JPH03225250A - Measuring instrument for refractive index distribution - Google Patents

Measuring instrument for refractive index distribution

Info

Publication number
JPH03225250A
JPH03225250A JP1961890A JP1961890A JPH03225250A JP H03225250 A JPH03225250 A JP H03225250A JP 1961890 A JP1961890 A JP 1961890A JP 1961890 A JP1961890 A JP 1961890A JP H03225250 A JPH03225250 A JP H03225250A
Authority
JP
Japan
Prior art keywords
refractive index
cell
cylindrical glass
light
matching liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1961890A
Other languages
Japanese (ja)
Other versions
JP2746714B2 (en
Inventor
Tadakatsu Shimada
忠克 島田
Kazuo Kamiya
和雄 神屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2019618A priority Critical patent/JP2746714B2/en
Publication of JPH03225250A publication Critical patent/JPH03225250A/en
Application granted granted Critical
Publication of JP2746714B2 publication Critical patent/JP2746714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/412Index profiling of optical fibres

Abstract

PURPOSE:To measure the refractive index distribution of a preform with high accuracy by controlling the temp. of circular cylindrical glass and matching liquid always constant. CONSTITUTION:The measuring instrument has an incident optical system 6 which makes rays incident from the direction perpendicular from the central axis of the circular cylindrical glass 1 and an image pickup means 10 which receives exit light 9 entering from the incident optical system 6 and past the circular cylindrical glass 1 and delivers the electric signal of the photodetected image. The circular cylindrical glass 1 is mounted in a cell 2 filled with the matching liquid 3 having the refractive index approximately equal to the refractive index in the outermost peripheral part thereof. A quartz glass window 21 perpendicular to the incident light is provided in the incident position and exit position of the ray of the cell 2 and a jacket 22 i which a liquid medium 23 for controlling the temp. of the matching liquid 3 circulates is provided on the outer side of the cell 2. The exit light 9 is received by the image pickup means 10 and the exit angle phi thereof is measured. Since the temp. of the matching liquid 3 is kept constant by the liquid medium 23, the fluctuation in the refractive angle of the matching liquid 3 an the circular cylindrical glass 1 or the quartz glass window 21 is suppressed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば光フアイバ用プリフォームやロッドレ
ンズに使用される円柱ガラスの屈折率分布の測定装置に
関するものである。
The present invention relates to an apparatus for measuring the refractive index distribution of cylindrical glass used, for example, in optical fiber preforms or rod lenses.

【従来の技術】[Conventional technology]

