JP2001056217A - Optical element shape measuring method and device - Google Patents

Optical element shape measuring method and device

Info

Publication number
JP2001056217A
JP2001056217A JP11230398A JP23039899A JP2001056217A JP 2001056217 A JP2001056217 A JP 2001056217A JP 11230398 A JP11230398 A JP 11230398A JP 23039899 A JP23039899 A JP 23039899A JP 2001056217 A JP2001056217 A JP 2001056217A
Authority
JP
Japan
Prior art keywords
optical element
shape
measuring
measured
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11230398A
Other languages
Japanese (ja)
Inventor
Yorio Wada
和田順雄
Masato Yasugaki
安垣誠人
Toshiro Kikuchi
菊池寿郎
Kimihiko Nishioka
西岡公彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11230398A priority Critical patent/JP2001056217A/en
Publication of JP2001056217A publication Critical patent/JP2001056217A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the two-dimensional absolute shape of an optical element and to accurately compute the optical performance of the whole mirror frame unit by measuring the three-dimensional coordinates of an optical element or a mold by a three-dimensional measuring means, and obtaining shape from the obtained measured data. SOLUTION: Coordinates of one or more points on reference parts 7, 8 of a holder 3 are measured first simultaneously with an optical element 2 to be detected. Then the coordinates of one or more points on the surface of the optical element 2 are measured by a three-dimensional measuring apparatus 1. Then, the shape relative to a reference plane is subjected to a transformation based on the measured data of the reference parts 7, 8. At this time, the manufacturing error of the holder 3 is corrected using holder shape measured data. The obtained surface shape data are converted in the point sequence as they are into a surface shape or converted into a surface shape by applying the point sequence to a certain function. The obtained measured data is converted into a surface shape error and the measured shape error is compared with the result of applying the surface shape error data to a function representing the error data, and the difference is two-dimensionally or three- dimensionally displayed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学素子形状測定
方法及び装置に関し、特に、光学素子あるいはそれらを
プラスチック成形、ガラス成形等で製造するときに用い
る型等の絶対形状を測定するための方法と装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the shape of an optical element, and more particularly, to a method for measuring an absolute shape of an optical element or a mold used for manufacturing the optical element by plastic molding or glass molding. And the device.

【0002】[0002]

【従来の技術】レンズやプリズム等の光学素子の面形状
は、光学系の性能を大きく左右するので、絶対面形状測
定は素子の製造工程における品質管理上、重要な課題と
なっている。光学素子の面形状を測定する方法として
は、従来から干渉計が用いられているが、干渉計は参照
面との相対的な比較であり、絶対形状は測定できない。
2. Description of the Related Art Since the surface shape of an optical element such as a lens or a prism greatly affects the performance of an optical system, measurement of an absolute surface shape is an important issue in quality control in a manufacturing process of the element. As a method for measuring the surface shape of an optical element, an interferometer is conventionally used, but the interferometer is a relative comparison with a reference surface and cannot measure an absolute shape.

【0003】また、絶対形状を測定する方法としては、
触針式のスケールが市販されているが、直交する断面形
状を測るものが主であり、2次元での面形状測定が困難
なので、光学素子の非対称な面形状については正しく測
定できない。また、型でも同様の問題があった。
[0003] As a method of measuring the absolute shape,
A stylus-type scale is commercially available, but it mainly measures cross-sectional shapes orthogonal to each other. Since it is difficult to measure the surface shape in two dimensions, it is not possible to correctly measure an asymmetric surface shape of the optical element. Also, the mold had the same problem.

【0004】一方、試料表面の3次元座標を高精度で測
定できる装置として、3次元測定機があるが、一般的に
装置自体の絶対座標系を持たないので、絶対形状が測定
できないという問題点がある。
On the other hand, there is a three-dimensional measuring device as a device capable of measuring the three-dimensional coordinates of a sample surface with high accuracy. However, since the device generally does not have an absolute coordinate system, an absolute shape cannot be measured. There is.

【0005】[0005]

【発明が解決しようとする課題】本発明は従来技術のこ
のような問題点に鑑みてなされたものであり、その目的
は、被検物である光学素子を保持する部材の一部に3次
元測定機の座標基準となる部分を設けて、この部分を光
学素子の形状と同時に測定し、得られた測定値をその基
準に対する座標に変換して光学素子の絶対形状を求める
光学素子形状測定方法及び装置を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and has as its object to provide a three-dimensional structure for a part of a member for holding an optical element which is a test object. An optical element shape measuring method in which a portion serving as a coordinate reference of a measuring machine is provided, and this portion is measured simultaneously with the shape of the optical element, and the obtained measurement value is converted into coordinates with respect to the reference to determine the absolute shape of the optical element. And an apparatus.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の光学素子形状測定方法及び装置は、被検物たる光学
素子あるいは型の3次元座標を測定する3次元座標測定
手段と、該3次元座標測定手段により得られた測定デー
タから形状を求める手段とを有することを特徴とする方
法と装置である。
According to the present invention, there is provided a method and apparatus for measuring the shape of an optical element according to the present invention, comprising: a three-dimensional coordinate measuring means for measuring three-dimensional coordinates of an optical element or a mold as an object; A method for obtaining a shape from measurement data obtained by a dimensional coordinate measuring means.

【0007】この場合に、光学素子の偏心を偏心測定手
段により求めるようにすることが望ましい。その際、光
学素子の偏心測定手段として、光学的手法を用いること
ができる。
In this case, it is desirable to determine the eccentricity of the optical element by the eccentricity measuring means. At that time, an optical method can be used as the eccentricity measuring means of the optical element.

