JPH03235368A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03235368A
JPH03235368A JP2030905A JP3090590A JPH03235368A JP H03235368 A JPH03235368 A JP H03235368A JP 2030905 A JP2030905 A JP 2030905A JP 3090590 A JP3090590 A JP 3090590A JP H03235368 A JPH03235368 A JP H03235368A
Authority
JP
Japan
Prior art keywords
fet
gate
film
films
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2030905A
Other languages
Japanese (ja)
Inventor
Haruki Arai
新井 晴輝
Yosuke Takagi
洋介 高木
Tamotsu Ohata
大畑 有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2030905A priority Critical patent/JPH03235368A/en
Publication of JPH03235368A publication Critical patent/JPH03235368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To remarkably enlarge the range of application of a source multiple output power supply MOSFET, etc., by a method wherein, within the source multiple output power supply MOSFET, etc., the rising characteristics of respective gate electrode voltages of component multiple FETs are controlled. CONSTITUTION:Within a source multiple output power supply MOSFET 50, the resistance values of respective gate films 13a, and 13b of multiple MOSFET components 50a and 50b are differentiated from each other. On the other hand, said films 13a and 13b positioned in the extension parts of respective polysilicon gate electrode films 4a and 4b are composed of polysilicon to be connected to a gate leading-out bonding pad 12 comprising Al, etc., while the width of the film 13a is formed narrower than that of the film 13b. Thus, the resistance values of the films 13a and 13b are differentiated from each other so that respective films 4a and 4b of FET-A and FET-B may be made equivalent to a circuit provided with resistors in series in mutually different values. Accordingly, the range of application of FET 50, etc., can remarkably be enlarged by controlling the rising characteristics of the gate electrode voltage of respective FET components.

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) 本発明は、電力用MO3型電界効果トランジスタ(MO
S  FETと略記)や絶縁ゲート型バイポーラトラン
ジスタ(IGBTと略記)等で構成された半導体装置に
関するもので、特に複数のMOS  FET構体をモノ
リシックに搭載し、各ゲート配線膜か異なる抵抗値を有
する半導体装置に係るものである。
Detailed Description of the Invention "Object of the Invention" (Industrial Field of Application) The present invention provides an MO3 type field effect transistor for power
It relates to semiconductor devices composed of S FET (abbreviated as S FET) and insulated gate bipolar transistors (abbreviated as IGBT), etc., and is particularly related to semiconductor devices that are monolithically mounted with multiple MOS FET structures and each gate wiring film has a different resistance value. It is related to the device.

(従来の技術) 複数のMOS  FET等で構成された半導体装置の一
例として、−膜内なソース多出力電力用MO6FETを
取り上げ、従来技術について説明する。 第6図に示す
半導体装置1旦は、1つの半導体基板に2つのNチャネ
ル二重拡散縦型MO3FET(DV  MOS  FE
T、本明細書では絶縁ゲート型トランジスタ構体とも呼
ぶ)A及びBを搭載し、共通のドレイン端子り及びゲー
ト端子Gと、2つのソース端子SA及びSBを有するい
わゆるソース多出力電力用MO3FETL旦で、同図(
a )はその平面概略図、同図(b)は模式的なX−X
−線(同図(a )参照)断面図、又同図(C)は、F
ET−A又はFBT−Bを構成する単位FETユニット
(セルと呼ぶ)15の配置を模式的に示す部分平面図で
ある。 第6図(a )において、符号上は半導体基板
、2はゲートボンディングパッド、3a及び3bはそれ
ぞれFET−A及びFET−Bのゲート電極引き出し用
のゲート配線膜、4a及び4bはポリシリコンゲート電
極膜、5a及び5bはFETセル配置領域及びソース電
f!膜を示す、 同図(b)において、半導体基板1は
、ドレイン低抵抗領域(N”ドレイン領域)laと、ド
レイン高抵抗領域(Nドレイン領域)lbとから成る。
(Prior Art) As an example of a semiconductor device constituted by a plurality of MOS FETs, etc., an in-film source multi-output power MO6FET will be taken up and the prior art will be described. The semiconductor device shown in FIG. 6 consists of two N-channel double-diffused vertical MO3FETs (DV MOS FE
A so-called MO3FETL for source multi-output power is equipped with transistors A and B (also referred to as an insulated gate transistor structure in this specification) and has a common drain terminal and gate terminal G, and two source terminals SA and SB. , the same figure (
a) is a schematic plan view, and (b) is a schematic diagram of
- line (see figure (a)) sectional view, and figure (c) is F
FIG. 2 is a partial plan view schematically showing the arrangement of unit FET units (referred to as cells) 15 constituting ET-A or FBT-B. In FIG. 6(a), the reference symbol is a semiconductor substrate, 2 is a gate bonding pad, 3a and 3b are gate wiring films for leading out the gate electrodes of FET-A and FET-B, respectively, and 4a and 4b are polysilicon gate electrodes. The films 5a and 5b are the FET cell arrangement area and the source voltage f! In FIG. 1B, which shows the film, the semiconductor substrate 1 consists of a low drain resistance region (N" drain region) la and a high drain resistance region (N" drain region) lb.