光フアイバ用プリフォーム(母材)やロッドレンズに使
用される円柱ガラスは、半径方向の屈折率がほぼ2乗分
布、軸方向の屈折率は均一になっている。これを線引き
して光ファイバが形成される。線引き前のプリフォーム
の屈折率分布を正確に測定することが良好な製品を得る
ために必要である。 屈折率分布の測定法としては、例えば特開昭63−95
336号公報に光フアイバ用のプリフォームの中心軸と
垂直方向から光線を入射させ、その出射角を求めてプリ
フォームの屈折率分布を測定する方法が開示されている
。第1O図には同公報に開示された屈折率分布測定装置
を示しである。同図に示すように光源6とレンズ7から
なる入射光学系から、セル2内のマツチングオイル3中
に設置されたプリフォームlに入射され、プリフォーム
lを通って出射された出射光はレンズ51を有する出射
光学系を通過してTVカメラ52の観察面に投影される
。 第11図に示すようにプリフォームlから出射されTV
カメラ52の観察面43に投影された出射光の0次の回
折光スポット40.1次の回折光スポット41.2次の
回折光スポット42・の中か60次の回折光スポット4
0を2次元的に解析して取り出し、この0次の回折光ス
ポット40のX座標Xrと出射光学系の焦点距離fとか
ら出射角φを φ= tan−’ fxr/f) で求めている。そして、この出射角φからプリフォーム
1の屈折率分布n (rlを次式で算出している。 特開昭63−95337号公報に開示された屈折率分布
の測定方法は、出射光学系にスリットを設けて出射光の
0次の回−折光スポット40だけを取り出すことにより
、高次の回折光スポットの影響を受けずに屈折率分布を
測定している。
Cylindrical glass used for optical fiber preforms (base materials) and rod lenses has a refractive index in the radial direction that has a substantially square distribution, and a refractive index in the axial direction that is uniform. An optical fiber is formed by drawing this. Accurately measuring the refractive index distribution of the preform before drawing is necessary to obtain a good product. As a method for measuring refractive index distribution, for example, Japanese Patent Application Laid-Open No. 1983-1995
Japanese Patent Application No. 336 discloses a method in which a light beam is made incident in a direction perpendicular to the central axis of a preform for an optical fiber, and its exit angle is determined to measure the refractive index distribution of the preform. FIG. 1O shows a refractive index distribution measuring device disclosed in the same publication. As shown in the figure, the output light from an incident optical system consisting of a light source 6 and a lens 7 enters a preform l installed in a matching oil 3 in a cell 2, and is emitted through the preform l. The light passes through an output optical system having a lens 51 and is projected onto the viewing surface of the TV camera 52. As shown in FIG.
The 60th-order diffracted light spot 4 is among the 0th-order diffracted light spot 40, the 1st-order diffracted light spot 41, the 2nd-order diffracted light spot 42, and the 60th-order diffracted light spot 42 of the output light projected onto the observation surface 43 of the camera 52.
0 is extracted by two-dimensional analysis, and the output angle φ is determined from the X coordinate Xr of this 0th order diffracted light spot 40 and the focal length f of the output optical system as follows: φ=tan-'fxr/f) . Then, the refractive index distribution n (rl) of the preform 1 is calculated from this exit angle φ using the following formula. By providing a slit and extracting only the zero-order diffracted light spot 40 of the emitted light, the refractive index distribution is measured without being influenced by higher-order diffracted light spots.

【発明が解決しようとする課題] しかし、このような測定装置を用いて屈折率を求めた場
合、マツチング3液の温度変化によってマツチング液3
とプリフォームl、あるし)はセル2の人出先口である
石英ガラス窓との屈折角が変化し、求める出射角φに誤
差が生じることがある。また、測定中に温度変化が生じ
ると、屈折率分布が点対称のプリフォーム1を測定した
場合でも屈折率分布が非対称になるという問題があった
。 本発明は上記の問題を解決するためになされたもので、
プリフォームのより正確な屈折率分布を得られる屈折率
分布の測定装置を提供することを目的とする。 【課題を解決するための手段】 上記課題を解決するための本発明を適用する屈折率分布
の測定装置を実施例に対応する図面を用いて説明する。 第1図および第2図に示すように本発明の屈折率分布の
測定装置は、円柱ガラス1の中心軸1aと垂直方向から
光線を入射する入射光学系6と、入射光学系6から入射
して円柱ガラスlを通った出射光9を受光してその受光
像の電気信号を送り出す撮像手段lOとを有している0
円柱ガラスlはその最外周部の屈折率に略等しいマツチ
ング液3を満たしたセル2に装着されている。第3図に
示すようにセル2の光線の入射位置と出射位置には入射
光に垂直な石英ガラス窓21が設けられ、セル2の外側
にはマツチング液3の液温を制御する液体媒体23が晶
■還するジャケット22が備えられている。
[Problems to be Solved by the Invention] However, when the refractive index is determined using such a measuring device, the temperature of the matching liquid 3 changes due to the temperature change of the matching liquid 3.
The refraction angle of the preform L and preform L with respect to the quartz glass window that is the exit port of the cell 2 changes, and an error may occur in the obtained output angle φ. Furthermore, if a temperature change occurs during measurement, there is a problem in that the refractive index distribution becomes asymmetric even when measuring the preform 1 whose refractive index distribution is point symmetrical. The present invention was made to solve the above problems,
It is an object of the present invention to provide a refractive index distribution measuring device that can obtain a more accurate refractive index distribution of a preform. [Means for Solving the Problems] A refractive index distribution measuring apparatus to which the present invention is applied to solve the above problems will be described with reference to drawings corresponding to embodiments. As shown in FIGS. 1 and 2, the refractive index distribution measuring device of the present invention includes an entrance optical system 6 that receives light from a direction perpendicular to the central axis 1a of a cylindrical glass 1; and an imaging means lO for receiving the emitted light 9 passing through the cylindrical glass l and sending out an electric signal of the received light image.
A cylindrical glass l is mounted in a cell 2 filled with a matching liquid 3 having a refractive index approximately equal to the refractive index of the outermost portion of the cylindrical glass l. As shown in FIG. 3, a quartz glass window 21 perpendicular to the incident light is provided at the incident and exit positions of the light beam of the cell 2, and a liquid medium 23 for controlling the temperature of the matching liquid 3 is provided outside the cell 2. A jacket 22 is provided which allows the crystallization.