【0008】本発明においては、被検物たる光学素子の
3次元座標を測定する3次元座標測定手段と、その3次
元座標測定手段により得られた測定データを形状を表す
関数にあてはめる手段とを有するので、例えば被検物で
ある光学素子を保持する部材の一部に3次元測定手段の
座標基準となる部分を設けて、この部分を光学素子の形
状と同時に測定することにより、得られた測定値をその
基準に対する座標に変換して光学素子の絶対形状を求め
ることができる。
In the present invention, three-dimensional coordinate measuring means for measuring three-dimensional coordinates of an optical element to be inspected, and means for applying measurement data obtained by the three-dimensional coordinate measuring means to a function representing a shape. Therefore, for example, a part serving as a coordinate reference of the three-dimensional measuring means is provided in a part of a member for holding an optical element, which is a test object, and this part is measured simultaneously with the shape of the optical element. The absolute shape of the optical element can be determined by converting the measured values to coordinates with respect to the reference.

【0009】[0009]

【発明の実施の形態】(第1実施例)図1は本発明の基
本的な構成図を示す。この装置は、3次元座標を測定す
る3次元測定機1と、レンズ、非球面レンズ、ミラー、
非球面ミラー等の被検光学素子2と、それを保持する保
持具3と、測定データから形状を求めるデータ処理部4
とから構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 shows a basic configuration diagram of the present invention. This device includes a three-dimensional measuring machine 1 for measuring three-dimensional coordinates, a lens, an aspherical lens, a mirror,
A test optical element 2 such as an aspherical mirror, a holder 3 for holding the same, and a data processing unit 4 for obtaining a shape from measurement data
It is composed of

【0010】一般的に、3次元測定機1は装置自体の絶
対座標系を持たないため、被検光学素子2の絶対形状を
求めるには外部に座標基準を設け、測定データをその基
準に対する座標に変換する必要がある。
In general, since the three-dimensional measuring machine 1 does not have an absolute coordinate system of the apparatus itself, a coordinate reference is provided externally to obtain the absolute shape of the optical element 2 to be measured, and the measured data is coordinated with respect to the reference. Need to be converted to

【0011】そこで、本発明では、保持具3の一部に3
次元測定機1の座標基準となる部分を設ける。
Therefore, in the present invention, 3
A portion serving as a coordinate reference of the dimension measuring machine 1 is provided.

【0012】図2は、本測定装置で用いた保持具3と保
持具3内に配置された被検光学素子2の断面を示す図で
ある。ここで、座標基準となる部分とは、保持具3にお
いて、被検光学素子2の被検面(図の上側の面)を含む
上側平面部分7と、上側平面部分7の端に設けられたエ
ッジ部分8である。
FIG. 2 is a diagram showing a cross section of the holder 3 used in the present measuring apparatus and the optical element 2 to be inspected arranged in the holder 3. Here, the portion serving as the coordinate reference is provided on the holder 3 at the upper flat portion 7 including the test surface (upper surface in the drawing) of the test optical element 2 and at the end of the upper flat portion 7. This is an edge portion 8.

【0013】図4は、図2で示すような保持具3を用い
て被検光学素子2の形状を測定する際の手順の流れを示
す図である。まず、手順13で保持具の基準部分の測定
を行う。この手順13では、被検光学素子2を保持具3
に納めた状態で、3次元測定機1により保持具3の各基
準部分7、8について、1点以上の座標を被検光学素子
2と共に同時に測定する。
FIG. 4 is a diagram showing a flow of a procedure when measuring the shape of the optical element 2 to be measured using the holder 3 as shown in FIG. First, in step 13, a reference portion of the holder is measured. In this step 13, the test optical element 2 is
, The coordinates of one or more points of the reference portions 7 and 8 of the holder 3 are simultaneously measured by the three-dimensional measuring machine 1 together with the optical element 2 to be measured.

【0014】次の手順14は、被検光学素子形状測定
で、被検光学素子2の面について、1点以上の座標を3
次元測定機1により測定する。
The next step 14 is to measure the shape of the optical element 2 to be inspected.
It is measured by the dimension measuring machine 1.

【0015】こうして求めた被検光学素子2の形状測定
データに対し、保持具3の基準部分7、8の測定データ
を基に、手順15で、基準面に対する形状に変換を行
う。
Based on the measured data of the reference portions 7 and 8 of the holder 3, the shape measurement data of the test optical element 2 thus obtained is converted into a shape with respect to a reference surface in step 15.

【0016】ここで、座標基準となる保持具3の製作誤
差が形状の測定精度に影響するので、図3のように、保
持具3の光学素子を受ける面の中心10と、保持具3の
エッジ部分8の中心11との同心度と、保持具3の面7
と光学素子の受け面の平行度12とを予め3次元測定機
等で測定しておき、手順16で、保持具形状測定データ
として保存しておく。
Here, since the manufacturing error of the holder 3 serving as the coordinate reference affects the measurement accuracy of the shape, as shown in FIG. The concentricity of the edge portion 8 with the center 11 and the surface 7 of the holder 3
The parallelism 12 of the receiving surface of the optical element and the parallelism 12 of the optical element are measured in advance by a three-dimensional measuring device or the like, and stored in step 16 as holder shape measurement data.

【0017】そして、手順15で基準面に対する形状に
変換を行う際、この手順16の保持具形状測定データを
用いて保持具3の製作誤差の補正を行うことで、形状測
定誤差が低減される。
When the shape is converted into the shape with respect to the reference plane in step 15, by correcting the manufacturing error of the holder 3 using the holder shape measurement data in step 16, the shape measurement error is reduced. .

【0018】なお、保持具3の中で被検光学素子2を中
心10の周りで180°回転させて測定を行い、回転前
の測定値との平均値を取ることにより、保持具3の製作
誤差による測定誤差が相殺され、測定精度を向上させる
こともできる。
It is to be noted that the optical element 2 to be measured is rotated by 180 ° around the center 10 in the holder 3 for measurement, and an average value of the measured values before rotation is obtained. The measurement error due to the error is canceled, and the measurement accuracy can be improved.