  6はNドレイン領域lb内に島状に形成されるPベ
ース領域、7はPベース領域6内に形成される環状のN
′″ソース領域、8はゲート酸化膜、9は眉間絶縁膜、
11はカードリングの役割等を持つP領域である。
6 is a P base region formed in an island shape within the N drain region lb, and 7 is an annular N base region formed within the P base region 6.
'''source region, 8 is a gate oxide film, 9 is a glabella insulating film,
Reference numeral 11 denotes a P area having the role of a card ring, etc.

FET−A及びFET−Bは、同図(C)に示すように
、複数のセル15(1点鎖線で囲まれた部分)より構成
される。 同図(C)において、範囲l、は、基板上の
主表面の露出平面図、範囲12は、ゲート電極膜4aを
露出したときの平面図、範囲i3は、ソース電極WA5
aを露出したときの平面図である。 なおゲート酸化膜
、眉間絶縁膜等は図示を省略する。
The FET-A and the FET-B are each composed of a plurality of cells 15 (the portion surrounded by a dashed line), as shown in FIG. In the same figure (C), range l is an exposed plan view of the main surface on the substrate, range 12 is a plan view when the gate electrode film 4a is exposed, and range i3 is the source electrode WA5.
It is a top view when a is exposed. Note that the gate oxide film, glabellar insulating film, etc. are omitted from illustration.

一般に従来のソース多出力電力用MO3FETl0では
、各ゲート配m膜の抵抗は等しい値となっている。 こ
のような装置(デバイス)を、一端か接地された負荷の
ハイサイドスイッチとして使用する回路例を第7図に示
す。 即ちPET−Bは、一端接地の負荷16に電力を
出力するスイッチ素子とし、FET−Aは電流検出用と
して用いる6 FET−Aのソース端子SAに接続され
る抵抗R1の値は、FET−Aのオン抵抗より充分大き
な値に設定しておく。 この回路では、ゲート端子Gに
ゲート電圧■6が印加されていない場合、FET−A及
びFET−Bはオフ状態で、従って端子SA及びS、間
には電圧か発生しない。
Generally, in the conventional source multi-output power MO3FET10, the resistance of each gate interconnection film is the same value. FIG. 7 shows an example of a circuit in which such a device is used as a high-side switch with one end of the load connected to ground. That is, PET-B is a switching element that outputs power to a load 16 whose one end is grounded, and FET-A is used for current detection.6 The value of resistor R1 connected to the source terminal SA of FET-A is Set it to a value that is sufficiently larger than the on-resistance of . In this circuit, when gate voltage 6 is not applied to gate terminal G, FET-A and FET-B are in an off state, and therefore no voltage is generated between terminals SA and S.

ゲート電圧■6が印加され、FET−A及びFET−B
がオンした場合、PET−Aの端子SAの電位(アース
を基準電位)はドレイン電位V。にほぼ等しくなるので
、端子SAとSBとの間には、FET−Bのドレイン・
ソース間電圧■。5が発生する。 従って端子SA、3
F3間の電圧を使用して、FET−Bの保護回路(例え
はオン状態のとき出力用FET−8のドレイン・ソース
間電圧がある一定値を超えたらゲート電圧VGをオフす
る等)を構成できる。
Gate voltage ■6 is applied, FET-A and FET-B
When turned on, the potential of the terminal SA of PET-A (with the ground as reference potential) is the drain potential V. Therefore, there is a drain terminal of FET-B between terminals SA and SB.
Source-to-source voltage ■. 5 occurs. Therefore, terminal SA, 3
Using the voltage between F3, configure the protection circuit for FET-B (for example, turn off the gate voltage VG if the drain-source voltage of output FET-8 exceeds a certain value when it is in the on state) can.

このように、ソース多出力電力用MO8FETを用いる
場合、製造工程のバラツキによる該FETの特性の差異
により誤動作を招く可能性かある。 −例として、FE
T−Aのしきい値電圧がFET−8のしきい値電圧より
も低い場合を考える。 このとき、ゲート電圧VGの立
ち上かり時に、FET−AがFET−Bより先にオンし
、端子SA、Ss間に、−時的に大きな電圧が発生し、
前記保護回路が誤動作をする可能性がある。
As described above, when using a source multi-output power MO8FET, there is a possibility that malfunctions may occur due to differences in the characteristics of the FET due to variations in the manufacturing process. - As an example, FE
Consider the case where the threshold voltage of TA is lower than the threshold voltage of FET-8. At this time, when the gate voltage VG rises, FET-A turns on before FET-B, and a temporally large voltage is generated between terminals SA and Ss.
There is a possibility that the protection circuit malfunctions.