【作用】[Effect]

本発明の測定装置では、円柱ガラスの中心軸laと垂直
方向から入射して出た出射光9は撮像手段10によって
受光されてその出射角φが測定される。マツチング液3
の温度は、セル2のジャケット22を循環して温度制御
する液体媒体23により一定に保たれているため、マツ
チング液3と円柱ガラスlや石英ガラス窓21との屈折
角の変動が抑制される。 〔実施例] 以下、本発明の実施例を詳細に説明する。 第1図には本発明の屈折率分布測定装置の一実施例の概
略構成、第2図には測定装置における光路が示しである
。これらの図において、2はプリフォームlを装着した
セルであり、セル2内にはプリフォームlの表面におけ
る急激な屈折率変化を除くためにマ・ンチングオイル3
が満たされている。プリフォーム1は移動テーブル4に
よりセル3ごと移動可能である。 5は例えばHe −N eレーザ発振器、からなる光源
、6は入射光学系であり、入射光学系6は光源5からの
入射光をプリフォームlの中心で最小になるように収斂
している。7a・7bはミラー8はプリフォーム1から
出射した出射光9の投影像を形成するスクリーン、lO
はスクリーン8に投影された投影像を観察するTVカメ
ラ、11はTVカメラlOで得た投影像の位置から出射
角を求めて屈折率分布を演算する制御部である。この装
置全体はプリフォームlの測定温度に設定した恒温室に
設置されている。 第3図にセル2の拡大図を示す、セル2は直方体状の容
器で、そのM2aと底面には機械的に研磨された石英ガ
ラスの2.21が設けられている。 プリフォーム1はその側面を貫通して装着される。セル
2の内部にはプリフォームlの最外周部と屈折率が略等
しいマツチングオイル3が満たされ、セル2の外側には
液状媒体23を入れたジャケット22が取り付けられて
いる。第4図に示すように、ジャケット22は媒体流入
管24および媒体流出管25を介して液温調整容器31
に連結され、液状媒体23の循環回路が形成されている
。36はポンプである。 セル2の内部にはマツチングオイル3の温度を測定する
温度検出部33のセンサ32が取り付けられている。温
度検出部33にはその信号に基いて液状媒体23の温度
を調節する温度制御部35が接続され、液温調整容器3
1にはその温度調節体34が収容されている。 第5図は制御部11の構成を示すブロック図である。同
図において、12はTVカメラlOで観察したスクリー
ン8上の投影像40〜42(第6図参照)のデータを蓄
えるフレームメモリ、13はフレームメモリ12に蓄え
られたデータを2値化し直線近似を行なう演算手段、1
4は演算手段13で得た直線とプリフォーム1の中心軸
1aと垂直で入射光が通る平面との交点を求める位置算
出手段、15は位置算出手段14で求めた交点の座標か
ら出射角φを演算する出射角演算手段である。16は出
射角演算手段で演算した出射角φによりプリフォームl
の屈折率分布を演算する屈折率分布演算手段、17は表
示部および記録部からなる出力手段である。 プリフォームlの屈折率分布測定は、測定装置全体を測
定温度に対して±1℃以内に設定した恒温室に設置して
行なう、また、温度制御装置のポンプ36を駆動して液
状媒体23を循環させ、マツチング液3の液温を測定温
度に対して±0.lT:以内に調整しておく。 光源5から送られた光は、第2図に示すように光フアイ
バ用のプリフォームlの中心軸1aに垂直な平面Pを通
り、ミラー7aで反射してプリフォームlに入射し、屈
折されて出射する。プリフォームlを通った出射光9は
ミラー7bで反射し、プリフォームlがない場合、つま
りセル2およびマツチングオイル3を通って出射された
光線と東直なスクリーン8に至る。この入射光と出射光
9の点a、b、cはプリフォームlの軸方向の屈折率に
変化がない場合は平面P上に存在するが、実際にはプリ
フォーム1により散乱されて第6図のように投影される
。その各投影像40〜42をTVカメラ10で観察し、
その出力信号をフレームメモリ12に取り込む6次に、
フレームメモリ12に蓄えられた各投影像のデータを演
算手段13で2値化して最小2乗法により直線近似を行
ない、同図に示す近似直線20を求める。その後1位置
算出手段14で近似直線20とプリフォームlの中心軸
2と垂直で入射光が通る平面、すなわち第6図に示すy
軸との交点’jcを求め、プリフォームlのない場合、
つまりセル28よびマツチングオイル3を通る出射光の
投影像を基準点Oとした交点Ycの座標値から出射角演
算手段15で出射角φを演算し、演算した出射角φをメ
モリL8で蓄える。 この動作を移動テーブル4を移動させながらブJフオー
ム1の半径方向の各位置で行ない、各位置における出射
角φを求めてメモリ18に記憶させる。このメモリ18
に記憶させた各出射角φを屈折率分布演算手段16に送
って屈折率分布n tr> を演算して出力手段17に
送る。 測定中に例えば測定装置から発生する熱によってマツチ
ング液3の温度が変動した場合でも、マツチング液3の
温度はセンサ32により常時測定され、温度制御部35
が循環する液状媒体23の液温を調整することによって
常に一定に保たれる。そのため、マツチング液3とプリ
フォームlや石英ガラス窓21との屈折角の変動が抑制
され、出射角φがばらつくことがなく、正確な屈折率分
布を求めることができる。 上記のようにして、例えば第7図に示すようにコアの最
大屈折率n1でクラッドの屈折率n2のプリフォームl
の入射位置rと出射角φの関係を測定した結果を第8図
に示す、そして第8図に示す出射角φにより屈折率分布
nfrlを求めると第9図に示す特性を得ることができ
た。この測定を30回繰り返して次式で示す比屈折率差
Δ Δln+−nalX100/n を求め、この比屈折率差Δの標準偏差0を算出して比屈
折率差Δで正規化した結果、 (o/Δ) =0.001 を得ることができた。 なお上記実施例においてはスクリーン8とTVカメラl
Oで出射光の投影像を観察する場合について説明したが
、撮像素子により投影像を観察しても上記実施例と同様
な作用を奏することができる。
In the measuring device of the present invention, the emitted light 9 that enters the cylindrical glass in a direction perpendicular to the central axis la and exits is received by the imaging means 10 and its emitted angle φ is measured. Matching liquid 3
Since the temperature of is kept constant by the liquid medium 23 which circulates through the jacket 22 of the cell 2 and controls the temperature, fluctuations in the refraction angle between the matching liquid 3 and the cylindrical glass l or the quartz glass window 21 are suppressed. . [Examples] Examples of the present invention will be described in detail below. FIG. 1 shows a schematic configuration of an embodiment of the refractive index distribution measuring device of the present invention, and FIG. 2 shows the optical path in the measuring device. In these figures, 2 is a cell equipped with a preform l, and a machining oil 3 is installed in the cell 2 to eliminate sudden changes in refractive index on the surface of the preform l.
