JPH03237779A - Metal vapor laser equipment - Google Patents

Metal vapor laser equipment

Info

Publication number
JPH03237779A
JPH03237779A JP3426490A JP3426490A JPH03237779A JP H03237779 A JPH03237779 A JP H03237779A JP 3426490 A JP3426490 A JP 3426490A JP 3426490 A JP3426490 A JP 3426490A JP H03237779 A JPH03237779 A JP H03237779A
Authority
JP
Japan
Prior art keywords
heat conduction
metal vapor
laser window
heat
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3426490A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
寛 伊藤
Akihiko Iwata
明彦 岩田
Tatsuki Okamoto
達樹 岡本
Yoshihiro Ueda
植田 至宏
Kazuhiko Fukushima
一彦 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3426490A priority Critical patent/JPH03237779A/en
Publication of JPH03237779A publication Critical patent/JPH03237779A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/031Metal vapour lasers, e.g. metal vapour generation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To reduce the heat traveling to a laser window by heat conduction from the high temperature part of an inner discharge tube, and prevent the thermal breakdown of the laser window, by installing a heat conduction restraining means between the high temperature part of the inner discharge tube and the laser window. CONSTITUTION:A heat conduction restraining means 15 installed between an electrode 5 and a laser window 6 is constituted of a members like an SUS tube whose thermal conductivity is low, and has a flange 15a on the base end part, which frange is fixed to a flange 8 of the electrode 5. A laser window 6 constituted of quartz member is linked with the tip of a heat conduction restraining means 15. When a pulse voltage is applied between electrodes, the temperature in the vicinity of the electrodes 6 at both ends of the inner discharge tube 2 becomes high. The heat traveling from the high temperature part to the laser window 6 side by thermal conduction is blocked by the heat conduction restraining means 15, so that the breakdown of the laser window 6 caused by thermal shock from the high temperature part of the inner discharge tube 2 can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、銅粒などの金属粒を放電熱で溶融して金属
蒸気を励起することによりレーザ光を得るための金属蒸
気レーザ装置に関し、特に放電内管からの熱的衝撃によ
るレーザ窓の破壊防止を図った金属蒸気レーザ装置に関
する。
The present invention relates to a metal vapor laser device for obtaining laser light by exciting metal vapor by melting metal particles such as copper particles with discharge heat, and in particular, the invention relates to a metal vapor laser device for obtaining laser light by exciting metal vapor by melting metal particles such as copper particles with discharge heat. The present invention relates to a metal vapor laser device designed to prevent such problems.

【従来の技術】[Conventional technology]

第5図は従来の金属蒸気レーザ装置を示す断面図であり
、図において、lは金属外管よりなる真空ジャケット、
1aはその真空ジャケットエの周壁部に形成され、後述
する放電内管2から径方向への熱伝達や対流による熱損
失を抑制するための真空層、2は上記真空ジャケット1
内の軸心部に挿入配置された放電内管であり、この放電
内管2は全長が同一径の円形管体からなっている。3は
上記真空ジャケット1と上記放電内管2との間に充填さ
れ、該放電内管2から径方向への熱伝達や対流による熱
損失を防止するためのウール層などによる大気断熱層、
4は上記放電内管2内に設置されて金属蒸気を生成する
銅粒などの金属粒、5は上記放電内管2の一端部(第5
図中の左端)に接続された筒状の陰極、6はこの陰極5
に直接接続して上記放電内管2の一端に設けられた陰極
側レーザ光取出用のレーザ窓、7は上記陰極5に電極フ
ランジ8を介して接続された陰極端子、9は上記放電内
管2の他端部(第5図中の右端)に接続された筒状の陽
極、IOはこの陽極9に直接接続されて上記放電内管2
の他端に設けられた陽極側レーザ光取出用のレーザ窓、
11は陽極端子であり、この陽極端子IIは上記真空容
器Iおよび該真空ジャケット1の陽極側端部を閉塞する
接続板12と上記陽極9側の電極フランジ13とを介し
て上記陽極9に接続されている。14は上記放電内管2
内に封入された放電ガスである。 次に動作について説明する。 陰極端子7と陽極端子11との間にパルス電圧が印加さ
れると、放電内管2内における放電ガス14雰囲気中の
陰極5と陽極9との間にパルス放電が発生することによ
り、上記放電内管2内は放電状態となる。そして、その
放電により発生した熱は、上記放電内管2に伝導し、該
放電内管2から放射されるが、これに起因した熱損失、
即ち、上記放電内管2からの放射による熱損失が、上記
放電内管2を取り囲む大気断熱層3と真空層1aとによ
って極力抑えられることにより、上記放電内管2の温度
が上昇する。この温度上昇によって、上記放電内管2内
の金属粒4が溶融し、レーザ発振を得るために必要な金
属蒸気が発生する。そして、この金属蒸気は上記パルス
電圧で励起され、反転分布を起こす。このため、上記放
電内管2の両端部のレーザ窓6.10の外側に光共振器
(図示せず)を配置しておけば、それらのレーザ窓61
0を通じてレーザ光が得られる。
FIG. 5 is a sectional view showing a conventional metal vapor laser device, in which l is a vacuum jacket made of a metal outer tube;
1a is a vacuum layer formed on the peripheral wall of the vacuum jacket 1 to suppress heat loss due to radial heat transfer and convection from the discharge inner tube 2, which will be described later;
This discharge inner tube 2 is inserted into the axial center of the discharge tube 2, and the discharge inner tube 2 is made of a circular tube body with the same diameter over its entire length. 3 is an atmospheric insulation layer such as a wool layer filled between the vacuum jacket 1 and the discharge inner tube 2 to prevent heat transfer from the discharge inner tube 2 in the radial direction and heat loss due to convection;
4 is a metal grain such as a copper grain installed in the discharge inner tube 2 to generate metal vapor; 5 is an end portion of the discharge inner tube 2 (the fifth
A cylindrical cathode connected to the left end in the figure, 6 is this cathode 5
7 is a cathode terminal connected to the cathode 5 via an electrode flange 8; 9 is a cathode terminal provided at one end of the discharge inner tube 2, and 7 is a cathode terminal connected to the cathode 5 through an electrode flange 8; A cylindrical anode, IO, connected to the other end (right end in FIG. 5) of the discharge inner tube 2 is directly connected to this anode 9.
A laser window for extracting laser light on the anode side provided at the other end,
Reference numeral 11 denotes an anode terminal, and this anode terminal II is connected to the anode 9 via a connection plate 12 that closes the anode side end of the vacuum vessel I and the vacuum jacket 1, and an electrode flange 13 on the anode 9 side. has been done. 14 is the discharge inner tube 2
This is a discharge gas sealed inside. Next, the operation will be explained. When a pulse voltage is applied between the cathode terminal 7 and the anode terminal 11, a pulse discharge is generated between the cathode 5 and the anode 9 in the atmosphere of the discharge gas 14 in the discharge inner tube 2, thereby causing the above-mentioned discharge. The inside of the inner tube 2 is in a discharge state. The heat generated by the discharge is conducted to the discharge inner tube 2 and radiated from the discharge inner tube 2, but the heat loss due to this,
That is, heat loss due to radiation from the discharge inner tube 2 is suppressed as much as possible by the atmospheric heat insulating layer 3 and the vacuum layer 1a surrounding the discharge inner tube 2, so that the temperature of the discharge inner tube 2 increases. Due to this temperature rise, the metal particles 4 within the discharge inner tube 2 are melted, and metal vapor necessary for obtaining laser oscillation is generated. Then, this metal vapor is excited by the pulse voltage, causing population inversion. Therefore, if an optical resonator (not shown) is placed outside the laser windows 6.10 at both ends of the inner discharge tube 2, the laser windows 6.10
Laser light is obtained through 0.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の金属蒸気レーザ装置は以上のように構成されてい
るので、放電内管2の高温部となる電極5.9に直接接
続されたレーザ窓6,10が上記高温部からの熱的衝撃
で破壊する危惧があるという課題があった。 この発明は上記のような課題を解消するためになされた
もので、放電内管の高温部からの熱的衝撃によるレーザ
窓の破壊を確実に防止することができる金属蒸気レーザ
装置を得ることを目的とする。
Since the conventional metal vapor laser device is configured as described above, the laser windows 6 and 10 directly connected to the electrode 5.9, which is the high temperature part of the discharge inner tube 2, are protected from thermal shock from the high temperature part. There was a problem that there was a risk of destruction. This invention was made in order to solve the above-mentioned problems, and aims to provide a metal vapor laser device that can reliably prevent the destruction of the laser window due to thermal shock from the high temperature part of the discharge inner tube. purpose.

