JPH03237778A - Metal vapor laser equipment - Google Patents

Metal vapor laser equipment

Info

Publication number
JPH03237778A
JPH03237778A JP3426390A JP3426390A JPH03237778A JP H03237778 A JPH03237778 A JP H03237778A JP 3426390 A JP3426390 A JP 3426390A JP 3426390 A JP3426390 A JP 3426390A JP H03237778 A JPH03237778 A JP H03237778A
Authority
JP
Japan
Prior art keywords
tube
discharge tube
metal vapor
discharge
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3426390A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
寛 伊藤
Akihiko Iwata
明彦 岩田
Tatsuki Okamoto
達樹 岡本
Yoshihiro Ueda
植田 至宏
Kazuhiko Fukushima
一彦 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3426390A priority Critical patent/JPH03237778A/en
Publication of JPH03237778A publication Critical patent/JPH03237778A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/031Metal vapour lasers, e.g. metal vapour generation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To keep high temperature over the total length in the axial direction of an inner discharge tube, and realize stable laser oscillation, by installing a temperature fall preventing means to keep the whole temperature of the inner discharge tube higher than the melting point temperature of inserted metal grains. CONSTITUTION:A temperature fall preventing means 15 is constituted as follows: a heat insulating layer 3 surrounding the outer periphery of an inner discharge tube 2 is formed to be longer in the axial direction than the total length of the inner discharge tube 2 containing laser windows 6, 10, and encloses the the whole part of the tube 2; laser leading-out holes 16 are formed so as to be connected with the laser windows 6, 10, in the axial center part of the atmosphere heat insulating layer 3. When the inner discharge tube 2 is heated by pulse discharge between electrodes in an atmosphere of discharge gas 14 in the tube 2, metal grains in the tube 2 are fused and vaporized. Thus metal vapor is generated. At this time, since the outer periphery of the inner discharge tube 2 is completely surrounded by the heat insulating layer 3, the temperature fall at the end portions of the inner discharge tube 2 can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、銅粒などの金属粒を放電熱で溶融して金属
蒸気を励起することによりレーザ光を得るための金属蒸
気レーザ装置に関し、特に放電内管の少なくとも電極部
分での温度低下防止対策を施した金属蒸気レーザ装置に
関する。
The present invention relates to a metal vapor laser device for obtaining laser light by melting metal grains such as copper grains with discharge heat and exciting metal vapor, and in particular, measures to prevent temperature drop at least in the electrode portion of the inner discharge tube. The present invention relates to a metal vapor laser device.

【従来の技術】[Conventional technology]