is fulfilled. The preform 1 can be moved along with the cells 3 by a moving table 4. 5 is a light source consisting of, for example, a He-N e laser oscillator; 6 is an input optical system; the input optical system 6 converges the incident light from the light source 5 so as to be minimized at the center of the preform l. 7a and 7b, the mirror 8 is a screen that forms a projected image of the emitted light 9 emitted from the preform 1;
1 is a TV camera for observing the projected image projected on the screen 8, and 11 is a control unit that determines the exit angle from the position of the projected image obtained by the TV camera IO and calculates the refractive index distribution. The entire apparatus is installed in a constant temperature room set to the temperature at which the preform I is measured. FIG. 3 shows an enlarged view of the cell 2. The cell 2 is a rectangular parallelepiped-shaped container, and its M2a and bottom surface are provided with mechanically polished quartz glass 2.21. The preform 1 is mounted through its side. The inside of the cell 2 is filled with a matching oil 3 having a refractive index substantially equal to that of the outermost periphery of the preform 1, and a jacket 22 containing a liquid medium 23 is attached to the outside of the cell 2. As shown in FIG.
A circulation circuit for the liquid medium 23 is formed. 36 is a pump. A sensor 32 of a temperature detection section 33 for measuring the temperature of the matching oil 3 is attached inside the cell 2. A temperature control unit 35 is connected to the temperature detection unit 33 and controls the temperature of the liquid medium 23 based on the signal.
1 houses the temperature regulator 34 thereof. FIG. 5 is a block diagram showing the configuration of the control section 11. As shown in FIG. In the figure, 12 is a frame memory that stores data of projected images 40 to 42 (see FIG. 6) on the screen 8 observed with the TV camera 1O, and 13 is a frame memory that binarizes the data stored in the frame memory 12 and performs linear approximation. calculation means for performing 1
4 is a position calculation means for calculating the intersection of the straight line obtained by the calculation means 13 and a plane perpendicular to the central axis 1a of the preform 1 and through which the incident light passes; 15 is the output angle φ from the coordinates of the intersection obtained by the position calculation means 14. This is an exit angle calculation means that calculates. 16 is the preform l based on the output angle φ calculated by the output angle calculation means.
17 is an output means consisting of a display section and a recording section. The refractive index profile measurement of the preform I is carried out by installing the entire measuring device in a constant temperature room set within ±1°C of the measurement temperature, and by driving the pump 36 of the temperature control device to pump the liquid medium 23. The temperature of the matching liquid 3 is kept within ±0. lT: Adjust within. As shown in FIG. 2, the light sent from the light source 5 passes through a plane P perpendicular to the central axis 1a of the optical fiber preform l, is reflected by a mirror 7a, enters the preform