the silicon wafer 1 from the surfaces of the oxide films 5a and 5b by the heat treatment performed during this manufacturing process. When this metal impurity mixes inside the silicon wafer 1, it becomes a crystal defect, and when pressure is applied to the thin diaphragm part 7, there is a problem that the diaphragm part 7 is easily damaged due to the presence of the crystal defect.

この発明は上記のような問題点を解決するためになされ
たも°ので、破損しにくい半導体圧力センサを得ること
を目的とする。
The present invention was made to solve the above-mentioned problems, and therefore, an object of the present invention is to obtain a semiconductor pressure sensor that is less likely to be damaged.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体圧力センサは、凹部を有する半導
体基板と、前記半導体基板の凹部に対向するよう前記半
導体基板の一主面上に設けられた素子領域と、前記半導
体基板の凹部表面に形成された前記半導体基板の材料と
熱膨張係数のちがう膜とを備えている。
A semiconductor pressure sensor according to the present invention includes: a semiconductor substrate having a recess; an element region provided on one main surface of the semiconductor substrate to face the recess of the semiconductor substrate; and an element region formed on the surface of the recess of the semiconductor substrate. and a film having a different coefficient of thermal expansion from the material of the semiconductor substrate.

〔作用〕[Effect]

この発明においては、半導体基板の凹部表面に半導体基
板と熱膨張係数のちがう膜を設けているので半導体基板
と膜との境界に境界応力歪層が形成され、高温下で半導
体圧力センサを使用した場合、境界応力歪層のゲッタリ
ング作用により、結晶欠陥の原因となる金属不純物が偏
析する。
In this invention, since a film having a thermal expansion coefficient different from that of the semiconductor substrate is provided on the surface of the concave portion of the semiconductor substrate, a boundary stress strain layer is formed at the boundary between the semiconductor substrate and the film, so that it is difficult to use the semiconductor pressure sensor at high temperatures. In this case, metal impurities that cause crystal defects segregate due to the gettering effect of the boundary stress strain layer.

〔実施例〕〔Example〕

第1図はこの発明に係る半導体圧力センサの一実施例を
示す断面図である。図において、第3図に示した従来の
半導体圧力センサとの相違点は、ダイヤフラム部7を形
成するための凹部表面に窒化膜8を新たに設けたことで
ある。その他の構成は従来と同様である。
FIG. 1 is a sectional view showing an embodiment of a semiconductor pressure sensor according to the present invention. In the figure, the difference from the conventional semiconductor pressure sensor shown in FIG. 3 is that a nitride film 8 is newly provided on the surface of the recess for forming the diaphragm part 7. Other configurations are the same as before.

次に製造方法について説明する。ダイヤフラム部7を形
成するまでの方法は従来と同様である。
Next, the manufacturing method will be explained. The method up to forming the diaphragm portion 7 is the same as the conventional method.

製造工程中に行われる熱処理により、従来同様シリコン
ウェハ1中に金属不純物(Na、に、Fe。
Due to the heat treatment performed during the manufacturing process, metal impurities (Na, Fe, etc.) are present in the silicon wafer 1 as in the conventional case.

Cu等)が拡散する。Cu, etc.) diffuses.

次にダイヤフラム部7を形成するための凹部表面も含め
て、シリコンウェハ1の裏面にCVDにより厚さ1μm
程度の窒化膜8を形成する。窒化膜8形成後、常温にも
どす。すると、シリコンウェハ1と窒化膜8との熱膨張
係数の差によりシリコンウェハ1と窒化膜8の境界に転
位を有しない界面応力歪層100が形成される。その後
シリコンウェハ1をダイシング、アセンブリして製品に
仕上げる。
Next, the back surface of the silicon wafer 1, including the surface of the recess for forming the diaphragm portion 7, is coated with a thickness of 1 μm by CVD.
A nitride film 8 of about 100 mL is formed. After forming the nitride film 8, the temperature is returned to room temperature. Then, due to the difference in thermal expansion coefficient between the silicon wafer 1 and the nitride film 8, an interfacial stress strain layer 100 without dislocations is formed at the boundary between the silicon wafer 1 and the nitride film 8. Thereafter, the silicon wafer 1 is diced and assembled into a finished product.