【0019】このとき、回転前に測定したデータと比較
して乖離が大きい場合、保持具3の中での光学素子2の
落着き具合が悪いことが考えられるので、再度測定すれ
ばなおよい。
At this time, if the deviation is larger than the data measured before the rotation, it is considered that the optical element 2 in the holder 3 is not settled properly, so it is better to measure again.

【0020】次に、このようにして求めた面形状データ
は、点列のまま面形状としてもよいし、点列をある関数
にあてはめて面形状としてもよい。そのような関数とし
ては、多項式、べき級数、ツェルニケ多項式、スプライ
ン関数、点列の補間等がある。
Next, the surface shape data obtained in this way may be a surface shape as it is as a point sequence, or a surface shape by applying the point sequence to a certain function. Such functions include polynomials, power series, Zernike polynomials, spline functions, point sequence interpolation, and the like.

【0021】こうして求めた測定データを設計面形状と
の差、すなわち面形状誤差に変換する。手順17で、面
形状誤差を表わす関数へのあてはめを行うが、その関数
として、例えばツェルニケ多項式を用いればよいが、そ
の他ではスプライン関数、又は、多項式や点列データの
補間等を用いてもよい。
The measured data thus obtained is converted into a difference from the design surface shape, that is, a surface shape error. In step 17, fitting to a function representing a surface shape error is performed. As the function, for example, a Zernike polynomial may be used. In other cases, a spline function, or interpolation of a polynomial or point sequence data may be used. .

【0022】ここで、手順18で、測定された形状誤差
データと、面形状誤差データを表わす関数へあてはめた
結果とを比較して、合致度の確認を行い、その差を2次
元又は3次元表示できるようにすれば、測定時に不具合
が生じた場合、その場で確認できる。合致度が良好な場
合、手順19で、被検光学素子2の2次元絶対形状が求
められる。
Here, in step 18, the measured shape error data is compared with the result of fitting to the function representing the surface shape error data to confirm the degree of matching, and the difference is determined in two or three dimensions. If it can be displayed, if a problem occurs during measurement, it can be confirmed on the spot. If the degree of matching is good, the two-dimensional absolute shape of the test optical element 2 is determined in step 19.

【0023】以上の方法は型にも適用できる。The above method can be applied to a mold.

【0024】ここで、光学素子2あるいは型の偏心は、
形状測定データから求めてもよいが、一般に精度が不十
分なので、偏心測定機を用いる等他の方法で測定を行う
方がよい。偏心測定機の例としては、干渉計、光学式あ
るいは接触式の測定機等を用いればよいが、例えば特開
平9−222380号等に開示されている方法を用いれ
ば、精度良く測定できる。以下に、この測定機について
簡単に説明する。
Here, the eccentricity of the optical element 2 or the mold is
Although it may be obtained from the shape measurement data, since the accuracy is generally insufficient, it is better to perform the measurement by another method such as using an eccentricity measuring device. As an example of the eccentricity measuring device, an interferometer, an optical or contact type measuring device may be used, but for example, a method disclosed in Japanese Patent Application Laid-Open No. 9-222380 or the like can be used for accurate measurement. Hereinafter, this measuring device will be briefly described.

【0025】偏心測定機を図7に示す。この偏心測定機
においては、被検非球面レンズ121が回転可能な回転
ホルダー122内に支持されており、可視半導体レーザ
ー101の点光源から発せられる光束を入射光学系の投
影レンズ103を介して非球面120に入射させる。非
球面120で反射した反射光は観察光学系の結像レンズ
102(この測定機の場合、結像レンズ102は投影レ
ンズ103と共用している)により結像し、顕微鏡対物
レンズ105とズームレンズ106との拡大光学系を通
してCCDカメラ107上にその像が写され、観測が行
われる。
FIG. 7 shows an eccentricity measuring machine. In this eccentricity measuring machine, a test aspheric lens 121 is supported in a rotatable rotary holder 122, and a light beam emitted from a point light source of the visible semiconductor laser 101 is transmitted through a projection lens 103 of an incident optical system. The light enters the spherical surface 120. The reflected light reflected by the aspherical surface 120 forms an image by an image forming lens 102 of the observation optical system (in this case, the image forming lens 102 is shared with the projection lens 103), and the microscope objective lens 105 and the zoom lens The image is captured on the CCD camera 107 through the magnifying optical system 106 and observed.

【0026】また、この偏心測定機においては、非球面
120への入射光束の位置と方同を変えることができる
ように、ミラー111はX1方向に回転可能であり、さ
らに、偏心測定機の上部141は全体として左右方向X
2に移動可能である。加えて、非球面120での反射倍
率を変えるため、可視半導体レーザー101が上下方向
X3に移動可能となるような機構が設けられている。ま
た、観察する反射光束のスポット像のフォーカスを調整
するため、CCDカメラ107、ズームレンズ106、
三角プリズム134及び顕微鏡対物レンズ105は一体
で左右方向X4に移動可能であるように構成されてい
る。
In this eccentricity measuring machine, the mirror 111 is rotatable in the X1 direction so that the position and direction of the light beam incident on the aspherical surface 120 can be changed. 141 is the horizontal direction X as a whole
2 can be moved. In addition, a mechanism is provided so that the visible semiconductor laser 101 can move in the up-down direction X3 in order to change the reflection magnification at the aspheric surface 120. In order to adjust the focus of the spot image of the reflected light beam to be observed, a CCD camera 107, a zoom lens 106,
The triangular prism 134 and the microscope objective lens 105 are configured to be integrally movable in the left-right direction X4.