(発明が解決しようとする課題) 従来のソース多出力電力用MO3FETを使用する場合
、例えば第7図の回路例で述べたように、デバイスを構
成する複数のFETのしきい値電圧等の特性は、製造工
程のバラツキにより必すしも同一ではない。 従って同
じゲート電圧を印加してもソース出力端子の電圧の立ち
上がりにバラツキか発生し、不測の誤動作を招く可能性
があり、応用上の課題となっている。
(Problems to be Solved by the Invention) When using a conventional source multi-output power MO3FET, for example, as described in the circuit example in FIG. are not necessarily the same due to variations in the manufacturing process. Therefore, even if the same gate voltage is applied, variations occur in the rise of the voltage at the source output terminal, which may lead to unexpected malfunctions, which is a problem in application.

他方、ソース多出力電力用MO8FET等の応用分野の
拡大に伴い、構成する複数のFETのそれぞれのゲート
電極電圧の立ち上がり特性を制御し、各FETのスイッ
チング特性を変えたいという市場のニーズは大きい。
On the other hand, with the expansion of application fields such as source multi-output power MO8FETs, there is a great need in the market to control the rise characteristics of the gate electrode voltages of each of the plurality of FETs to change the switching characteristics of each FET.

本発明の目的は、ソース多出力電力用MO8FET等に
おいて、構成する複数のFETのそれぞれのゲートを極
電圧の立ち上がり特性を制御することができ、それによ
りソース多出力電力用MO3FET等の応用範囲を著し
く拡大させることか可能な半導体装置を提供することで
ある。
An object of the present invention is to be able to control the rise characteristics of the polar voltage of each gate of a plurality of FETs in a MO8FET for source multi-output power, thereby expanding the scope of application of MO3FET for source multi-output power, etc. It is an object of the present invention to provide a semiconductor device that can be expanded significantly.

「発明の構成」 (課題を解決するための手段) 本発明の半導体装置は、(a )ドレイン領域と、ベー
ス領域と、ソース領域と、ドレイン、ソース両領域に挟
まれるベース領域の表面層上に絶縁体膜を介して積層さ
れるゲート電極膜と、ゲート電極膜に接続するゲート配
線膜と、ソース電極膜とを有する複数の絶縁ゲート型ト
ランジスタ構体と、(b )前記ゲート配線膜の複数と
接続するゲート引き出し用ボンディングパッドとを具備
し、且つ複数の前記ゲート配線膜の電気抵抗が異なるこ
とを特徴とするものである。
"Structure of the Invention" (Means for Solving the Problems) A semiconductor device of the present invention includes (a) a drain region, a base region, a source region, and a surface layer of the base region sandwiched between both the drain and source regions. (b) a plurality of insulated gate type transistor structures having a gate electrode film stacked on top of each other via an insulating film, a gate wiring film connected to the gate electrode film, and a source electrode film; (b) a plurality of the gate wiring films; and a gate lead-out bonding pad connected to the gate wiring film, and the plurality of gate wiring films have different electrical resistances.

通常前記絶縁ゲート型トランジスタ構体は、多数のFE
Tセルから成り、MOS  FET又はIGBT等を形
成する。 本発明の半導体装置は、上記絶縁ゲート型ト
ランジスタ構体を1つの半導体基板に複数個搭載し、共
通のゲートホンティングパッドを有し、複数の異なるソ
ース@’#lを有するものである。
Typically, the insulated gate transistor structure includes a large number of FEs.
It consists of T cells and forms MOS FETs, IGBTs, etc. A semiconductor device of the present invention has a plurality of the above insulated gate transistor structures mounted on one semiconductor substrate, has a common gate font pad, and has a plurality of different sources @'#l.

(作用) 本発明の半導体装置を構成する上記複数の絶縁ゲート型
トランジスタ構体は、それぞれにゲート配線膜を持って
いるので、これらゲート配線膜の抵抗値を変化させるこ
とにより、各トランジスタ構体のゲート電極膜の電圧立
ち上かり特性をそれぞれ所望特性とすることができる。
(Function) Since each of the plurality of insulated gate type transistor structures constituting the semiconductor device of the present invention has a gate wiring film, the gate wiring film of each transistor structure can be changed by changing the resistance value of these gate wiring films. The voltage rise characteristics of the electrode films can be set to desired characteristics.

 これにより例えば第7図の使用回路例において、FE
T−Aのゲート電極膜の電圧の立ち上がりを、FETB
の立ち上がりより遅らせて前記回路の誤動作を防止でき
るし、又各トランジスタ構体のスイッチング特性を容易
に異なる特性とすることかできる。
As a result, for example, in the circuit example shown in Fig. 7, the FE
The voltage rise of the gate electrode film of T-A is
It is possible to prevent malfunction of the circuit by delaying the rise of the voltage, and it is also possible to easily make the switching characteristics of each transistor structure different.

(実施例) 本発明を、ポリシリコンゲート電極膜から成るソース多
出力DV  MOS  FETに適用した第1の実施例
について図面を参照して以下説明する。
(Example) A first example in which the present invention is applied to a source multi-output DV MOS FET made of a polysilicon gate electrode film will be described below with reference to the drawings.