l, and is refracted. and emit light. The emitted light 9 passing through the preform 1 is reflected by the mirror 7b, and reaches the screen 8 which is perpendicular to the light rays emitted when the preform 1 is not present, that is, through the cell 2 and the matching oil 3. Points a, b, and c of the incident light and the outgoing light 9 exist on the plane P if there is no change in the refractive index in the axial direction of the preform 1, but in reality they are scattered by the preform 1 and Projected as shown. Observing each of the projected images 40 to 42 with the TV camera 10,
The sixth step is to take the output signal into the frame memory 12.
The data of each projection image stored in the frame memory 12 is binarized by the calculating means 13 and linear approximation is performed by the method of least squares to obtain an approximate straight line 20 shown in the figure. After that, the first position calculating means 14 calculates the approximate straight line 20 and the plane perpendicular to the central axis 2 of the preform l and through which the incident light passes, that is, y as shown in FIG.
Find the intersection 'jc with the axis, and if there is no preform l,
That is, the output angle calculation means 15 calculates the output angle φ from the coordinate values of the intersection Yc with the projected image of the output light passing through the cell 28 and the matching oil 3 as the reference point O, and the calculated output angle φ is stored in the memory L8. . This operation is performed at each position in the radial direction of the beam 1 while moving the moving table 4, and the output angle φ at each position is determined and stored in the memory 18. This memory 18
The respective exit angles φ stored in are sent to the refractive index distribution calculation means 16 to calculate the refractive index distribution n tr> and sent to the output means 17. Even if the temperature of the matching liquid 3 fluctuates due to heat generated from the measuring device during measurement, the temperature of the matching liquid 3 is constantly measured by the sensor 32, and the temperature controller 35
is kept constant by adjusting the temperature of the circulating liquid medium 23. Therefore, fluctuations in the refraction angle between the matching liquid 3 and the preform 1 and the quartz glass window 21 are suppressed, and the output angle φ does not vary, making it possible to obtain an accurate refractive index distribution. As described above, for example, as shown in FIG.
Figure 8 shows the results of measuring the relationship between the incident position r and the output angle φ, and when the refractive index distribution nfrl was determined from the output angle φ shown in Figure 8, the characteristics shown in Figure 9 were obtained. . This measurement was repeated 30 times to obtain the relative refractive index difference Δ Δln+−nalX100/n expressed by the following formula, and the standard deviation 0 of this relative refractive index difference Δ was calculated and normalized by the relative refractive index difference Δ. As a result, ( o/Δ) = 0.001. In the above embodiment, the screen 8 and the TV camera l
Although a case has been described in which the projected image of the emitted light is observed using an image sensor, the same effect as in the above embodiment can be achieved even when the projected image is observed using an image sensor.