【0027】この偏心測定機を用いて、非球面の偏心を
決定する二つの自由度(非球面面頂の基準軸からの偏り
δと非球面軸の基準軸に対する傾きε)は、垂直入射法
及び斜入射法と呼ばれる二つの測定法を用いて各々測定
することができる。垂直入射法は、図7(a)に示すよ
うに、非球面軸にほぼ平行に非球面面頂付近の反射光束
を観測する測定法であり、斜入射法は、図7(b)に示
すように、入射光束を非球面軸とある角度をもたせて非
球面周辺部の面にほぼ垂直に入射させ、その反射光束を
観測する測定法である。
Using this eccentricity measuring instrument, two degrees of freedom for determining the eccentricity of the aspherical surface (the deviation δ from the reference axis of the aspherical surface top and the inclination ε of the aspherical surface with respect to the reference axis) are determined by the vertical incidence method. And two oblique incidence methods. The normal incidence method is a measurement method for observing a reflected light beam near the top of the aspheric surface almost parallel to the aspheric axis as shown in FIG. 7A, and the oblique incidence method is shown in FIG. 7B. As described above, this is a measurement method in which an incident light beam is made to enter the surface of the aspherical surface substantially perpendicularly at an angle to the aspherical axis, and the reflected light beam is observed.

【0028】(第2実施例)第1実施例は、光学素子の
2次元絶対形状を測定するため、光学素子を保持する保
持具に座標基準を設ける方法であったが、図5に示すよ
うに、3次元測定機1で光学素子2あるいは型の外周の
座標を測定すれば、保持具に座標基準を設けることが不
要となる。ここで、光学素子2の偏心は測定した形状デ
ータから求めてもよいが、第1実施例と同様、偏心測定
機で測定した方が精度が向上するのでなおよい。
(Second Embodiment) In the first embodiment, in order to measure the two-dimensional absolute shape of the optical element, a method of providing a coordinate reference to a holder for holding the optical element is shown in FIG. In addition, if the coordinates of the outer periphery of the optical element 2 or the mold are measured by the three-dimensional measuring device 1, it is not necessary to provide a coordinate reference for the holder. Here, the eccentricity of the optical element 2 may be obtained from the measured shape data, but it is more preferable to measure the eccentricity by using an eccentricity measuring device, as in the first embodiment, since the accuracy is improved.

【0029】(第3実施例)第1実施例及び第2実施例
は、光学素子単体についての形状測定例であるが、被検
光学素子を含む光学系全体の光学性能を評価したい場合
がある。
Third Embodiment Although the first and second embodiments are examples of measuring the shape of an optical element alone, there is a case where it is desired to evaluate the optical performance of the entire optical system including the optical element to be tested. .

【0030】図6の手順の流れを示す図において、第1
実施例、第2実施例で求めた光学素子の2次元絶対面形
状(手順18)を基に、手順20において、鏡枠ユニッ
トの光学性能の計算を行う。光学性能を表わす尺度とし
ては、例えばMTFを用いる。
In the flow chart of FIG.
In step 20, the optical performance of the lens barrel unit is calculated based on the two-dimensional absolute surface shape of the optical element (procedure 18) obtained in the embodiment and the second embodiment. As a scale representing the optical performance, for example, MTF is used.

【0031】ここで、鏡枠ユニットの光学性能を正しく
計算するには、第1実施例の中で説明した偏心測定機で
測定した光学素子の面間偏心データ(手順21)が必要
になる。また、一般的には、鏡枠ユニット内に組み込ま
れた各光学素子は偏心が発生し、光学性能の低下の原因
になる。したがって、鏡枠内の各光学素子の偏心を組み
上がり偏心測定機で測定し、得られた組み上がり偏心デ
ータ(手順22)も含めて光学性能を計算する必要があ
る。
Here, in order to correctly calculate the optical performance of the lens barrel unit, the inter-plane eccentricity data (procedure 21) of the optical element measured by the eccentricity measuring machine described in the first embodiment is required. Further, generally, each optical element incorporated in the lens barrel unit is decentered, which causes a decrease in optical performance. Therefore, it is necessary to measure the eccentricity of each optical element in the lens frame with a built-up eccentricity measuring instrument and calculate the optical performance including the obtained built-up eccentricity data (procedure 22).

【0032】組み上がり偏心測定機としては、例えば図
8に示すような組み上がり偏心測定機を用いればよい
(OPTRONICS(1995)No.3,120〜
121)。光源である半導体レーザー201からのレー
ザー光を測定用光学系202、ビームスプリッタ204
を介して被測定レンズ203の各面の曲率中心に対して
順々に投射し、この反射光によるスポット像をCCD2
07でとらえ、演算処理部210で画像処理して位置検
出することにより偏心を測定する。この際、被測定レン
ズ203を回転させないため、ビームスプリッタ204
で分けられた測定用光学系202の光軸の延長上にイメ
ージローテータ205を用いた基準軸設定用光学系20
6を設け、イメージローテータ205を回転させると、
基準軸設定用光学系206を往復してきた光束のスポッ
ト像は、CCD207の像面上で回転する。この回転中
心が偏心の基準となり、像面上で回転するスポット像を
回転軌跡上の4点で画像取り込みをしてこれらの位置を
求め、これから回転の基準位置を求め、この基準位置に
対する被測定レンズ203各面の球心像の振れ量を求め
ることにより、組み上がり偏心データが求められる。
As the assembled eccentricity measuring instrument, for example, an assembled eccentricity measuring instrument as shown in FIG. 8 may be used (OPTRONICS (1995) No. 3, 120-).
121). A laser beam from a semiconductor laser 201 as a light source is measured by an optical system for measurement 202 and a beam splitter 204.
Are sequentially projected onto the center of curvature of each surface of the lens 203 to be measured via the
07, the eccentricity is measured by image processing in the arithmetic processing unit 210 and position detection. At this time, since the measured lens 203 is not rotated, the beam splitter 204 is not rotated.
The reference axis setting optical system 20 using the image rotator 205 on the extension of the optical axis of the measurement optical system 202 divided by
6 and rotating the image rotator 205,
The spot image of the light beam reciprocating in the reference axis setting optical system 206 rotates on the image plane of the CCD 207. The center of rotation serves as a reference for eccentricity. A spot image rotating on the image plane is captured at four points on the rotation trajectory, and these positions are obtained. By calculating the shake amount of the spherical image on each surface of the lens 203, the assembled eccentricity data is obtained.

【0033】また、本発明の測定方法及び測定装置は、
レンズやプリズム等の光学素子だけではなく、その光学
素子を一体成形する型の測定にも使用可能である。すな
わち、一体成形の型の断面を簡略化して示す図9を用い
て説明すると、一体成形されるレンズ等の光学素子は、
型6aと型6bの間に樹脂やガラスの媒質を入れ、プレ
スをかけて作製する。そのため、レンズ面の形状の精度
は、この型6a、6bの面形状にある程度左右されてし
まう。そこで、光学素子同様、型の形状も正しく測定す
る必要がある。そこで、本発明の測定方法及び測定装置
を使用すれば、型の2次元絶対形状が測定できることに
なる。
The measuring method and measuring apparatus of the present invention
It can be used not only for measurement of optical elements such as lenses and prisms, but also for measurement of a mold for integrally molding the optical elements. That is, with reference to FIG. 9 which shows a simplified cross section of a mold of integral molding, an optical element such as a lens which is integrally molded is:
A resin or glass medium is put between the molds 6a and 6b, and pressed to produce. Therefore, the accuracy of the shape of the lens surface depends to some extent on the surface shape of the molds 6a and 6b. Therefore, similarly to the optical element, it is necessary to correctly measure the shape of the mold. Therefore, by using the measuring method and the measuring apparatus of the present invention, the two-dimensional absolute shape of the mold can be measured.

【0034】その例を図10〜図12に示す。図10
は、本発明の第1実施例の測定装置を用いて、光学素子
の型6を保持具3内に配置した断面図である。構成、作
用、効果は第1実施例と同様であり、第1実施例と同一
の番号を図示し、それらの説明は省く。
An example is shown in FIGS. FIG.
FIG. 2 is a cross-sectional view in which the optical device mold 6 is disposed in the holder 3 using the measuring apparatus according to the first embodiment of the present invention. The configuration, operation, and effects are the same as those of the first embodiment, and the same reference numerals as those of the first embodiment are shown, and the description thereof is omitted.

【0035】また、図11及び図12は、本発明の第2
実施例の測定方式を用いて、型の測定方法を示した断面
図である。図11は、座標基準が型の側面211にある
場合を示し、図12は、座標基準が型の上面212にあ
る場合を示す。何れの場合も保持具が不要となり、装置
の簡素化が図れる。
FIGS. 11 and 12 show a second embodiment of the present invention.
It is sectional drawing which showed the measuring method of the type | mold using the measuring method of an Example. FIG. 11 shows a case where the coordinate reference is on the side surface 211 of the mold, and FIG. 12 shows a case where the coordinate reference is on the upper surface 212 of the mold. In any case, a holder is not required, and the apparatus can be simplified.

【0036】以上の本発明の光学素子形状測定方法及び
装置は例えば次のように構成することができる。
The optical element shape measuring method and apparatus of the present invention described above can be configured, for example, as follows.

【0037】〔1〕 被検物たる光学素子あるいは型の
3次元座標を測定する3次元座標測定手段と、該3次元
座標測定手段により得られた測定データから形状を求め
る手段とを有することを特徴とする形状測定方法及び装
置。
[1] There are three-dimensional coordinate measuring means for measuring three-dimensional coordinates of an optical element or a mold as a test object, and means for obtaining a shape from measurement data obtained by the three-dimensional coordinate measuring means. Characteristic shape measuring method and apparatus.

【0038】〔2〕 光学素子あるいは型の偏心を偏心
測定手段により求めることを特徴とする上記1記載の形
状測定方法及び装置。
[2] The shape measuring method and apparatus according to the above item 1, wherein the eccentricity of the optical element or the mold is obtained by an eccentricity measuring means.

【0039】〔3〕 光学素子あるいは型の偏心測定手
段として、光学的手法を用いたことを特徴とする上記2
記載の形状測定方法及び装置。
[3] The above-mentioned item 2 characterized in that an optical method is used as the eccentricity measuring means of the optical element or the mold.
The shape measuring method and apparatus according to the above.

【0040】〔4〕 被検物たる被検光学素子あるいは
型の3次元座標を測定する3次元座標測定手段と、前記
被検光学素子あるいは型を保持する部材の一部に、前記
3次元座標測定手段の座標基準となる部分を設けた光学
素子あるいは型の保持部材とを備え、前記3次元座標測
定手段により、前記光学素子あるいは型保持部材上の座
標基準となる部分の一つ以上の点の座標、及び、前記被
検光学素子あるいは型上の一つ以上の点の座標を測定す
ることを特徴とする上記1又は2記載の形状測定方法及
び装置。
[4] A three-dimensional coordinate measuring means for measuring the three-dimensional coordinates of an optical element or a mold to be inspected, and the three-dimensional coordinates are provided on a part of the member holding the optical element or the mold. An optical element or a mold holding member provided with a portion serving as a coordinate reference of the measuring means, and one or more points of the coordinate reference portion on the optical element or the mold holding member provided by the three-dimensional coordinate measuring means. 3. The shape measuring method and apparatus according to claim 1 or 2, wherein the coordinates of (1) and one or more points on the test optical element or the mold are measured.

【0041】〔5〕 被検物たる被検光学素子あるいは
型の3次元座標を測定する3次元座標測定手段と、前記
被検光学素子あるいは型を保持する部材の一部に、前記
3次元座標測定手段の座標基準となる部分を設けた光学
素子あるいは型の保持部材とを備え、前記3次元座標測
定手段により、前記光学素子あるいは型保持部材上の座
標基準となる部分の一つ以上の点の座標、及び、前記被
検光学素子あるいは型上の一つ以上の点の座標を測定
し、前記被検光学素子あるいは型上の一つ以上の点の座
標を、前記光学素子あるいは型保持部材上の座標基準に
対する座標に変換した結果と、前記被検光学素子あるい
は型の形状の設計値との差分を関数にあてはめることを
特徴とする上記2又は4記載の形状測定方法及び装置。
[5] A three-dimensional coordinate measuring means for measuring the three-dimensional coordinates of the optical element or the mold as the object to be inspected, and the three-dimensional coordinates are provided on a part of the member holding the optical element or the mold. An optical element or a mold holding member provided with a portion serving as a coordinate reference of the measuring means, and one or more points of the coordinate reference portion on the optical element or the mold holding member provided by the three-dimensional coordinate measuring means. And the coordinates of one or more points on the test optical element or mold, and the coordinates of one or more points on the test optical element or mold, the optical element or mold holding member. 5. The shape measuring method and apparatus according to the above 2 or 4, wherein a difference between a result of conversion into coordinates with respect to the above coordinate reference and a design value of the shape of the test optical element or the mold is applied to a function.

【0042】〔6〕 面形状を表わす関数として、ツェ
ルニケ多項式を用いたことを特徴とする上記2、4又は
5記載の形状測定方法及び装置。
[6] The shape measuring method and apparatus according to the above item 2, 4 or 5, wherein a Zernike polynomial is used as a function representing the surface shape.

【0043】〔7〕 被検光学素子あるいは型が非球面
レンズあるいはその型であることを特徴とする上記2、
4又は5記載の形状測定方法及び装置。
[7] The above-mentioned item 2, wherein the optical element or the type to be inspected is an aspherical lens or a type thereof.
The shape measuring method and apparatus according to 4 or 5.

【0044】〔8〕 3次元座標測定手段により被検光
学素子あるいは型の外周部分の座標を測定した値を基
に、被検光学素子の形状を求めることを特徴とする上記
2、4又は5記載の形状測定方法及び装置。
[8] The shape of the optical element to be measured is obtained based on the value obtained by measuring the coordinates of the outer periphery of the optical element or the mold by the three-dimensional coordinate measuring means. The shape measuring method and apparatus according to the above.

【0045】[0045]

〔9〕 3次元座標測定手段により得られ
た光学素子あるいは型の測定データ列を2次元又は3次
元表示する手段を備えたことを特徴とする上記2記載の
形状測定方法及び装置。
[9] The shape measuring method and apparatus according to the above item 2, further comprising means for displaying a two-dimensional or three-dimensional display of a measurement data sequence of the optical element or the mold obtained by the three-dimensional coordinate measuring means.

【0046】また、本発明は次のような光学性能評価方
法及び装置を含むものである。
The present invention includes the following optical performance evaluation method and apparatus.

【0047】〔10〕 被検物たる被検光学素子の3次
元座標を測定する3次元座標測定手段と、前記被検光学
素子を保持する部材の一部に、前記3次元座標測定手段
の座標基準となる部分を設けた光学素子保持部材とを備
え、前記3次元座標測定手段により、前記光学素子保持
部材上の座標基準となる部分の一つ以上の点の座標、及
び、前記被検光学素子上の一つ以上の点の座標を測定
し、前記被検光学素子上の一つ以上の点の座標を、前記
光学素子保持部材上の座標基準に対する座標に変換した
結果と、前記被検光学素子の形状の設計値との差分を関
数にあてはめ、該関数から求めた前記被検光学素子の形
状を基に、前記被検光学素子を含む光学系全体の光学性
能を求めることを特徴とする光学性能評価方法及び装
置。
[10] Three-dimensional coordinate measuring means for measuring the three-dimensional coordinates of the optical element to be inspected, and the coordinates of the three-dimensional coordinate measuring means on a part of the member holding the optical element to be inspected. An optical element holding member provided with a reference portion, wherein the coordinates of one or more points of the coordinate reference portion on the optical element holding member are determined by the three-dimensional coordinate measuring means; Measuring the coordinates of one or more points on the element, converting the coordinates of the one or more points on the test optical element into coordinates with respect to a coordinate reference on the optical element holding member, Fitting the difference between the design value of the shape of the optical element and the design value to a function, and determining the optical performance of the entire optical system including the test optical element based on the shape of the test optical element obtained from the function. Optical performance evaluation method and apparatus.

【0048】〔11〕 被検光学素子を保持する鏡枠内
の各光学素子の偏心を、偏心測定手段により求めるとを
特徴とする上記10記載の光学性能評価方法及び装置。
[11] The optical performance evaluation method and apparatus according to the above [10], wherein the eccentricity of each optical element in the lens frame holding the test optical element is obtained by eccentricity measuring means.

【0049】〔12〕 面形状を表わす関数として、ツ
ェルニケ多項式を用いたことを特徴とする上記10又は
11記載の光学性能評価方法及び装置。
[12] The optical performance evaluation method and apparatus according to the above item 10 or 11, wherein a Zernike polynomial is used as a function representing the surface shape.

【0050】〔13〕 被検光学素子が非球面レンズで
あることを特徴とする上記10又は11記載の光学性能
評価方法及び装置。
[13] The optical performance evaluation method and apparatus according to the above [10] or [11], wherein the test optical element is an aspherical lens.

【0051】〔14〕 3次元座標測定手段により被検
光学素子の外周部分の座標を測定した値を基に、被検光
学素子の形状を求めることを特徴とする上記10又は1
1記載の光学性能評価方法及び装置。
[14] The above-mentioned 10 or 1 wherein the shape of the optical element to be measured is obtained based on the value obtained by measuring the coordinates of the outer peripheral portion of the optical element to be measured by the three-dimensional coordinate measuring means.
2. The optical performance evaluation method and apparatus according to 1.

【0052】[0052]

【発明の効果】以上の説明から明らかなように、本発明
の光学素子形状測定方法及び装置によれば、光学素子の
2次元絶対形状が測定でき、鏡枠ユニット全体の光学性
能を正確に計算することができる。
As is apparent from the above description, according to the optical element shape measuring method and apparatus of the present invention, the two-dimensional absolute shape of the optical element can be measured, and the optical performance of the entire lens frame unit can be accurately calculated. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学素子形状測定方法を実施する装置
の基本的な構成図である。
FIG. 1 is a basic configuration diagram of an apparatus for performing an optical element shape measuring method of the present invention.

【図2】本発明の光学素子形状測定装置で用いた保持具
とその中に配置された被検光学素子の断面を示す図であ
る。
FIG. 2 is a diagram showing a cross section of a holder used in the optical element shape measuring apparatus of the present invention and a test optical element disposed therein.

【図3】保持具の基準部分の同心度と平行度を示す図で
ある。
FIG. 3 is a diagram showing concentricity and parallelism of a reference portion of a holder.

【図4】第1実施例の測定手順の流れを示す図である。FIG. 4 is a diagram showing a flow of a measurement procedure of the first embodiment.

【図5】本発明の第2実施例において光学素子の外周部
分を含めて測定すれ様子を示す図である。
FIG. 5 is a diagram showing a state of measurement including an outer peripheral portion of an optical element in a second embodiment of the present invention.

【図6】第3実施例の測定手順の流れを示す図である。FIG. 6 is a diagram showing a flow of a measurement procedure of the third embodiment.

【図7】偏心測定機による垂直入射法と斜入射法を説明
するための図である。
FIG. 7 is a diagram for explaining a vertical incidence method and an oblique incidence method using an eccentricity measuring instrument.

【図8】組み上がり偏心測定機の一例の構成図である。FIG. 8 is a configuration diagram of an example of an assembled eccentricity measuring device.

【図9】一体成形の型の断面を簡略化して示す図であ
る。
FIG. 9 is a diagram showing a simplified cross section of an integrally molded mold.

【図10】本発明の第1実施例の測定装置を用いて光学
素子の型を保持具内に配置した断面図である。
FIG. 10 is a cross-sectional view in which a mold of an optical element is arranged in a holder using the measuring apparatus according to the first embodiment of the present invention.

【図11】本発明の第2実施例の測定方式を用いて型の
測定方法を示した断面図である。
FIG. 11 is a cross-sectional view illustrating a method for measuring a mold using the measurement method according to the second embodiment of the present invention.

【図12】本発明の第2実施例の測定方式を用いて型の
測定方法を示した断面図である。
FIG. 12 is a cross-sectional view illustrating a method for measuring a mold using the measurement method according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…3次元測定機 2…被検光学素子 3…保持具 4…データ処理部 6、6a、6b…型 7…上側平面部分(基準部分) 8…エッジ部分(基準部分) 10…保持具の光学素子を受ける面の中心 11…保持具のエッジ部分の中心 12…保持具の面と光学素子の受け面の平行度 13〜22…手順 101…可視半導体レーザー 102…結像レンズ 103…投影レンズ 105…顕微鏡対物レンズ 106…ズームレンズ 107…CCDカメラ 111…ミラー 115…ビームスプリッタ 120…非球面 121…被検非球面レンズ 122…回転ホルダー 141…偏心測定機の上部 134…三角プリズム 201…半導体レーザー 202…測定用光学系 204…ビームスプリッタ 203…被測定レンズ 205…イメージローテータ 206…基準軸設定用光学系 207…CCD 208…モニタテレビ 209…CRT 210…演算処理部 211…基準部分(側面) 212…基準部分(上面) DESCRIPTION OF SYMBOLS 1 ... 3D measuring device 2 ... Optical element to be examined 3 ... Holder 4 ... Data processing part 6, 6a, 6b ... Mold 7 ... Upper plane part (reference part) 8 ... Edge part (reference part) 10 ... Holder Center of surface receiving optical element 11 Center of edge of holder 12 Parallelism between surface of holder and receiving surface of optical element 13-22 Procedure 101 Visible semiconductor laser 102 Imaging lens 103 Projection lens 105: Microscope objective lens 106: Zoom lens 107: CCD camera 111: Mirror 115: Beam splitter 120: Aspheric surface 121: Aspheric lens to be tested 122: Rotating holder 141: Upper part of the eccentricity measuring machine 134: Triangular prism 201: Semiconductor laser 202: Optical system for measurement 204: Beam splitter 203: Lens to be measured 205: Image rotator 206: Reference Setting the optical system 207 ... CCD 208 ... monitor television 209 ... CRT 210 ...... processing unit 211 ... reference portion (side surface) 212 ... reference portion (upper surface)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊池寿郎 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 西岡公彦 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 Fターム(参考) 2F065 AA04 AA48 AA53 CC21 CC22 FF43 GG06 HH04 HH12 HH13 JJ03 JJ26 LL04 LL12 LL13 LL46 MM04 PP24 QQ00 QQ17 SS13 2F069 AA21 AA66 BB40 DD30 EE04 GG01 GG07 GG39 GG52 GG59 GG62 HH01 HH30 JJ17 MM02 NN16 NN18 NN21  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiro Kikuchi 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Industries Co., Ltd. (72) Kimihiko Nishioka 2-43-2 Hatagaya, Shibuya-ku, Tokyo F-term (reference) in Olympus Optical Co., Ltd. NN16 NN18 NN21