第1図(a )はこのDV  MOS  FET50の
平面概略図、同図(b)は模式的なx−x′線断面図で
ある。 本発明のDV  MOS  FET1旦は、デ
バイスを構成する複数のMOS  FET構体50a及
び50bのそれぞれのゲート配線lI!13a及び13
bの抵抗値が互いに異なっていることが、従来の第6図
に示すDV  MOS  FBT上ユと相異し、その他
の構成はほぼ等しい。
FIG. 1(a) is a schematic plan view of this DV MOS FET 50, and FIG. 1(b) is a schematic cross-sectional view taken along line xx'. First, the DV MOS FET of the present invention is connected to each gate wiring lI! of each of the plurality of MOS FET structures 50a and 50b constituting the device. 13a and 13
This differs from the conventional DV MOS FBT upper unit shown in FIG. 6 in that the resistance values of b are different from each other, but the other configurations are almost the same.

従って第1図において、第6図と同符号は、同じ部分を
表わすので、説明を省略する。 又前記MO3FBT構
体の要素であるFETセルの配置は、第6図(C)と等
しいので、記載を省略する。
Therefore, in FIG. 1, the same reference numerals as in FIG. 6 represent the same parts, and the explanation will be omitted. Furthermore, the arrangement of the FET cells, which are the elements of the MO3FBT structure, is the same as that in FIG. 6(C), so the description thereof will be omitted.

第1図においてゲート配線膜13a及び13bは、それ
ぞれポリシリコンゲート電極膜4a及び4bの延在部分
で、ポリシリコンから成り、AI等から成るゲート引き
出し用ボンデイングパ・ンド12に接続される。 この
実施例では、FET−Aのゲート配線11!13aの幅
が、PET−Bのゲート配線膜13bの幅より狭くなる
ように形成される。 なお特許請求の範囲第1項記載の
絶縁ゲート型トランジスタ構体は、本実施例ではMO3
FETO3FET反体50aであって、例えばMOS 
 FET構体50aは、N’ソース領域7、Pベース領
域6、Nドレイン領域1a、lb、ゲート酸化膜8、ゲ
ート電極!4aから成る多数のFETセル並びにこれら
のセルのソース領域にオーミック接触するソース電極膜
5a及びゲート配線11!!!13aにより構成される
。 第1図<b >の−点鎖線Y−Y′はゲート電極1
l14aとゲート配線膜13aとの境界面の概略の位!
を示す。 又Y−Y′線の右側(図面上)の領域はFE
Tセルの配置領域である。
In FIG. 1, gate wiring films 13a and 13b are extensions of polysilicon gate electrode films 4a and 4b, respectively, and are made of polysilicon and are connected to a gate lead-out bonding pad 12 made of AI or the like. In this embodiment, the width of the gate wiring film 11!13a of FET-A is formed to be narrower than the width of the gate wiring film 13b of PET-B. Note that the insulated gate type transistor structure described in claim 1 is composed of MO3 in this embodiment.
FETO3FET anti-body 50a, for example MOS
The FET structure 50a includes an N' source region 7, a P base region 6, an N drain region 1a, lb, a gate oxide film 8, a gate electrode! 4a, and a source electrode film 5a and gate wiring 11 that are in ohmic contact with the source regions of these cells. ! ! 13a. The -dotted chain line Y-Y' in Fig. 1<b> is the gate electrode 1.
The approximate location of the interface between l14a and gate wiring film 13a!
shows. Also, the area to the right of the Y-Y' line (on the drawing) is FE.
This is the arrangement area for T cells.

このMOS  FET50を第7図に示す回路例に使用
すると、従来技術の問題点として述べた誤動作はなくな
る。 この点について以下更に詳細に説明する。
When this MOS FET 50 is used in the circuit example shown in FIG. 7, the malfunction mentioned as a problem of the prior art will be eliminated. This point will be explained in more detail below.

即ちゲート配線膜の幅を変えたので、ゲート配線膜13
aの抵抗RGAとゲート配線[13bの抵抗RG6とは
その値が互いに異なる。 従って第7図の回路は、第2
図<a >に示すように、FET−A及びFET−Bの
各ゲート電極膜4a及び4bに、互いに異なる値の抵抗
RGA及びRG6を直列に付加した回路と等価となる。
That is, since the width of the gate wiring film was changed, the gate wiring film 13
The resistance RGA of the gate line a and the resistance RG6 of the gate line [13b] have different values. Therefore, the circuit of FIG.
As shown in Figure <a>, this is equivalent to a circuit in which resistors RGA and RG6 of different values are added in series to the respective gate electrode films 4a and 4b of FET-A and FET-B.

ゲート端子Gと接地端子GND間に同図(b )に示す
波形の直流電圧■G1を印加すると、FET−A及びB
のゲート電極膜の電圧vGA及びVGaは、同図(C)
に示す波形で立ち上がり、一定電圧(近似的にVGlに
等しい)に達する。 なお同図(b )の縦軸はVG、
同図(c )の縦軸はVGA及びVgBを示し、横軸は
両図とも時間tを表わし、【、はVGの印加時刻を示す
When a DC voltage G1 with the waveform shown in the same figure (b) is applied between the gate terminal G and the ground terminal GND, FET-A and B
The voltages vGA and VGa of the gate electrode film are as shown in the same figure (C).
It rises with the waveform shown in and reaches a constant voltage (approximately equal to VGl). In addition, the vertical axis of the same figure (b) is VG,
The vertical axis in FIG. 2(c) represents VGA and VgB, the horizontal axis represents time t in both figures, and [, represents the time of application of VG.

即ちゲート直列抵抗RGA及びR68の存在により、外
部からのゲート入力信号電圧V。に対して、ゲート電極
膜4a及び4bに加わる電圧■。4及びVG8は時間的
に遅れる。 ス本実施例では、FET−A及びBのFE
Tセル数は互いに等しく、且つRGA > RG[!で
あるがら、同図(C)に示すように電圧V0゜の立ち上
がり波形aは、電圧VG日の立ち上がり波形すに比較し
て遅い。 そのなめ、FET−A及びFET−Bに、製
造工程上のバラツキ程度のしきい値電圧のずれがあって
も、FETAのオンをFET−8よりも確実に遅らせる
こと、が可能となり、誤動作がなくなる。
That is, due to the presence of the gate series resistors RGA and R68, the gate input signal voltage V from the outside. In contrast, the voltage ■ applied to the gate electrode films 4a and 4b. 4 and VG8 are delayed in time. In this example, the FE of FET-A and B is
The numbers of T cells are equal to each other, and RGA > RG[! However, as shown in FIG. 5C, the rising waveform a of the voltage V0° is slower than the rising waveform a of the voltage VG. Therefore, even if there is a difference in threshold voltage between FET-A and FET-B due to manufacturing process variations, it is possible to reliably delay the turn-on of FETA compared to FET-8, thereby preventing malfunction. It disappears.

第3図は、本n明(7)DV  MOS  FETV)
第2の実施例を示す平面概略図である。 前記第1図に
示す例は、FET−A及びFET−Bを構成するFET
セル数が互いに等しい場合であった。
Figure 3 shows the present invention (7) DV MOS FETV)
FIG. 7 is a schematic plan view showing a second embodiment. The example shown in FIG.
This was a case where the number of cells was equal to each other.

この第2実施例は、FET−A及びBを構成するセル数
が互いに興なる場合のDV  MOS  FET1旦の
例である。FET−A及びFET−8を構成するセル数
をそれぞれN4個及びN6個(Na >NA)とし、又
ゲート配線膜23a及び23bの抵抗をそれぞれRGA
及びRGBとする。
This second embodiment is an example of a DV MOS FET in which the numbers of cells constituting FET-A and FET-B are different from each other. The numbers of cells constituting FET-A and FET-8 are respectively N4 and N6 (Na > NA), and the resistances of gate wiring films 23a and 23b are RGA, respectively.
and RGB.

この場合、RGA及びRG8はRGA N A> Rc
a N a )ニーなるよう設計されている。 この関
係式は、ゲート電極膜の電圧立ち上がり特性に関係する
FETA又はBのゲート・ソース間等価静電容量cA又
は0日は、近似的にそれぞれのセル数NA又はN6に比
例すると考えられるからである。
In this case, RGA and RG8 are RGA NA> Rc
a N a ) It is designed to be a knee. This relational expression is based on the fact that the gate-source equivalent capacitance cA or 0 days of FETA or B, which is related to the voltage rise characteristics of the gate electrode film, is considered to be approximately proportional to the number of cells NA or N6 of each. be.

このような構造を持った2つのFETでのスイッチング
特性は、FET−Aの方が、FET−Bよりも遅くなっ
ており、第7図の回路での誤動作はなくなる。 なお第
3図において、符号22はゲートボンデインクパッド、
24a及び24bはそれぞれFET−A及びBのポリシ
リコンゲート電極膜、25a及び25bはセル配置領域
及びソース電極膜を示す。
Regarding the switching characteristics of the two FETs having such a structure, FET-A is slower than FET-B, and the malfunction in the circuit shown in FIG. 7 is eliminated. In FIG. 3, reference numeral 22 indicates a gate bonding ink pad;
24a and 24b are polysilicon gate electrode films of FET-A and B, respectively, and 25a and 25b are cell arrangement regions and source electrode films.

ゲート配線膜の抵抗値は、第1実施例においてはその幅
を、又第2実施例においてはその幅と長さとを変えて所
望抵抗値を得ているが、その他厚さ、及びポリシリコン
配線膜の不純物添加量等を変えることにより抵抗値を制
御することができる。
The resistance value of the gate wiring film is obtained by changing its width in the first embodiment, and by changing its width and length in the second embodiment, but other factors such as thickness and polysilicon wiring The resistance value can be controlled by changing the amount of impurities added to the film.