このようにして製造された半導体圧力センサーは一般に
100℃以上の条件下で使用される。このような高温下
においては周知のように一般に歪層はゲッタリング作用
を発揮する。従って、界面応力歪層100も高温条件下
ではゲッタリング作用を発揮し、第2図に示すようにシ
リコンウェハ1内に拡散した金属不純物200が界面応
力歪層100に偏析する。その結果、シリコンウェハ1
内に結晶欠陥が生じることがなくなり、圧力を加えても
厚さが薄いダイヤフラム部7が破損することはない。
Semiconductor pressure sensors manufactured in this manner are generally used under conditions of 100° C. or higher. As is well known, the strained layer generally exhibits a gettering effect under such high temperatures. Therefore, the interfacial stress strain layer 100 also exhibits a gettering effect under high temperature conditions, and the metal impurities 200 diffused into the silicon wafer 1 segregate into the interfacial stress strain layer 100 as shown in FIG. As a result, silicon wafer 1
Crystal defects will not occur within the diaphragm portion 7, and the thin diaphragm portion 7 will not be damaged even if pressure is applied.

なお、上記実施例ではシリコンウェハ1と窒化膜8の組
合せを示したが、これらの材料に限定されず、互いに熱
膨張係数のちがう材料ならいかなるものであってもよい
。また、上記実施例では窒化膜8をシリコンウェハ1の
裏面全面に設けた場合について説明したが、凹部表面の
みに設けるようにしても上記実施例と同様の効果が得ら
れる。
In addition, although the combination of the silicon wafer 1 and the nitride film 8 was shown in the above embodiment, the material is not limited to these materials, and any materials having mutually different coefficients of thermal expansion may be used. Further, in the above embodiment, a case has been described in which the nitride film 8 is provided on the entire back surface of the silicon wafer 1, but the same effect as in the above embodiment can be obtained even if the nitride film 8 is provided only on the surface of the recessed portion.

また、上記のように一般に歪層は高温下においてゲッタ
リング作用を発揮するため、界面応力歪層100の代り
に加工歪を設けることも考えられる。しかし、加工歪は
転位を有しており、この転位がデバイス特性の大きな劣
化を招くので適切でない。一方、界面応力歪層100は
転位を有しないのでデバイス特性の大きな劣化はない。
Further, as described above, since a strained layer generally exhibits a gettering effect at high temperatures, it is also conceivable to provide a processing strain instead of the interfacial stress strained layer 100. However, processing strain has dislocations, and these dislocations cause significant deterioration of device characteristics, so this is not appropriate. On the other hand, since the interfacial stress strain layer 100 does not have dislocations, there is no significant deterioration in device characteristics.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、半導体基板の凹部表面
に半導体基板と熱膨張係数のちがう膜を設けることによ
り、半導体基板と膜との境界に境界応力歪層を形成し、
高温下で半導体圧力センサを使用した場合、境界応力歪
層のゲッタリング作用により、結晶欠陥の原因となる半
導体基板中の金属不純物が偏析するようにしている。そ
の結果、凹部に圧力を加えても破損しにくくなるという
効果がある。
As described above, according to the present invention, by providing a film having a coefficient of thermal expansion different from that of the semiconductor substrate on the surface of the concave portion of the semiconductor substrate, a boundary stress strain layer is formed at the boundary between the semiconductor substrate and the film.
When a semiconductor pressure sensor is used at high temperatures, metal impurities in the semiconductor substrate that cause crystal defects are segregated due to the gettering effect of the boundary stress strain layer. As a result, there is an effect that the concave portion is less likely to be damaged even if pressure is applied to the concave portion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る半導体圧力センサの一実施例を
示す断面図、第2図は第1図に示した半導体圧力センサ
の動作を説明するための図、第3図は従来の半導体圧力
センサの断面図、第4図は第3図に示した半導体圧力セ
ンサの製造工程を説明するための断面図である。 図において、1はシリコンウェハ 2及び4aは酸化膜
、3はボロン拡散領域、5a及び8は窒化膜、6はAl
l配線、7はダイヤフラム部である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a sectional view showing an embodiment of the semiconductor pressure sensor according to the present invention, FIG. 2 is a diagram for explaining the operation of the semiconductor pressure sensor shown in FIG. 1, and FIG. A sectional view of the sensor, FIG. 4 is a sectional view for explaining the manufacturing process of the semiconductor pressure sensor shown in FIG. 3. In the figure, 1 is a silicon wafer, 2 and 4a are oxide films, 3 is a boron diffusion region, 5a and 8 are nitride films, and 6 is an aluminum film.
1 wiring, 7 is a diaphragm part. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)凹部を有する半導体基板と、 前記半導体基板の凹部に対向するよう前記半導体基板の
一主面上に設けられた素子領域と、前記半導体基板の凹
部表面に形成された前記半導体基板と熱膨張係数の相違
する材料より成る膜とを備えた半導体圧力センサ。
(1) A semiconductor substrate having a recess, an element region provided on one main surface of the semiconductor substrate to face the recess of the semiconductor substrate, and a semiconductor substrate formed on the surface of the recess of the semiconductor substrate, A semiconductor pressure sensor comprising a membrane made of materials having different coefficients of expansion.
JP3468290A 1990-02-15 1990-02-15 Semiconductor pressure sensor Pending JPH03238875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3468290A JPH03238875A (en) 1990-02-15 1990-02-15 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3468290A JPH03238875A (en) 1990-02-15 1990-02-15 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPH03238875A true JPH03238875A (en) 1991-10-24

Family

ID=12421179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3468290A Pending JPH03238875A (en) 1990-02-15 1990-02-15 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPH03238875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000047969A1 (en) * 1999-02-15 2000-08-17 Yamatake Corporation Semiconductor pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000047969A1 (en) * 1999-02-15 2000-08-17 Yamatake Corporation Semiconductor pressure sensor
US6789430B1 (en) 1999-02-15 2004-09-14 Yamatake Corporation Semiconductor pressure sensor with strain gauges formed on a silicon diaphragm

Similar Documents

Publication Publication Date Title
JPH0355822A (en) Manufacture of substrate for forming semiconductor element
KR940016544A (en) Manufacturing Method of Semiconductor Substrate and Manufacturing Method of Solid State Imaging Device
JPH098124A (en) Insulation separation substrate and its manufacture
US5953620A (en) Method for fabricating a bonded SOI wafer
JPH03238875A (en) Semiconductor pressure sensor
US6326284B1 (en) Semiconductor device and production thereof
JPH04162630A (en) Semiconductor substrate
Thomas The effect of heat treatment on silicon nitride layers on silicon
JPH08111409A (en) Manufacturing for semiconductor device
KR0180622B1 (en) Method of manufacturing soi wafer having a multi-layer structure by silicon wafer junction at low temperature and soi wafer manufactured by this method
JPS61234547A (en) Manufacture of semiconductor substrate
JPS5927529A (en) Fabrication of semiconductor device wafer
JPS6386450A (en) Manufacture of substrate for formation of semiconductor element
JPH0235734A (en) Manufacture of semiconductor device
JPH07201976A (en) Manufacture of semiconductor device
JP3272908B2 (en) Method for manufacturing semiconductor multilayer material
JPS59141234A (en) Formation of selective mask
JPS6224617A (en) Epitaxial growth method
JPH0845943A (en) Gettering method and manufacture of soi semiconductor wafer used for this method
JPS5922373B2 (en) Semiconductor wafer processing method
JPS6224616A (en) Epitaxial growth method
JPS613424A (en) Dielectric isolation substrate
JPS63170973A (en) Semiconductor pressure sensor
JPH0228936A (en) Manufacture of semiconductor device
JPH097907A (en) Wafer having rear face polysilicon and its manufacturing method