【発明の効果】【Effect of the invention】

以上説明したように本発明の屈折率分布の測定装置は、
円柱ガラスおよびマツチング液の温度が常に一定に制御
されている。そのため、マツチング液と円柱ガラスやセ
ルの人出先口である石英ガラス窓との屈折角が変化して
出射角に誤差が生じることがなく、プリフォームの屈折
率分布を高精度で測定することができる。
As explained above, the refractive index distribution measuring device of the present invention has the following features:
The temperatures of the cylindrical glass and the matching liquid are always controlled to be constant. Therefore, the refraction angle between the matching liquid and the cylindrical glass or the quartz glass window that serves as the cell's exit port will not change, causing errors in the exit angle, making it possible to measure the refractive index distribution of the preform with high precision. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する装置の実施例の概略側面図、
第2図は上記実施例における屈折率分布測定の原理を示
す説明図、第3図は上記実施例のセルを示す拡大斜視図
、第4図は上記実施例の温度制御装置の概略説明図、第
5図は上記実施例の制御部を示すブロック図、第6図は
上記実施例の投影像を示す図、第7図はプリフォームの
屈折率分布を示す特性図、第8図は上記実施例により測
定した出射角特性図、第9図はその出射角特性から得た
屈折率分布特性図、第10図は従来例の概略平面図、第
11図は従来例の投影像を示す図である。 l・・・プリフォーム  2・・・セノし3・・・マツ
チング液  4・・・移動テーブル5・・・光源   
   6・・・入射光学系7a・7b・・・ミラー 9・・・出射光 11・・・制御部 13・・・演算手段 15・・・出射角演算手段 17・・・出力手段 20・・・近似直線 22・・・ジャケット 24・・・媒体流入管 31・・・液温調整容器 33・・・温度検出部 35・・・温度制御部 8・・・スクリーン lO・・・TVカメラ 12・・・フレームメモリ 14・・・位置算出手段 16・・・演算手段 18・・・メモリ 21・・・石英ガラス窓 23・・・液状媒体 25・・・媒体流出管 32・・・センサ 34・・・温度調節体 36・・・ポンプ 屋杵キn 千イ1と:「 第8図 第9図
FIG. 1 is a schematic side view of an embodiment of an apparatus to which the present invention is applied;
FIG. 2 is an explanatory diagram showing the principle of refractive index distribution measurement in the above embodiment, FIG. 3 is an enlarged perspective view showing the cell of the above embodiment, and FIG. 4 is a schematic explanatory diagram of the temperature control device of the above embodiment. FIG. 5 is a block diagram showing the control section of the above embodiment, FIG. 6 is a diagram showing a projected image of the above embodiment, FIG. 7 is a characteristic diagram showing the refractive index distribution of the preform, and FIG. 8 is a diagram showing the above embodiment. FIG. 9 is a refractive index distribution characteristic diagram obtained from the output angle characteristics measured according to the example, FIG. 10 is a schematic plan view of the conventional example, and FIG. 11 is a diagram showing a projected image of the conventional example. be. l...Preform 2...Senoshi 3...Matching liquid 4...Moving table 5...Light source
6... Incoming optical system 7a, 7b... Mirror 9... Outgoing light 11... Control section 13... Calculating means 15... Outgoing angle calculating means 17... Output means 20... Approximate straight line 22...Jacket 24...Medium inflow pipe 31...Liquid temperature adjustment container 33...Temperature detection section 35...Temperature control section 8...Screen lO...TV camera 12... - Frame memory 14...Position calculating means 16...Calculating means 18...Memory 21...Quartz glass window 23...Liquid medium 25...Medium outflow pipe 32...Sensor 34... Temperature control body 36... Pump shop 1,000 and 1: Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 1、円柱ガラスの中心軸と垂直方向から光線を入射する
入射光学系と、前記入射光学系から入射して円柱ガラス
を通った出射光を受光してその受光像の電気信号を送り
出す撮像手段とを有し、該円柱ガラスがその最外周部の
屈折率に略等しいマッチング液を満たしたセルに装着さ
れた屈折率分布測定装置において、前記セルの光線の入
射位置と出射位置に入射光に垂直な石英ガラス窓が設け
られ、セルの外側にマッチング液の液温を制御する液体
媒体が循環するジャケットが備えられていることを特徴
とする屈折率分布の測定装置。
1. An entrance optical system that enters a light beam from a direction perpendicular to the central axis of the cylindrical glass; and an imaging means that receives the light that enters from the entrance optical system and passes through the cylindrical glass and sends out an electrical signal of the received light image. In a refractive index distribution measuring device installed in a cell in which the cylindrical glass is filled with a matching liquid whose refractive index is approximately equal to the refractive index of the outermost portion of the cylindrical glass, the incident and exit positions of the light beam of the cell are perpendicular to the incident light. 1. An apparatus for measuring refractive index distribution, characterized in that the cell is provided with a quartz glass window, and a jacket in which a liquid medium for controlling the temperature of a matching liquid circulates outside the cell.
JP2019618A 1990-01-30 1990-01-30 Measuring device for refractive index distribution Expired - Fee Related JP2746714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019618A JP2746714B2 (en) 1990-01-30 1990-01-30 Measuring device for refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019618A JP2746714B2 (en) 1990-01-30 1990-01-30 Measuring device for refractive index distribution