′第4図は上記ゲート配線膜の抵抗値制御の実施例を示
す部分断面図である。 同図(a )の左端及び右端、
同図(b)及び(C)の右端の一点鎖線Y−Y’は、セ
ル配置領域のゲート電極膜とゲート配線膜との境界の概
略位置を示すものである。
'FIG. 4 is a partial cross-sectional view showing an example of controlling the resistance value of the gate wiring film. The left and right ends of the figure (a),
A dashed-dotted line Y-Y' at the right end of FIGS. 3B and 3C indicates the approximate position of the boundary between the gate electrode film and the gate wiring film in the cell arrangement region.

同図(a )は、FET−Aのゲート配線膜33aの長
さをFET−Bのゲート配線ll33bの長さより長く
して抵抗値を大きくした例である。 同図(b)はゲー
ト配線膜43aの長さを長くし且つその一部の厚さを薄
くして、その抵抗値を制御する例である。 ス同図(C
)は酸化M8に段差を形成し、この段差膜を下地として
、ゲート配線膜53aを被着したもので、そのポリシリ
コン配線長を実質的に長くした例である。
FIG. 3A shows an example in which the length of the gate wiring film 33a of FET-A is made longer than the length of gate wiring 113b of FET-B to increase the resistance value. FIG. 2B shows an example in which the resistance value of the gate wiring film 43a is controlled by increasing the length of the gate wiring film 43a and decreasing the thickness of a portion thereof. Same figure (C
) is an example in which a step is formed in oxide M8, and a gate wiring film 53a is deposited using this step film as a base, and the length of the polysilicon wiring is substantially increased.

又抵抗体を介してゲート配線を行ない、その抵抗値を制
御することもできる。 第5図はその一例を示す部分断
面図である。 9層11に不純物をドープして、N型拡
散抵抗層61を形成する。
Alternatively, the resistance value can be controlled by wiring the gate through a resistor. FIG. 5 is a partial sectional view showing one example. The nine layers 11 are doped with impurities to form an N-type diffused resistance layer 61.

符号63aはポリシリコン膜から成るゲート配線膜で、
60は拡散抵抗層61とポリシリコンゲート配RH63
aとを接続する金属配線である。
Reference numeral 63a is a gate wiring film made of a polysilicon film;
60 is a diffused resistance layer 61 and a polysilicon gate interconnection RH 63
This is a metal wiring that connects a.

ゲート配線膜の抵抗値は拡散抵抗層61とポリシリコン
ゲート配線膜63aのそれぞれの抵抗値の和となる。 
この場合には、N型拡散抵抗層61と9層11との間に
接合容量が形成され、ゲート電極膜の電圧立ち上がりに
はこの接合容量の効果が加わり、ポリシリコン等のみで
形成した場合と比較し、ゲート配線膜の抵抗値が同一で
あっても、電圧立ち上がり時間(スイッチング暗部)を
更に遅らせることが可能である。
The resistance value of the gate wiring film is the sum of the respective resistance values of the diffused resistance layer 61 and the polysilicon gate wiring film 63a.
In this case, a junction capacitance is formed between the N-type diffused resistance layer 61 and the 9-layer 11, and the effect of this junction capacitance is added to the voltage rise of the gate electrode film, which is different from the case where it is formed only of polysilicon or the like. In comparison, even if the resistance value of the gate wiring film is the same, it is possible to further delay the voltage rise time (switching dark part).

上記実施例では、すべてNチャネルDV  MOS  
FETについてのみ述べたが、構成半導体層の導電型を
逆にしたPチャネルDV  MOS  FETに対して
も本発明を適用できることは勿論である。 更にモノリ
シックに内蔵するMOS  FET構体の数も、FET
−A及びBの2個に制限されることはない。
In the above embodiment, all N-channel DV MOS
Although only the FET has been described, it goes without saying that the present invention can also be applied to a P-channel DV MOS FET in which the conductivity types of the constituent semiconductor layers are reversed. Furthermore, the number of monolithically built-in MOS FET structures is also
- It is not limited to two, A and B.

IGBTの構成は、DV  MOS  FETのMOS
  FET構体の他方の基板主面側の一導電型ドレイン
領域上に更に反対導電型層を積層した半導体装置である
。 従って本発明は、IGBTに対しても容易に適用す
ることができる。 ス同様のMOS  FET構体を有
する二重拡散横型MO8FET等に対しても本発明を適
用できることは勿論である。
IGBT configuration is DV MOS FET MOS
This is a semiconductor device in which a layer of an opposite conductivity type is further laminated on a drain region of one conductivity type on the other substrate main surface side of the FET structure. Therefore, the present invention can be easily applied to IGBTs as well. It goes without saying that the present invention can also be applied to a double diffusion horizontal MO8FET having a MOS FET structure similar to that of the MO8FET.

上記実施例のソース多出力のDV  MOS  FET
ではドレイン電極は共通であるか、本発明の半導体装置
は必ずしもこれに限定されないで、複数の分離されたド
レイン電極を持っていても差し支えない。
Source multi-output DV MOS FET of the above embodiment
Is the drain electrode common? The semiconductor device of the present invention is not necessarily limited to this, and may have a plurality of separated drain electrodes.

し発明の効果コ 本発明のソース多出力電力用MO3PET等においては
、構成する複数のMOS  FET構体はそれぞれにゲ
ート配線膜を有し、これまで述べたようにその抵抗値を
個々に所望値とすることができるので、各FET!s体
のそれぞれのゲート電極電圧の立ち上がり特性を制御し
、スイッチング特性等を容易に変えることができる。 
本発明により、ソース多出力電力用MO3FET等の応
用範囲を著しく拡大させることが可能となった。
Effects of the Invention In the MO3PET for source multi-output power of the present invention, each of the plurality of MOS FET structures has a gate wiring film, and as described above, the resistance value can be adjusted individually to a desired value. Because each FET can be! The rising characteristics of the gate electrode voltage of each s-body can be controlled, and the switching characteristics etc. can be easily changed.
The present invention has made it possible to significantly expand the range of applications of source multi-output power MO3FETs and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a )は本発明の半導体装!の第1実施例の平
面概略図、同図(b)はその部分断面図、第2図は本発
明の詳細な説明する図で、同図(a)は応用回路例、同
図(b)はゲート入力電圧波形図、同図(C)はゲート
電極膜の電圧波形図、第3図は本発明の半導体装置の第
2実施例の平面概略図、第4図及び第5図は本発明の半
導体装置のゲート配・線膜の実施例を示す部分断面図、
第6図<a)は従来の半導体装置の平面概略図、同図(
b)はその部分断面図、同図(C)は単位FETセルの
配置を示す部分平面図、第7図は課題を説明するための
応用回路図である。 1・・・半導体基板、  1a・・・N4ドレイン領域
、1b・・・Nドレイン領域、  2,12,22,3
2゜42.52.62・・・ゲート引き出し用ボンデイ
ンパット、  3a、3b、13a、13b、23a。 23b 、33a 、33b 、43a 、53a 。 63 a =−・ゲート配線膜、 5a、5b、25a
。 25b・・・ソース電極膜、 6・・・Pベース領域、
7・・・N1ンース領域、 8・・・ゲート酸化膜、 
9・・層間絶縁膜、 Σ旦1口・・・本発明のDV  
MOS  PET、  50a、50b−#mゲート型
トランジスタ楕構体MOS  FET−A又はB)、Y
−Y’線・・・ゲート配線膜とゲート酸化膜との境界。
FIG. 1(a) shows the semiconductor device of the present invention! FIG. 2 is a schematic plan view of the first embodiment of the present invention, FIG. 2 is a partial sectional view thereof, FIG. 3 is a diagram of the gate input voltage waveform, FIG. A partial cross-sectional view showing an example of a gate wiring/wiring film of a semiconductor device,
FIG. 6<a) is a schematic plan view of a conventional semiconductor device;
b) is a partial sectional view thereof, FIG. 7(C) is a partial plan view showing the arrangement of unit FET cells, and FIG. 7 is an applied circuit diagram for explaining the problem. 1... Semiconductor substrate, 1a... N4 drain region, 1b... N drain region, 2, 12, 22, 3
2゜42.52.62...Bondein pad for gate extraction, 3a, 3b, 13a, 13b, 23a. 23b, 33a, 33b, 43a, 53a. 63 a =--gate wiring film, 5a, 5b, 25a
. 25b... Source electrode film, 6... P base region,
7...N1 base region, 8...Gate oxide film,
9...Interlayer insulating film, Σdan 1 mouth...DV of the present invention
MOS PET, 50a, 50b-#m gate type transistor elliptical structure MOS FET-A or B), Y
-Y' line: Boundary between gate wiring film and gate oxide film.

Claims (1)

【特許請求の範囲】[Claims] 1半導体基板の一方の主表面に露出する表面層を有する
一導電型ドレイン領域と、このドレイン領域の前記表面
層に選択的に形成される反対導電型ベース領域と、この
ベース領域の表面層に選択的に形成される一導電型ソー
ス領域と、このソース領域と前記ドレイン領域とに挟ま
れる前記ベース領域の露出面上に絶縁体膜を介して積層
されるゲート電極膜と、ゲート電極膜に接続するゲート
配線膜と、前記ソース領域とオーミック接触をするソー
ス電極膜とを有する複数の絶縁ゲート型トランジスタ構
体と、前記ゲート配線膜の複数と接続するゲート引き出
し用ボンディングパッドとを具備し、且つ複数の前記ゲ
ート配線膜の電気抵抗が異なることを特徴とする半導体
装置。
a drain region of one conductivity type having a surface layer exposed on one main surface of one semiconductor substrate; a base region of an opposite conductivity type selectively formed on the surface layer of this drain region; a source region of one conductivity type selectively formed; a gate electrode film laminated via an insulating film on the exposed surface of the base region sandwiched between the source region and the drain region; A plurality of insulated gate transistor structures each having a connected gate wiring film and a source electrode film in ohmic contact with the source region, and a gate lead-out bonding pad connected to the plurality of gate wiring films, and A semiconductor device characterized in that the plurality of gate wiring films have different electrical resistances.
JP2030905A 1990-02-10 1990-02-10 Semiconductor device Pending JPH03235368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2030905A JPH03235368A (en) 1990-02-10 1990-02-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2030905A JPH03235368A (en) 1990-02-10 1990-02-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03235368A true JPH03235368A (en) 1991-10-21

Family

ID=12316739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2030905A Pending JPH03235368A (en) 1990-02-10 1990-02-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03235368A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240516A (en) * 1994-02-28 1995-09-12 Mitsubishi Electric Corp Field effect type semiconductor device and its manufacture
JPH0832060A (en) * 1994-07-13 1996-02-02 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof
JPH08227996A (en) * 1995-02-20 1996-09-03 Fuji Electric Co Ltd Semiconductor device
JP2000012839A (en) * 1998-06-25 2000-01-14 Nec Kansai Ltd Semiconductor device
EP1296378A1 (en) * 2001-09-21 2003-03-26 STMicroelectronics S.r.l. MOS semiconductor device and manufacturing process thereof
CN104347693A (en) * 2013-07-23 2015-02-11 北大方正集团有限公司 Power semiconductor device and manufacturing method thereof
JP2016031964A (en) * 2014-07-28 2016-03-07 ルネサスエレクトロニクス株式会社 Semiconductor device
WO2017029748A1 (en) * 2015-08-20 2017-02-23 株式会社日立製作所 Semiconductor device, power module, power converter, vehicle, and train carriage
JP2020074382A (en) * 2018-01-09 2020-05-14 ローム株式会社 Semiconductor device
JP2021007165A (en) * 2014-05-12 2021-01-21 ローム株式会社 Semiconductor device
JP2021122076A (en) * 2017-01-17 2021-08-26 富士電機株式会社 Semiconductor device
US11942531B2 (en) 2014-05-12 2024-03-26 Rohm Co., Ltd. Semiconductor device including sense insulated-gate bipolar transistor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240516A (en) * 1994-02-28 1995-09-12 Mitsubishi Electric Corp Field effect type semiconductor device and its manufacture
JPH0832060A (en) * 1994-07-13 1996-02-02 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof
JPH08227996A (en) * 1995-02-20 1996-09-03 Fuji Electric Co Ltd Semiconductor device
JP2000012839A (en) * 1998-06-25 2000-01-14 Nec Kansai Ltd Semiconductor device
US6919252B2 (en) 2001-09-21 2005-07-19 Stmicroelectronics S.R.L. Process for manufacturing MOS semiconductor device having inactive zone with alternating thickness silicon oxide layer
US6750512B2 (en) 2001-09-21 2004-06-15 Stmicroelectronics S.R.L. MOS semiconductor device having inactive zone with alternating thickness silicon oxide layer located between a semiconductor region and a conductive layer
EP1296378A1 (en) * 2001-09-21 2003-03-26 STMicroelectronics S.r.l. MOS semiconductor device and manufacturing process thereof
CN104347693A (en) * 2013-07-23 2015-02-11 北大方正集团有限公司 Power semiconductor device and manufacturing method thereof
JP2021007165A (en) * 2014-05-12 2021-01-21 ローム株式会社 Semiconductor device
US11942531B2 (en) 2014-05-12 2024-03-26 Rohm Co., Ltd. Semiconductor device including sense insulated-gate bipolar transistor
JP2016031964A (en) * 2014-07-28 2016-03-07 ルネサスエレクトロニクス株式会社 Semiconductor device
WO2017029748A1 (en) * 2015-08-20 2017-02-23 株式会社日立製作所 Semiconductor device, power module, power converter, vehicle, and train carriage
JP2021122076A (en) * 2017-01-17 2021-08-26 富士電機株式会社 Semiconductor device
JP2020074382A (en) * 2018-01-09 2020-05-14 ローム株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US7606082B2 (en) Semiconductor circuit, inverter circuit, semiconductor apparatus, and manufacturing method thereof
JPH03235368A (en) Semiconductor device
US6878996B2 (en) MOS power transistor
US6778366B2 (en) Current limiting protection circuit
US6972475B2 (en) Semiconductor device
JPS641067B2 (en)
JP2005235892A (en) Semiconductor device
KR0141600B1 (en) Integrated semiconductor device
JPH0242764A (en) Vertical type mosfet
JPH07114279B2 (en) Semiconductor device
JPS61144875A (en) Mos integrated circuit
JP2602974B2 (en) CMOS semiconductor integrated circuit device
US10461741B2 (en) Power switch and semiconductor device thereof
JP2004228317A (en) Semiconductor memory device
JP3431127B2 (en) Electronic device and electronic switch device
JPH01282858A (en) Semiconductor device
JPH04132266A (en) Semiconductor device
JPH11177023A (en) Semiconductor device
JP3002096B2 (en) Output buffer circuit
JPS6355218B2 (en)
JP2002176347A (en) Overcurrent limiting semiconductor device
JP2001015590A (en) Semiconductor integrated circuit
JPS59225A (en) Bidirectional controlling circuit
JPH0521791A (en) High-voltage field-effect transistor and ic
JPS62232210A (en) Filter circuit for integrated device