第5図は従来の金属蒸気レーザ装置を示す断面図であり
、図において、1は金属外管よりなる真空ジャケット、
1aはその真空ジャケット1の周壁部に形成され、後述
する放電内管2から径方向への熱伝達や対流による熱損
失を制御するための真空層、2は上記真空ジャケットl
内の軸心部に挿入配置されて両端側が外方に突出した状
態の放電内管、3は上記真空ジャケット1と上記放電内
管2との間に充填され、該放電内管2から径方向への熱
伝達や対流による熱損失を防止するためのウール層など
による大気断熱層、4は上記放電内管2内に設置されて
金属蒸気を生成する銅粒などの金属粒、5は上記放電内
管2の一端部(第5図中の左端)に接続された筒状の陰
極、6はこの陰極5の外端に設けられた陰極側レーザ光
取出用のレーザ窓、7は上記陰極5に電極フランジ8を
介して接続された陰極端子、9は上記放電内管2の他端
部(第5図中の右端)に接続された筒状の陽極、10は
この陽極9の外端に設けられた陽極側レーザ光取出用の
レーザ窓、11は陽極端子であり、この陽極端子11は
上記真空ジャケット1および該真空ジャケット1の陽極
側端部を閉塞する接続viI2と上記陽極9側の電極フ
ランジ13とを介して上記陽極9に接続されている。1
4は上記放電内管2内に封入された放電ガスである。 次に動作について説明する。 陰極端子7と陽極端子11との間にパルス電圧が印加さ
れると、放電内管2内における放電ガス14雰囲気中の
陰極5と陽極9との間にパルス放電が発生することによ
り、上記放電内管2内は放電状態となる。そして、その
放電により発生した熱は、上記放電内管2に伝導し、該
放電内管2から径方向および軸方向に放射されるが、こ
れに起因した熱損失、即ち、上記放電内管2からの放射
による熱損失が、上記放電内管2を取り囲む大気断熱層
3と真空層1aとによって極力抑えられることにより、
上記放電内管2の温度が上昇する。 この温度上昇によって、上記放電内管2内の金属粒4が
溶融し、レーザ発振を得るために必要な金属蒸気が発生
する。そして、この金属蒸気は上記パルス電圧で励起さ
れ、反転分布を起こす。このため、上記放電内管2の両
端部のレーザ窓6.i0の外側に光共振器(図示せず)
を配置しておけば、それらのレーザ窓6,10を通じて
レーザ光が得られる。
FIG. 5 is a sectional view showing a conventional metal vapor laser device, in which 1 is a vacuum jacket made of a metal outer tube;
1a is a vacuum layer formed on the peripheral wall of the vacuum jacket 1 to control heat loss due to radial heat transfer and convection from the inner discharge tube 2, which will be described later; 2 is the vacuum layer 1a formed on the peripheral wall of the vacuum jacket 1;
A discharge inner tube 3 is inserted into the axial center of the inner discharge tube with both ends protruding outward, and is filled between the vacuum jacket 1 and the discharge inner tube 2, and is inserted in the discharge inner tube 2 in the radial direction. an atmospheric insulation layer such as a wool layer to prevent heat transfer to and heat loss due to convection; 4 is metal grains such as copper grains installed in the discharge inner tube 2 to generate metal vapor; 5 is a metal grain such as a copper grain that is installed in the discharge inner tube 2; A cylindrical cathode is connected to one end (left end in FIG. 5) of the inner tube 2, 6 is a laser window provided at the outer end of the cathode 5 for extracting laser light from the cathode side, and 7 is the cathode 5. 9 is a cylindrical anode connected to the other end (right end in FIG. 5) of the discharge inner tube 2, and 10 is an outer end of the anode 9. The provided laser window for extracting laser light on the anode side, 11 is an anode terminal, and this anode terminal 11 connects the vacuum jacket 1 and the connection viI2 that closes the anode side end of the vacuum jacket 1, and the anode 9 side. It is connected to the anode 9 via the electrode flange 13. 1
4 is a discharge gas sealed in the discharge inner tube 2. Next, the operation will be explained. When a pulse voltage is applied between the cathode terminal 7 and the anode terminal 11, a pulse discharge is generated between the cathode 5 and the anode 9 in the atmosphere of the discharge gas 14 in the discharge inner tube 2, thereby causing the above-mentioned discharge. The inside of the inner tube 2 is in a discharge state. The heat generated by the discharge is conducted to the discharge inner tube 2 and radiated from the discharge inner tube 2 in the radial and axial directions. Heat loss due to radiation from the discharge tube 2 is suppressed as much as possible by the atmospheric heat insulating layer 3 surrounding the discharge inner tube 2 and the vacuum layer 1a.
The temperature of the discharge inner tube 2 rises. Due to this temperature rise, the metal particles 4 within the discharge inner tube 2 are melted, and metal vapor necessary for obtaining laser oscillation is generated. Then, this metal vapor is excited by the pulse voltage, causing population inversion. For this reason, the laser windows 6 at both ends of the discharge inner tube 2. Optical resonator (not shown) outside i0
If these windows 6 and 10 are arranged, laser light can be obtained through these laser windows 6 and 10.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の金属蒸気レーザ装置は以上のように構成されてい
るので、電極5.9間のパルス放電により放電内管2が
加熱されると、該放電内管2内の高温部で金属粒が溶融
して蒸気化することによる金属蒸気が発生するが、上記
放電内管2は特に端部での温度低下が生じて全体の温度
分布が不均一となるため、上記金属粒が上記放電内管2
の高温部から低温部に移動し、該低温部では金属蒸気が
発生しなくなるため、金属蒸気の発生量が不十分となり
、安定したレーザ発振が得られなくなるという課題があ
った。 この発明は上記のような課題を解消するためになされた
もので、放電内管の端部等での温度低下を防止でき、上
記放電内管の軸方向全長に亘って良好な温度分布が得ら
れることにより、金属蒸気を十分に発生させることがで
き、常に安定したレーザ発振を行うことができる金属蒸
気レーザ装置を得ることを目的とする。
Since the conventional metal vapor laser device is configured as described above, when the inner discharge tube 2 is heated by the pulse discharge between the electrodes 5 and 9, the metal particles melt in the high temperature part within the inner discharge tube 2. Metal vapor is generated by evaporation, but the temperature of the discharge inner tube 2 decreases particularly at the ends, making the overall temperature distribution uneven.
The metal vapor moves from the high temperature part to the low temperature part, and metal vapor is no longer generated in the low temperature part, so the amount of metal vapor generated becomes insufficient and there is a problem that stable laser oscillation cannot be obtained. This invention was made in order to solve the above-mentioned problems, and it is possible to prevent temperature drop at the ends of the discharge inner tube, etc., and to obtain a good temperature distribution over the entire axial length of the discharge inner tube. It is an object of the present invention to provide a metal vapor laser device that can generate sufficient metal vapor and always perform stable laser oscillation.

【課題を解決するための手段】[Means to solve the problem]

この発明に係る金属蒸気レーザ装置は、レーザ窓部を高
融点材料例えばサファイヤで形威し、放電管の内部全て
の温度を挿入した金属粒の融点よりも高温に保つための
手段を設けたものである。
The metal vapor laser device according to the present invention has a laser window made of a high melting point material, such as sapphire, and is provided with means for keeping the temperature of the entire interior of the discharge tube higher than the melting point of the inserted metal grains. It is.

【作 用】[For use]

この発明における金属蒸気レーザ装置は、放電内管の最
も温度低下が生じ易い電極部分および窓部分で温度低下
が防止されるので、上記放電内管の軸方向全長に亘って
挿入した金属粒の融点以上の温度が得られ、このため、
満足する金属蒸気発生量が得られて常に安定したレーザ
発振を行うことができる。
In the metal vapor laser device of the present invention, a temperature drop is prevented in the electrode portion and the window portion of the discharge inner tube where the temperature drop is most likely to occur, so that the melting point of the metal particles inserted over the entire axial length of the discharge inner tube is prevented. The temperature above is obtained, and therefore,
A satisfactory amount of metal vapor generation can be obtained and stable laser oscillation can be performed at all times.

【実施例】【Example】

以下、この発明の実施例を図について説明する。 第1図はこの発明の第1実施例による金属蒸気レーザ装
置の断面図であり、第5図と同一または相当部分には同
一符号を付して重複説明を省略する。 図において、I5は放電内管(放電管)2の電極5.9
部分およびレーザ窓6,10部分での温度低下を防止す
る温度低下防止手段である。 この第1実施例の温度低下防止手段15は、上記放電内
管2の外周を包囲する大気断熱層3を、上記放電内管2
のレーザ窓6,10を含む全長より軸方向に長く形威し
、それらのレーザ窓6.10を含む上記放電内管2の全
体を包み込み、且つ、上記大気断熱N3の軸心部には上
記レーザ窓6゜10のそれぞれに通じるレーザ取出孔1
6を設けた構成となっている。 次に・上記第1実施例の動作について説明する。 放電内管2内の放電ガス14雰囲気中における電極間(
陰極5と陽極9との間)のパルス放電により放電内管2
が加熱されると、該放電内管2内の金属粒4が溶融して
蒸気化し、金属蒸気が発生する。このとき、上記放電内
管2の全長より軸方向に長く伸びた大気断熱層3によっ
て上記放電内管2がレーザ窓6,10ともども包み込ま
れてぃるので、上記放電内管2の端部での温度低下が確
実に防止される。もって、上記放電内管2の軸方向全長
に亘って挿入金属の融点温度より高温が得られるため、
上記放電内管2の内部全体から金属蒸気が効率よく発生
し、レーザ窓6,10から常に安定したレーザ発振を行
うことが可能となる。 第2図はこの発明の第2実施例による温度低下防止手段
15が組付けられた金属蒸気レーザ装置の断面図である
、この第2実施例の温度低下防止手段15は、大気断熱
層3中で放電内管2の第1のレーザ窓6.10の部分に
設けられた真空層からなっており、この真空層15のの
外端部には第2のレーザ窓6a、10aが設けられてい
る。 この第2実施例の場合においても、第1のレーザ窓6,
10を含む上記放電内管2の全体が上記大気断熱層3中
に埋設された状態となっており、しかも、上記大気断熱
層3中で第1のレーザ窓6゜10の部分に温度低下防止
手段としての真空層15が設けられていることにより、
上記放電内管2の端部での温度低下が一層効率よく防止
され、−層安定したレーザ発振が行えるという効果を奏
する。 第3図はこの発明の第3実施例による温度低下防止手段
15が組付けられた金属蒸気レーザ装置の断面図、第4
図はその要部の拡大断面図である、この第3実施例の温
度低下防止手段15は、絶縁物より成る放電内管2の端
部に配置され、該放電内管2ともども大気断熱層3中に
挿入された電極フランジ8,13より外方に向けて上記
大気断熱層3中で突出する筒状の絶縁体15aと、この
絶縁体15aに巻回されたヒータ15bとから成ってい
る。そして、この第3実施例では、上記絶縁体15aの
先端にレーザ窓6.10(一方のレーザ窓6のみを図示
)を設けている。 従って、この第3実施例の場合、放電内管2の低温部と
なる端部がヒータ15bで強制加熱されることにより、
上記放電内管2全体の温度が金属粒4の融点より高くな
るため、上記放電内管2の各所から金属蒸気を一層効率
よく発生させることができ、長時間安定したレーザ発振
を得ることができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a metal vapor laser device according to a first embodiment of the present invention, and the same or corresponding parts as in FIG. 5 are given the same reference numerals and redundant explanation will be omitted. In the figure, I5 is the electrode 5.9 of the discharge inner tube (discharge tube) 2.
This is a temperature drop prevention means that prevents a temperature drop in the laser windows 6 and 10. The temperature drop prevention means 15 of the first embodiment protects the atmospheric heat insulating layer 3 surrounding the outer periphery of the discharge inner tube 2 from the inner discharge tube 2.
It is longer in the axial direction than the entire length including the laser windows 6 and 10, and wraps around the entire discharge inner tube 2 including the laser windows 6 and 10, and the axial center of the atmospheric insulation N3 has the above-mentioned Laser extraction hole 1 leading to each laser window 6°10
The configuration includes 6. Next, the operation of the first embodiment will be explained. Between the electrodes in the atmosphere of the discharge gas 14 in the discharge inner tube 2 (
The inner discharge tube 2 is caused by the pulse discharge between the cathode 5 and the anode 9.
When heated, the metal particles 4 in the discharge inner tube 2 melt and vaporize, generating metal vapor. At this time, since the discharge inner tube 2 and the laser windows 6 and 10 are surrounded by the atmospheric heat insulating layer 3 which extends longer than the entire length of the discharge inner tube 2 in the axial direction, the ends of the discharge inner tube 2 temperature drop is reliably prevented. As a result, a temperature higher than the melting point temperature of the inserted metal can be obtained over the entire length of the discharge inner tube 2 in the axial direction.
Metal vapor is efficiently generated from the entire interior of the discharge inner tube 2, and stable laser oscillation can always be performed from the laser windows 6, 10. FIG. 2 is a sectional view of a metal vapor laser device in which a temperature drop prevention means 15 according to a second embodiment of the present invention is assembled. It consists of a vacuum layer provided at the first laser window 6.10 of the discharge inner tube 2, and second laser windows 6a, 10a are provided at the outer end of this vacuum layer 15. There is. Also in the case of this second embodiment, the first laser window 6,
The entire discharge inner tube 2 including 10 is buried in the atmospheric heat insulating layer 3, and there is a temperature drop prevention device in the first laser window 6° 10 in the atmospheric heat insulating layer 3. By providing the vacuum layer 15 as a means,
The temperature drop at the end of the discharge inner tube 2 is more efficiently prevented, and more stable laser oscillation can be achieved. FIG. 3 is a sectional view of a metal vapor laser device in which a temperature drop prevention means 15 according to a third embodiment of the present invention is assembled;
The figure is an enlarged cross-sectional view of the main part. The temperature drop prevention means 15 of this third embodiment is disposed at the end of the discharge inner tube 2 made of an insulator, and together with the discharge inner tube 2, an atmospheric heat insulation layer 3 is formed. It consists of a cylindrical insulator 15a protruding outward from the electrode flanges 8, 13 inserted into the atmospheric heat insulating layer 3, and a heater 15b wound around the insulator 15a. In this third embodiment, a laser window 6.10 (only one laser window 6 is shown) is provided at the tip of the insulator 15a. Therefore, in the case of the third embodiment, the end portion of the discharge inner tube 2, which is the low temperature portion, is forcibly heated by the heater 15b.
Since the temperature of the entire discharge inner tube 2 becomes higher than the melting point of the metal particles 4, metal vapor can be generated from various parts of the discharge inner tube 2 more efficiently, and stable laser oscillation can be obtained for a long time. .

【発明の効果】【Effect of the invention】

以上のように、この発明によれば、放電内管の全体の温
度を挿入金属粒の融点温度より高温に保つための温度低
下防止手段を設けた構成としたので、放電管の最も温度
低下が起こり易い電極部分及び窓部分での温度低下を防
止でき、上記放電内管の軸方向全長に亘って挿入金属の
融点温度より高温に保つことができるため、満足する金
属蒸気発生量が得られて常に安定したレーザ発振を行う
ことができるという効果がある。
As described above, according to the present invention, the temperature drop prevention means for keeping the overall temperature of the inner discharge tube higher than the melting point temperature of the inserted metal particles is provided, so that the temperature drop of the discharge tube is minimized. It is possible to prevent the temperature drop at the electrode and window parts, which is likely to occur, and to maintain the temperature higher than the melting point of the inserted metal over the entire length of the discharge inner tube in the axial direction, so that a satisfactory amount of metal vapor can be generated. This has the advantage that stable laser oscillation can be performed at all times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例による金属蒸気レーザ装
置の断面図、第2図はこの発明の第2実施例による金属
蒸気レーザ装置の断面図、第3図はこの発明の第3実施
例による金属蒸気レーザ装置の断面図、第4図は第3図
の要部拡大断面図、第5図は従来の金属蒸気レーザ装置
を示す断面図である。 2・・・放電内管、3・・・大気断熱層、4・・・金属
粒、5・・・陰極(電極)、9・・・陽極(電極)、1
5・・・温度低下防止手段。 なお、図中、同一符号は同一、または相当部分を示す。 特許出噸人 三菱電機株式会社 第 1 図 6o、10o:レープ巽乙 第 図 8:電f肋フラ″′)ヲ゛  15o:糸色珠イ本15
b:ヒータ 第4 図
FIG. 1 is a sectional view of a metal vapor laser device according to a first embodiment of the invention, FIG. 2 is a sectional view of a metal vapor laser device according to a second embodiment of the invention, and FIG. 3 is a sectional view of a metal vapor laser device according to a second embodiment of the invention. FIG. 4 is an enlarged sectional view of a main part of FIG. 3, and FIG. 5 is a sectional view of a conventional metal vapor laser device. 2... Discharge inner tube, 3... Atmospheric insulation layer, 4... Metal particles, 5... Cathode (electrode), 9... Anode (electrode), 1
5... Temperature drop prevention means. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Patent issuer: Mitsubishi Electric Corporation No. 1 Figures 6o, 10o: Lepe Tatsumi Otsuji Figure 8: Electric f ribs ``'')゛゛ 15o: Itiroki Tama 15
b: Heater Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 金属蒸気生成用の金属粒を内蔵して電極間に配置された
放電管と、この放電管を包囲する大気断熱層とを備えた
金属蒸気レーザ装置において、上記放電管内部の全体を
挿入した金属の融点以上に保つための温度低下防止手段
を設けたことを特徴とする金属蒸気レーザ装置。
In a metal vapor laser device comprising a discharge tube containing metal grains for generating metal vapor and placed between electrodes, and an atmospheric heat insulating layer surrounding the discharge tube, a metal in which the entire inside of the discharge tube is inserted. A metal vapor laser device characterized in that it is provided with means for preventing temperature drop to maintain the temperature above the melting point of the metal vapor laser.
JP3426390A 1990-02-15 1990-02-15 Metal vapor laser equipment Pending JPH03237778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3426390A JPH03237778A (en) 1990-02-15 1990-02-15 Metal vapor laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3426390A JPH03237778A (en) 1990-02-15 1990-02-15 Metal vapor laser equipment

Publications (1)

Publication Number Publication Date
JPH03237778A true JPH03237778A (en) 1991-10-23

Family

ID=12409286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3426390A Pending JPH03237778A (en) 1990-02-15 1990-02-15 Metal vapor laser equipment

Country Status (1)

Country Link
JP (1) JPH03237778A (en)

Similar Documents

Publication Publication Date Title
US5050184A (en) Method and apparatus for stabilizing laser mirror alignment
JPH03237778A (en) Metal vapor laser equipment
US6570959B1 (en) X-ray tube metal frame gettering device
US4442523A (en) High power metal vapor laser
US7550909B2 (en) Electron gun providing improved thermal isolation
JP2598009B2 (en) Metal vapor laser oscillation tube
JPS63252489A (en) Metal vapor laser device
US4559466A (en) Metal vapor segmented discharge tubes
KR920007413B1 (en) Structure of dispenser type cathode
JPH03237777A (en) Metal vapor laser equipment
JPH03237782A (en) Metal vapor laser equipment
GB2126413A (en) Discharge tubes
JPH04288888A (en) Metal vapor laser device
JPH03237775A (en) Metal vapor laser equipment
JPH0317255A (en) Material vapor generator
JPH03237781A (en) Metal vapor laser equipment
JP2861114B2 (en) Metal vapor laser device
JPH03237779A (en) Metal vapor laser equipment
EP0144475A1 (en) Improvements in discharge tubes
JPH10177899A (en) Tandem accelerator
JPS61281567A (en) Metallic ion laser
JPH1093163A (en) Metal vapor laser
JPS60148179A (en) Improvement of discharge tube
JPH03237771A (en) Metal vapor laser equipment
JPH01302877A (en) Metal vapor laser apparatus