Publications (2)

Publication Number Publication Date
JPH03225250A true JPH03225250A (en) 1991-10-04
JP2746714B2 JP2746714B2 (en) 1998-05-06

Family

ID=12004177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019618A Expired - Fee Related JP2746714B2 (en) 1990-01-30 1990-01-30 Measuring device for refractive index distribution

Country Status (1)

Country Link
JP (1) JP2746714B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782120A (en) * 2021-01-28 2021-05-11 清华大学 Method and device for measuring refractive index of transparent solid with convex cambered surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782120A (en) * 2021-01-28 2021-05-11 清华大学 Method and device for measuring refractive index of transparent solid with convex cambered surface
CN112782120B (en) * 2021-01-28 2021-11-26 清华大学 Method and device for measuring refractive index of transparent solid with convex cambered surface

Also Published As

Publication number Publication date
JP2746714B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
US6992779B2 (en) Interferometer apparatus for both low and high coherence measurement and method thereof
US6827442B2 (en) Ophthalmic wavefront measuring devices
JP7153552B2 (en) Variable focal length lens system including focus reference subsystem
JP2008541101A (en) Object surface measuring apparatus and surface measuring method
AU2002313824A1 (en) Ophthalmic wavefront measuring devices
JPH0363009B2 (en)
JP5517097B2 (en) Refractive index measuring device and refractive index measuring method
JP2001281101A (en) Device and method for determining refracting power by spatial resolution
JPH03225250A (en) Measuring instrument for refractive index distribution
JP2001056217A (en) Optical element shape measuring method and device
JP2735104B2 (en) Aspherical lens eccentricity measuring apparatus and measuring method
US5078488A (en) Method and apparatus for determining refractive index distribution
US10761398B2 (en) Imaging ellipsometer system utilizing a tunable acoustic gradient lens
JP3948852B2 (en) Refractive index distribution measuring apparatus and refractive index distribution measuring method
JPH02309228A (en) Measuring method and apparatus of distribution of index of refraction
JP2521736B2 (en) Microscope adjustment inspection device
JPH02309227A (en) Measuring method and apparatus of distribution of index of refraction
JP2505230B2 (en) Method for calibrating laser beam deflection angle measuring device
JP2903263B2 (en) Measuring device for refractive index distribution
JPS61223604A (en) Gap measuring instrument
JPH06347732A (en) Lens meter
JP4629835B2 (en) Abbe number measuring apparatus and Abbe number measuring method
SU408186A1 (en)
JP3155569B2 (en) Dispersion distribution measurement method
JP2624501B2 (en) Method of measuring characteristics of refractive index distribution type cylindrical lens and apparatus used therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees