JPH03237777A - Metal vapor laser equipment - Google Patents
Metal vapor laser equipmentInfo
- Publication number
- JPH03237777A JPH03237777A JP3426290A JP3426290A JPH03237777A JP H03237777 A JPH03237777 A JP H03237777A JP 3426290 A JP3426290 A JP 3426290A JP 3426290 A JP3426290 A JP 3426290A JP H03237777 A JPH03237777 A JP H03237777A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- inner tube
- heat
- discharge
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002184 metal Substances 0.000 title claims abstract description 32
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 32
- 230000008018 melting Effects 0.000 claims abstract description 13
- 238000002844 melting Methods 0.000 claims abstract description 13
- 238000009413 insulation Methods 0.000 claims description 3
- 230000010355 oscillation Effects 0.000 abstract description 9
- 230000005855 radiation Effects 0.000 abstract description 9
- 239000002923 metal particle Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/031—Metal vapour lasers, e.g. metal vapour generation
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Description
この発明は、銅粒などの金属粒を放電熱で溶融して金属
蒸気を励起することによりレーザ光を得るための金属蒸
気レーザ装置に関し、特に放射による熱損失の減少を図
った金属蒸気レーザ装置に関する。The present invention relates to a metal vapor laser device for obtaining laser light by exciting metal vapor by melting metal particles such as copper particles with discharge heat, and in particular to a metal vapor laser device designed to reduce heat loss due to radiation. Regarding.
第2図は従来の金属蒸気レーザ装置を示す断面図であり
、図において、1は金属外管よりなる真空ジャケット、
laはその真空ジャケット1の周壁部に形成され、後述
する放電内管2から径方向への熱伝達や対流による熱損
失を制御するための真空層、2は上記真空ジャケット1
内の軸心部に挿入配置された放電内管、3は上記真空ジ
ャケット1と上記放電内管2との間に充填され、該放電
内管2から径方向への熱伝達や対流による熱損失を防止
するためのウール層などによる大気断熱層、4は上記放
電内管2内に設置されて金属蒸気を生成する銅粒などの
金属粒、5は上記放電内管2の一端部(第2図中の左端
)に接続された筒状の陰極、6はこの陰極5の外端に設
けられた陰極側レーザ光取出用の窓、7は上記陰極5に
電極フランジ8を介して接続された陰極端子、9は上記
放電内管2の他端部(第2図中の右端)に接続された筒
状の陽極、10はこの陽極9の外端に設けられた陽極側
レーザ光取出用の窓、11は陽極端子であり、この陽極
端子11は上記真空ジャケット1および該真空ジャケッ
ト1の陽極側端部を閉塞する接続板12と上記陽極9例
の電極フランジ13とを介して上記陽極9に接続されて
いる。14は上記放電内管2内に封入された放電ガスで
ある。
次に動作について説明する。
陰極端子7と陽極端子11との間にパルス電圧が印加さ
れると、放電内管2内における放電ガス14雰囲気中の
陰極5と陽極9との間にパルス放電が発生することによ
り、上記放電内管2内は放電状態となる。そして、その
放電により発生した熱は、上記放電内管2に伝導し、該
放電内管2から径方向および軸方向に放射されるが、こ
れに起因した熱損失、即ち、上記放電内管2からの放射
による熱損失が、上記放電内管2を取り囲む大気断熱層
3と真空層1aとによって極力抑えられることにより、
上記放電内管2の温度が上昇する。
この温度上昇によって、上記放電内管2内の金属粒4が
溶融し、レーザ発振を得るために必要な金属蒸気が発生
する。そして、この金属蒸気は上記パルス電圧で励起さ
れ、反転分布を起こす。このため、上記放電内管2の両
端部の窓6.10の外側に光共振器(図示せず)を配置
しておけば、それらの窓6,10を通じてレーザ光が得
られる。FIG. 2 is a sectional view showing a conventional metal vapor laser device, in which 1 is a vacuum jacket made of a metal outer tube;
la is a vacuum layer formed on the peripheral wall of the vacuum jacket 1 to control heat loss due to radial heat transfer and convection from the discharge inner tube 2, which will be described later;
A discharge inner tube 3 inserted into the axial center of the inner discharge tube 3 is filled between the vacuum jacket 1 and the discharge inner tube 2, and prevents heat loss due to heat transfer and convection in the radial direction from the discharge inner tube 2. 4 is a metal grain such as a copper grain installed in the discharge inner tube 2 to generate metal vapor; 5 is an atmospheric insulation layer such as a wool layer to prevent A cylindrical cathode (6) is a window for extracting laser light on the cathode side provided at the outer end of this cathode 5 (left end in the figure), and 7 is connected to the cathode 5 via an electrode flange 8. A cathode terminal 9 is a cylindrical anode connected to the other end (the right end in FIG. 2) of the inner discharge tube 2, and 10 is a cathode terminal provided at the outer end of the anode 9 for extracting laser light from the anode side. The window 11 is an anode terminal, and the anode terminal 11 is connected to the anode 9 through the vacuum jacket 1, the connection plate 12 that closes the anode side end of the vacuum jacket 1, and the electrode flange 13 of the nine anodes. It is connected to the. 14 is a discharge gas sealed in the discharge inner tube 2. Next, the operation will be explained. When a pulse voltage is applied between the cathode terminal 7 and the anode terminal 11, a pulse discharge is generated between the cathode 5 and the anode 9 in the atmosphere of the discharge gas 14 in the discharge inner tube 2, thereby causing the above-mentioned discharge. The inside of the inner tube 2 is in a discharge state. The heat generated by the discharge is conducted to the discharge inner tube 2 and radiated from the discharge inner tube 2 in the radial and axial directions. Heat loss due to radiation from the discharge tube 2 is suppressed as much as possible by the atmospheric heat insulating layer 3 surrounding the discharge inner tube 2 and the vacuum layer 1a.
The temperature of the discharge inner tube 2 rises. Due to this temperature rise, the metal particles 4 within the discharge inner tube 2 are melted, and metal vapor necessary for obtaining laser oscillation is generated. Then, this metal vapor is excited by the pulse voltage, causing population inversion. For this reason, if optical resonators (not shown) are placed outside the windows 6, 10 at both ends of the inner discharge tube 2, laser light can be obtained through these windows 6, 10.
従来の金属蒸気レーザ装置は以上のように構成されてい
るので、単なる放電内管2では、該管内温度をレーザ発
振に十分な温度1500°C程度にまで上昇させるため
に相当な高電気入力を必要とし、このため、管内温度を
レーザ発振に十分な温度まで上昇させることが容易でな
く、しかも、上記放電内管2からの放射による熱損失を
効率的に防止できないという課題があった。
この発明は上記のような課題を解消するためになされた
もので、低電気入力でレーザ発振に十分な温度を得るこ
とができ、しかも、放電内管からの放射による熱損失を
効率的に減少させることができ、レーザ効率の向上が図
れる金属蒸気レーザ装置を得ることを目的とする。Since the conventional metal vapor laser device is constructed as described above, the simple discharge inner tube 2 requires a considerable amount of electrical input to raise the temperature inside the tube to about 1500°C, which is sufficient for laser oscillation. Therefore, there was a problem that it was not easy to raise the temperature inside the tube to a temperature sufficient for laser oscillation, and furthermore, heat loss due to radiation from the discharge inner tube 2 could not be efficiently prevented. This invention was made to solve the above-mentioned problems, and it is possible to obtain a temperature sufficient for laser oscillation with low electrical input, and moreover, to efficiently reduce heat loss due to radiation from the discharge inner tube. The object of the present invention is to obtain a metal vapor laser device that can improve laser efficiency.
この発明に係る金属蒸気レーザ装置は、放電内管の外周
に高融点金属層を形成したものである。The metal vapor laser device according to the present invention has a high melting point metal layer formed on the outer periphery of the inner discharge tube.
この発明における金属蒸気レーザ装置は、放電内管の外
周に形成された高融点金属層により、低電気人力でレー
ザ発振に十分な温度が得られると共に、上記放電内管か
らの軸方向の放射による熱損失が減少し、レーザ効率が
向上する。The metal vapor laser device of the present invention is capable of obtaining sufficient temperature for laser oscillation with low electric power by the high melting point metal layer formed on the outer periphery of the discharge inner tube, and also by the axial radiation from the discharge inner tube. Heat loss is reduced and laser efficiency is improved.
以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による金属蒸気レーザ装置の断
面図であり、第2図と同一または相当部分には同一符号
を付して重複説明を省略する。
図において、15は放電内管2の外周に溶射形成された
熱反射率の高い高融点金属層であり、この高融点金属層
15は陰極5か陽極9の何れか一方の電極とは絶縁され
ている。16は放電内管2の軸方向両端部における真空
ジャケット1との間に設けられ、大気断熱層3の両端部
を密に覆う熱左右の反射板である。
これらの熱反射板16は、耐熱絶縁性の石英部材で形成
されたリングの軸方向内端面に例えば高反射率材料であ
る金を蒸着して熱反射鏡面16aを形成したものである
。
次に動作について説明する。
放電内管2内の放電ガス14雰囲気中における電極間(
陰極5と陽極9との間)のパルス放電により発生した熱
は、上記放電内管2に伝達され、該放電内管2から大気
断熱層3中に放射されようとするが、この場合、その放
射による熱が高融点金属層15を反射する。このため、
上記電極に印加されるパルス電圧が低電気入力によるも
のであっても、上記放電内管2内の温度をレーザ発振に
十分な1500°C程度の温度にまで上昇させることが
できる。また、上記放電内管2に伝導されて該放電内管
2の軸方向端部における真空ジャケット1との間より外
部に逃げようとする熱は、反射封板16の熱反射鏡面1
6aに当って大気断熱層3中に反射する。
このように、上記放電内管2からの放射による熱が高融
点金属層15を反射し、且つ、上記放電内管2の伝導す
る軸方向の熱が上記反射封板16を反射することによっ
て、上記放電内管2からの放射による熱損失が効率的に
阻止され、レーザ効率が向上する。An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a cross-sectional view of a metal vapor laser device according to an embodiment of the present invention, and the same or corresponding parts as in FIG. 2 are given the same reference numerals and redundant explanation will be omitted. In the figure, reference numeral 15 denotes a high melting point metal layer with high heat reflectance that is thermally sprayed on the outer periphery of the discharge inner tube 2, and this high melting point metal layer 15 is insulated from either the cathode 5 or the anode 9. ing. Reference numeral 16 designates left and right thermal reflecting plates that are provided between the vacuum jacket 1 and the both ends of the discharge inner tube 2 in the axial direction, and tightly cover both ends of the atmospheric heat insulating layer 3. These heat reflecting plates 16 are formed by depositing, for example, gold, which is a high reflectance material, on the axially inner end surface of a ring made of a heat-resistant insulating quartz member to form a heat reflecting mirror surface 16a. Next, the operation will be explained. Between the electrodes in the atmosphere of the discharge gas 14 in the discharge inner tube 2 (
The heat generated by the pulse discharge (between the cathode 5 and the anode 9) is transferred to the discharge inner tube 2 and tries to be radiated from the discharge inner tube 2 into the atmospheric heat insulating layer 3; Heat due to radiation is reflected off the high melting point metal layer 15. For this reason,
Even if the pulse voltage applied to the electrodes is based on a low electrical input, the temperature inside the discharge inner tube 2 can be raised to a temperature of about 1500° C., which is sufficient for laser oscillation. In addition, the heat that is conducted to the discharge inner tube 2 and tries to escape to the outside from between the axial end of the discharge inner tube 2 and the vacuum jacket 1 is transferred to the heat reflecting mirror surface of the reflective sealing plate 16.
6a and is reflected into the atmospheric heat insulating layer 3. In this way, the heat radiated from the discharge inner tube 2 is reflected by the high melting point metal layer 15, and the axial heat conducted by the discharge inner tube 2 is reflected by the reflective sealing plate 16. Heat loss due to radiation from the discharge inner tube 2 is effectively prevented, and laser efficiency is improved.
以上のように、この発明によれば、放電内管の外周に高
融点金属層を形成したので、放電内管からの放射による
熱損失が減少し、低電気人力でも上記放電内管内の温度
をレーザ発振に十分な温度まで容易に上昇させることが
でき、レーザ効率が上昇するという効果がある。As described above, according to the present invention, since a high melting point metal layer is formed on the outer periphery of the discharge inner tube, heat loss due to radiation from the discharge inner tube is reduced, and even with low electric power, the temperature inside the discharge inner tube can be controlled. The temperature can be easily raised to a temperature sufficient for laser oscillation, which has the effect of increasing laser efficiency.
第1図はこの発明の一実施例による金属蒸気レーザ装置
の断面図、第2図は従来の金属蒸気レーザ装置を示す断
面図である。
■・・・真空ジャケット、2・・・放電内管、3・・・
大気断熱層、4・・・金属粒、5・・・陰極(電極)、
9・・・陽極(電極)、15・・・高融点金属層。
なお、図中、同一符号は同一、または相当部分を示す。
Fl 尚肴緊巳笠惠盾FIG. 1 is a sectional view of a metal vapor laser device according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional metal vapor laser device. ■...Vacuum jacket, 2...Discharge inner tube, 3...
Atmospheric heat insulation layer, 4... Metal particles, 5... Cathode (electrode),
9...Anode (electrode), 15...High melting point metal layer. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Fl Shobakkin Kasaedan
Claims (1)
金属粒を内蔵して電極間に配置された放電内管と、上記
真空ジャケット内における上記放電内管との間に充填さ
れた大気断熱層とを備えた金属蒸気レーザ装置において
、上記放電内管の外周に高融点金属層を形成したことを
特徴とする金属蒸気レーザ装置。an atmospheric insulation layer filled between a discharge inner tube inserted into a vacuum jacket and disposed between electrodes and containing metal grains for generating metal vapor, and the discharge inner tube within the vacuum jacket; A metal vapor laser device comprising: a high melting point metal layer formed on the outer periphery of the discharge inner tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3426290A JPH03237777A (en) | 1990-02-15 | 1990-02-15 | Metal vapor laser equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3426290A JPH03237777A (en) | 1990-02-15 | 1990-02-15 | Metal vapor laser equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03237777A true JPH03237777A (en) | 1991-10-23 |
Family
ID=12409259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3426290A Pending JPH03237777A (en) | 1990-02-15 | 1990-02-15 | Metal vapor laser equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03237777A (en) |
-
1990
- 1990-02-15 JP JP3426290A patent/JPH03237777A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4237430A (en) | Coaxial discharge sealed-off quartz laser tube | |
US4442523A (en) | High power metal vapor laser | |
JPH03237777A (en) | Metal vapor laser equipment | |
US5777437A (en) | Annular chamber flashlamp including a surrounding, packed powder reflective material | |
JPH03237773A (en) | Metal vapor laser equipment | |
US4242648A (en) | High power electrode and feedthrough assembly for high temperature lasers | |
JPH03237774A (en) | Metal vapor laser equipment | |
JPH03237771A (en) | Metal vapor laser equipment | |
JPH0317255A (en) | Material vapor generator | |
JPH03237781A (en) | Metal vapor laser equipment | |
JPH03237772A (en) | Metal vapor laser equipment | |
JPH0453010Y2 (en) | ||
JPH03237775A (en) | Metal vapor laser equipment | |
JPH03237779A (en) | Metal vapor laser equipment | |
JPH04288888A (en) | Metal vapor laser device | |
JPH033281A (en) | Metal vapor laser device | |
JP2904988B2 (en) | Metal vapor laser device | |
JP2685616B2 (en) | Metal vapor laser device | |
JPS63252489A (en) | Metal vapor laser device | |
JPH03237778A (en) | Metal vapor laser equipment | |
JP2861114B2 (en) | Metal vapor laser device | |
JPS63239881A (en) | Metal vapor laser oscillator | |
JPS63252490A (en) | Metal vapor laser device | |
JPH05327063A (en) | Metallic vapor laser device | |
JPH0479387A (en) | Apparatus for generating metallic vapor |