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検物の3次元座標を測定する3次元座
標測定手段と、該3次元座標測定手段により得られた測
定データから形状を求める手段とを有することを特徴と
する形状測定方法及び装置。
1. A shape measuring method comprising: three-dimensional coordinate measuring means for measuring three-dimensional coordinates of a test object; and means for obtaining a shape from measurement data obtained by the three-dimensional coordinate measuring means. And equipment.
【請求項2】 前記3次元座標測定手段が光学素子ある
いは型の偏心を偏心測定手段により求めることを特徴と
する請求項1記載の形状測定方法及び装置。
2. The shape measuring method and apparatus according to claim 1, wherein said three-dimensional coordinate measuring means determines the eccentricity of the optical element or the mold by the eccentricity measuring means.
【請求項3】 光学素子あるいは型の偏心測定手段とし
て、光学的手法を用いたことを特徴とする請求項2記載
の形状測定方法及び装置。
3. The shape measuring method and apparatus according to claim 2, wherein an optical method is used as the eccentricity measuring means of the optical element or the mold.
JP11230398A 1999-08-17 1999-08-17 Optical element shape measuring method and device Withdrawn JP2001056217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11230398A JP2001056217A (en) 1999-08-17 1999-08-17 Optical element shape measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11230398A JP2001056217A (en) 1999-08-17 1999-08-17 Optical element shape measuring method and device

Publications (1)

Publication Number Publication Date
JP2001056217A true JP2001056217A (en) 2001-02-27

Family

ID=16907264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11230398A Withdrawn JP2001056217A (en) 1999-08-17 1999-08-17 Optical element shape measuring method and device

Country Status (1)

Country Link
JP (1) JP2001056217A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326344A (en) * 2004-05-17 2005-11-24 Olympus Corp Three-dimensional shape measuring method
JP2005337921A (en) * 2004-05-27 2005-12-08 Olympus Corp Method and device for measuring three-dimensional shape
JP2006125893A (en) * 2004-10-26 2006-05-18 Olympus Corp Measuring jig
JP2006125884A (en) * 2004-10-26 2006-05-18 Olympus Corp Method of measuring three-dimensional shape
JP2007085882A (en) * 2005-09-22 2007-04-05 Mitsutoyo Corp Relative relation measuring method, relative relation measuring jig, and relative relation measuring instrument
JP2009192492A (en) * 2008-02-18 2009-08-27 Mitsutoyo Corp Method for measuring front and back surfaces of target object
JP2013210331A (en) * 2012-03-30 2013-10-10 Konica Minolta Inc Shape measurement method
JP2015052555A (en) * 2013-09-09 2015-03-19 株式会社神戸製鋼所 Measurement method of inside of furnace refractory worn state

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326344A (en) * 2004-05-17 2005-11-24 Olympus Corp Three-dimensional shape measuring method
JP2005337921A (en) * 2004-05-27 2005-12-08 Olympus Corp Method and device for measuring three-dimensional shape
JP2006125893A (en) * 2004-10-26 2006-05-18 Olympus Corp Measuring jig
JP2006125884A (en) * 2004-10-26 2006-05-18 Olympus Corp Method of measuring three-dimensional shape
JP4520276B2 (en) * 2004-10-26 2010-08-04 オリンパス株式会社 Measuring jig
JP4573625B2 (en) * 2004-10-26 2010-11-04 オリンパス株式会社 3D shape measurement method
JP2007085882A (en) * 2005-09-22 2007-04-05 Mitsutoyo Corp Relative relation measuring method, relative relation measuring jig, and relative relation measuring instrument
JP4705828B2 (en) * 2005-09-22 2011-06-22 株式会社ミツトヨ Relative relationship measurement method and relative relationship measurement device
JP2009192492A (en) * 2008-02-18 2009-08-27 Mitsutoyo Corp Method for measuring front and back surfaces of target object
JP2013210331A (en) * 2012-03-30 2013-10-10 Konica Minolta Inc Shape measurement method
JP2015052555A (en) * 2013-09-09 2015-03-19 株式会社神戸製鋼所 Measurement method of inside of furnace refractory worn state

Similar Documents

Publication Publication Date Title
JP5399304B2 (en) Aspherical surface measuring method and apparatus
JP5783899B2 (en) Stitching for near-zero sub-aperture measurements
JPH11500833A (en) Wavefront measurement system using integrated geometric reference (IGR)
US7869060B2 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
EP2177870B1 (en) Optical wave interference measuring apparatus
US20100309458A1 (en) Asphere measurement method and apparatus
JP5173106B2 (en) Method and apparatus for measuring the transmission of the geometric structure of an optical element
JP2001056217A (en) Optical element shape measuring method and device
JP3661865B2 (en) Spherical shape measurement analysis method
JP2011122857A (en) Method and device for measuring aspherical object
JP3597222B2 (en) Eccentricity measurement method for lenses, reflectors, etc., and machines using it
JP2007085914A (en) Method, device, and program of measuring aspheric lens, method of manufacturing aspheric lens, and aspheric lens
JP2001147174A (en) Interference measuring apparatus
JP5955001B2 (en) Aspherical shape measurement method, shape measurement program, and shape measurement device
JP7191632B2 (en) Eccentricity measurement method
JP4311952B2 (en) 3D coordinate measurement method
JP5904896B2 (en) Lens inspection apparatus and lens inspection method
KR101379677B1 (en) Eccentricity measurement for aspheric lens using the interferometer producing spherical wave
TWM583937U (en) Detection module
JP3599921B2 (en) Method and apparatus for measuring refractive index distribution
JP5317619B2 (en) Eccentricity measurement method
JP2005024504A (en) Eccentricity measuring method, eccentricity measuring instrument, and object measured thereby
JP2000097669A (en) Light-wave interferometer device and its data processing method
JPH11211611A (en) Eccentricity measuring apparatus
JP2002005619A (en) Method and device for measuring interference, and object measured thereby

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107