【課題を解決するための手段】[Means to solve the problem]

この発明の請求項1に係る金属蒸気レーザ装置は、放電
内管の高温部とレーザ窓との間に熱伝導抑制手段を設け
たものである。 この発明の請求項2に係る金属蒸気レーザ装置は、上記
熱伝導抑制手段が、蛇腹形状または放熱フィン等の放熱
冷却部材からなる構成としたものである。
A metal vapor laser device according to claim 1 of the present invention is one in which a heat conduction suppressing means is provided between a high temperature portion of an inner discharge tube and a laser window. In the metal vapor laser device according to a second aspect of the present invention, the heat conduction suppressing means is configured to have a bellows shape or a heat dissipation cooling member such as a heat dissipation fin.

【作 用】[For use]

この発明の請求項1における金属蒸気レーザ装置は、放
電内管の高温部からの熱伝導によってレーザ窓に伝わる
熱が熱伝導抑制手段によって著しく減少するので、上記
放電内管からの熱的衝撃による上記レーザ窓の破壊を未
然に防止できる。 この発明の請求項2における金属蒸気レーザ装置は、上
記熱伝導抑制手段が蛇腹形状または放熱フィン等の放熱
冷却部材からなって放熱面積が大きいので、上記放電内
管からの伝導熱の放熱冷却が促進されてレーザ窓への熱
伝導が効率的に減少することにより、上記放電内管から
の熱的衝撃による上記レーザ窓の熱的破壊を−N確実に
防止できる。
In the metal vapor laser device according to claim 1 of the present invention, the heat transferred to the laser window by heat conduction from the high-temperature part of the discharge inner tube is significantly reduced by the heat conduction suppressing means, so that the thermal shock from the discharge inner tube is significantly reduced. Breakage of the laser window can be prevented. In the metal vapor laser device according to claim 2 of the present invention, the heat conduction suppressing means has a bellows shape or a heat dissipation cooling member such as a heat dissipation fin and has a large heat dissipation area. By promoting and effectively reducing heat conduction to the laser window, it is possible to reliably prevent thermal destruction of the laser window due to thermal shock from the discharge inner tube.

【実施例】【Example】

以下、この発明の実施例を図について説明する。 第1図はこの発明の第1実施例による金属蒸気レーザ装
置の断面図、第5図と同一または相当部分には同一符号
を付して重複説明を省略する。 図において、15は電極5.9(一方の電極5のみを図
示)とレーザ窓6.10(一方のレーザ窓6のみを図示
)との間に設けられた熱伝導抑制手段であり、この熱伝
導抑制手段15は、熱伝導率の悪いSUS管等の部材か
らなっており、図示例では基端部にフランジ15aを有
し、このフランジ15aが上記電極5.9のフランジ8
,13に止着されている。そして、上記熱伝導抑制手段
15の先端に石英部材より戒るレーザ窓6,10が連結
されている。 次に動作について説明する。 電極5.9間にパルス電圧が印加されると、放電内管2
に両端部における上記電極5.9の近傍部分が高温部と
なり、この高温部からの熱伝導によってレーザ窓6.1
0側に伝わろうとする熱が熱伝導抑制手段15によって
阻止されるので、上記放電内管2の高温部からの熱的衝
撃によるレーザ窓6,10の破壊が防止される。 第2図はこの発明の第2実施例による熱伝導抑制手段1
5が組付けられた金属蒸気レーザ装置の断面図であり、
この第2実施例の熱伝導抑制手段15は蛇腹形状の管材
から戒っている。このような蛇腹形状の熱伝導抑制手段
15は放熱面積が大きくなるので、上記放電内管2の高
温部から熱伝導抑制手段15に伝わる熱の放熱が促進さ
れてレーザ窓6.10に熱が一層伝わり難くなるので、
上記放電内管2からの熱的衝撃による上記レーザ窓6,
10の熱的破壊を一層確実に防止することができる。 第3図はこの発明の第3実施例による熱伝導抑制手段1
5が組付けられた金属蒸気レーザ装置の断面図である。 この第3実施例の熱伝導抑制手段15は、熱伝導率の悪
い部材から戒る熱伝導軸部15bの外周に環状をなす複
数の放熱フィン15cを軸方向に沿って所定の配列間隔
で一体突設した構成となっている。従って、この第3実
施例の熱伝導抑制手段15にあっても、放熱フィン15
cによって放熱面積が大きくなるので、第2実施例の場
合と同様の作用効果を奏する。 第4図はこの発明の第4実施例による熱伝導抑制手段1
5が組付けられた金属蒸気レーザ装置の断面図である。 この第4実施例では、上記第3実施例の放熱フィン15
cを熱伝導軸部15bの軸方向に沿わせて周方向に所定
の間隔で配列突設した構成としており、同様の作用効果
を奏する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a metal vapor laser device according to a first embodiment of the present invention, and parts that are the same as or corresponding to those in FIG. In the figure, 15 is a heat conduction suppressing means provided between an electrode 5.9 (only one electrode 5 is shown) and a laser window 6.10 (only one laser window 6 is shown). The conduction suppressing means 15 is made of a member such as a SUS pipe with poor thermal conductivity, and in the illustrated example, it has a flange 15a at its base end, and this flange 15a is connected to the flange 8 of the electrode 5.9.
, 13. Laser windows 6 and 10 made of quartz material are connected to the tip of the heat conduction suppressing means 15. Next, the operation will be explained. When a pulse voltage is applied between the electrodes 5.9, the discharge inner tube 2
The parts near the electrode 5.9 at both ends become high temperature parts, and the laser window 6.1 is heated by heat conduction from the high temperature parts.
Since the heat that is about to be transmitted to the zero side is blocked by the heat conduction suppressing means 15, the laser windows 6, 10 are prevented from being destroyed by thermal shock from the high temperature portion of the discharge inner tube 2. FIG. 2 shows heat conduction suppressing means 1 according to a second embodiment of the present invention.
5 is a cross-sectional view of the metal vapor laser device assembled with
The heat conduction suppressing means 15 of this second embodiment is made of a bellows-shaped tube material. Since such a bellows-shaped heat conduction suppressing means 15 has a large heat dissipation area, the heat dissipation from the high temperature part of the discharge inner tube 2 to the heat conduction suppressing means 15 is promoted, and heat is transferred to the laser window 6.10. It becomes even more difficult to convey,
the laser window 6 due to thermal shock from the discharge inner tube 2;
10 can be more reliably prevented. FIG. 3 shows heat conduction suppressing means 1 according to a third embodiment of the present invention.
FIG. 5 is a sectional view of the metal vapor laser device in which No. 5 is assembled. The heat conduction suppressing means 15 of the third embodiment includes a plurality of annular heat dissipating fins 15c integrated at a predetermined arrangement interval along the axial direction on the outer periphery of a heat conductive shaft portion 15b, which prevents members from having poor thermal conductivity. It has a protruding configuration. Therefore, even in the heat conduction suppressing means 15 of this third embodiment, the radiation fins 15
Since the heat dissipation area is increased by c, the same effect as in the second embodiment is achieved. FIG. 4 shows heat conduction suppressing means 1 according to a fourth embodiment of the present invention.
FIG. 5 is a sectional view of the metal vapor laser device in which No. 5 is assembled. In this fourth embodiment, the radiation fin 15 of the third embodiment is
c are arranged and protruded at predetermined intervals in the circumferential direction along the axial direction of the heat conduction shaft portion 15b, and similar effects are achieved.

【発明の効果】【Effect of the invention】

以上のように、請求項1の発明によれば、放電内管の高
温部とレーザ窓との間に熱伝導抑制手段を設けた構成と
したので、放電内管の高温部からの熱伝導によってレー
ザ窓に伝わる熱が熱伝導抑制手段によって著しく減少し
、上記放電内管からの熱的衝撃を上記レーザ窓は殆ど受
けないので、このレーザ窓の熱的破壊を未然に確実に防
止できるという効果がある。 また、請求項2の発明によれば、上記熱伝導抑制手段が
蛇腹形状または放熱フィン等の放熱冷却部材からなって
放熱面積が大きいので、上記放電内管からの伝導熱の放
熱冷却が促進されてレーザ窓への熱伝導が効率的に減少
することにより、上記放電内管からの熱的衝撃による上
記レーザ窓の熱的破壊を−N確実に防止できるという効
果がある。
As described above, according to the invention of claim 1, since the heat conduction suppressing means is provided between the high temperature part of the discharge inner tube and the laser window, the heat conduction from the high temperature part of the discharge inner tube is suppressed. The heat transmitted to the laser window is significantly reduced by the heat conduction suppressing means, and the laser window receives almost no thermal shock from the discharge inner tube, so thermal destruction of the laser window can be reliably prevented. There is. Further, according to the invention of claim 2, the heat conduction suppressing means has a bellows shape or is made of a heat dissipation cooling member such as a heat dissipation fin and has a large heat dissipation area, so that the heat dissipation cooling of the conductive heat from the discharge inner tube is promoted. By effectively reducing heat conduction to the laser window, thermal destruction of the laser window due to thermal shock from the discharge inner tube can be reliably prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例による金属蒸気レーザ装
置の断面図、第2図はこの発明の第2実施例による金属
蒸気レーザ装置の断面図、第3図はこの発明の第3実施
例による金属蒸気レーザ装置の断面図、第4図はこの発
明の第4実施例による金属蒸気レーザ装置の断面図、第
5図は従来の金属蒸気レーザ装置を示す断面図である。 2・・・放電内管、4・・・金属粒、5・・・陰極(電
極)、6.10・・・レーザ窓1.9・・・陽極(電極
)、15・・・熱伝導抑制手段、15c・・・放熱フィ
ン。 なお、図中、同一符号は同一、または相当部分を示す。
FIG. 1 is a sectional view of a metal vapor laser device according to a first embodiment of the invention, FIG. 2 is a sectional view of a metal vapor laser device according to a second embodiment of the invention, and FIG. 3 is a sectional view of a metal vapor laser device according to a second embodiment of the invention. FIG. 4 is a sectional view of a metal vapor laser device according to a fourth embodiment of the present invention, and FIG. 5 is a sectional view of a conventional metal vapor laser device. 2... Inner discharge tube, 4... Metal particles, 5... Cathode (electrode), 6.10... Laser window 1.9... Anode (electrode), 15... Heat conduction suppression Means, 15c...radiating fin. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)金属蒸気生成用の金属粒を内蔵して電極間に配置
された放電内管と、この放電内管の高温部に熱的に接触
しているレーザ窓とを備えた金属蒸気レーザ装置におい
て、上記放電内管の高温部と上記レーザ窓との間に熱伝
導抑制手段を設けたことを特徴とする金属蒸気レーザ装
置。
(1) A metal vapor laser device equipped with an inner discharge tube that contains metal grains for generating metal vapor and is placed between electrodes, and a laser window that is in thermal contact with the high temperature part of the inner discharge tube. A metal vapor laser device, characterized in that heat conduction suppressing means is provided between the high temperature part of the discharge inner tube and the laser window.
(2)上記熱伝導抑制手段は、蛇腹形状または放熱フィ
ン等の表面積が大きい放熱冷却部材からなっていること
を特徴とする請求項1記載の金属蒸気レーザ装置。
(2) The metal vapor laser device according to claim 1, wherein the heat conduction suppressing means comprises a heat dissipating cooling member having a large surface area, such as a bellows shape or a heat dissipating fin.
JP3426490A 1990-02-15 1990-02-15 Metal vapor laser equipment Pending JPH03237779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3426490A JPH03237779A (en) 1990-02-15 1990-02-15 Metal vapor laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3426490A JPH03237779A (en) 1990-02-15 1990-02-15 Metal vapor laser equipment

Publications (1)

Publication Number Publication Date
JPH03237779A true JPH03237779A (en) 1991-10-23

Family

ID=12409314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3426490A Pending JPH03237779A (en) 1990-02-15 1990-02-15 Metal vapor laser equipment

Country Status (1)

Country Link
JP (1) JPH03237779A (en)

Similar Documents

Publication Publication Date Title
US4884292A (en) Air-cooled X-ray tube
JPH04308648A (en) Low-voltage discharge lamp without electrode
US6670760B2 (en) Collector structure of traveling wave tube having a lossy ceramic member
JPH03237779A (en) Metal vapor laser equipment
US4442523A (en) High power metal vapor laser
US4242648A (en) High power electrode and feedthrough assembly for high temperature lasers
JPH03237777A (en) Metal vapor laser equipment
JP2661511B2 (en) Traveling wave tube
JPH06111793A (en) Double structure bulb
JP2001076682A (en) Light source device
JPH03237775A (en) Metal vapor laser equipment
JPH02116182A (en) Laser fine pipe
JPH06224496A (en) Metal vapor generator
JPH03237778A (en) Metal vapor laser equipment
JPH0453010Y2 (en)
JP2741694B2 (en) Adapter terminal for sheath heater
JPS6026438Y2 (en) Cathode structure for electron tube
JP2904988B2 (en) Metal vapor laser device
JPS6185754A (en) Electron gun for electron tube
JPH033281A (en) Metal vapor laser device
JPH04288888A (en) Metal vapor laser device
JPS61287285A (en) Laser oscillation tube
JP2019164924A (en) Magnetron
JPH03237773A (en) Metal vapor laser equipment
JPH0610714Y2 (en) Metal vapor laser oscillator