JP2007085882A - Relative relation measuring method, relative relation measuring jig, and relative relation measuring instrument - Google Patents

Relative relation measuring method, relative relation measuring jig, and relative relation measuring instrument Download PDF

Info

Publication number
JP2007085882A
JP2007085882A JP2005274961A JP2005274961A JP2007085882A JP 2007085882 A JP2007085882 A JP 2007085882A JP 2005274961 A JP2005274961 A JP 2005274961A JP 2005274961 A JP2005274961 A JP 2005274961A JP 2007085882 A JP2007085882 A JP 2007085882A
Authority
JP
Japan
Prior art keywords
measurement
shape data
gauge
trace
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005274961A
Other languages
Japanese (ja)
Other versions
JP4705828B2 (en
Inventor
Yoshiyuki Omori
義幸 大森
Atsushi Tsuruta
篤 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2005274961A priority Critical patent/JP4705828B2/en
Publication of JP2007085882A publication Critical patent/JP2007085882A/en
Application granted granted Critical
Publication of JP4705828B2 publication Critical patent/JP4705828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a relative relation measuring method, capable of obtaining easily and precisely a relative relation between measuring faces facing each other in a work. <P>SOLUTION: This relative relation measuring method is provided with a surface measuring process S10 for acquiring the surface shape data of a tracing-directional position aligning gauge 18 held by a jig 14, a surface side reference face 20a of an uneven-directional position aligning gauge 20, and a surface side measuring face 22a of the work 22, by a measuring machine 28, a reverse face measuring process S14 for acquiring reverse face shape data of the gauge 18 after a work rotation process S12, a reverse-face side reference face 20b of the gauge 20, and a reverse-face side measuring face 22b of the work 22, along a measuring trace line, by the measuring machine 28, and a data-to-data position aligning process for aligning the tracing-directional position of the shape data, based on each feature point information of tracing-directional position aligning gauge information, and for positioning an uneveness-detection direction position of the shape data, based on the parallel and dimensional information of the gauge 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は相対関係測定方法、相対関係測定用治具、及び相対関係測定装置、特にその被測定物保持機構の改良に関する。   The present invention relates to a relative relationship measuring method, a relative relationship measuring jig, and a relative relationship measuring apparatus, and more particularly to an improvement of a measured object holding mechanism.

従来より、ワークの形状寸法、位置関係、肉厚等を得るため、相対関係測定装置が用いられている。
従来の装置では、一本のスタイラスを備えた測定機を用いることが考えられる。そして、従来は、一のスタイラスを交換してワークの裏表を測定していた。
また従来の装置では、二のスタイラスを備えた測定機を用いることも考えられる。そして、従来は、二本のスタイラスを用いて、ワークの裏表を測定していた(例えば特許文献1)。
Conventionally, a relative relationship measuring apparatus has been used in order to obtain a workpiece shape and dimension, a positional relationship, a thickness, and the like.
In the conventional apparatus, it is conceivable to use a measuring machine having a single stylus. In the past, one side of the stylus was replaced to measure the back and front of the workpiece.
In the conventional apparatus, it is also conceivable to use a measuring machine having two styluses. Conventionally, the front and back sides of a workpiece have been measured using two styluses (for example, Patent Document 1).

ところで、相対関係測定では、その容易化及び高精度化の両立が非常に重要である。
従来の相対関係測定装置としては、レンズ専用であるが、測定精度の向上を試みた装置がある(例えば特許文献2,4)。
また、従来の相対関係測定装置としては、レンズ専用であるが、構成の小型化、簡素化を試みた装置もある(例えば特許文献3)。
特開平6−307825号公報 特開2002−71344号公報 特開2005−83914号公報 特開2005−69775号公報
By the way, in relative relationship measurement, it is very important to achieve both ease and high accuracy.
As a conventional relative relationship measuring apparatus, there is an apparatus dedicated to a lens, but an attempt to improve measurement accuracy (for example, Patent Documents 2 and 4).
Moreover, as a conventional relative relationship measuring apparatus, although it is only for lenses, there is also an apparatus that attempts to reduce the size and simplify the configuration (for example, Patent Document 3).
JP-A-6-307825 JP 2002-71344 A JP 2005-83914 A JP 2005-69775 A

しかしながら、前記従来方式にあっても、測定の容易化及び高精度化の両立は困難であった。
すなわち、ワークの裏表の相対関係を測定する際、スタイラスを交換してワークの裏表を測定していたのでは、スタイラスを交換するごとに校正等の段取りに時間がかかる。
However, even in the conventional method, it is difficult to achieve both easy measurement and high accuracy.
That is, when measuring the relative relationship between the front and back sides of the workpiece, if the front and back sides of the workpiece are measured by exchanging the stylus, it takes time to set up calibration and the like each time the stylus is changed.

また、ワークの裏表の相対関係を測定する際、特許文献1等のように二のスタイラスを備えた測定機を用いたのでは、構造が複雑となり、高価なものとなるため、本発明の課題解決手段として採用するに至らなかった。   Further, when measuring the relative relationship between the front and back sides of the workpiece, using a measuring machine having two styluses as in Patent Document 1 and the like makes the structure complicated and expensive, and therefore the problem of the present invention It was not adopted as a solution.

特許文献1〜4にあっても、高精度化を試みたものの、満足のゆく高精度化が得られず、また段取りに時間がかかる。しかも、特許文献2〜4は、ワークがレンズ専用であり、ワークに対する汎用性に欠ける。このため、特許文献1〜4は、いずれも本発明の課題解決手段として採用するに至らなかった。   Even in Patent Documents 1 to 4, although high accuracy has been attempted, satisfactory high accuracy cannot be obtained, and setup takes time. Moreover, in Patent Documents 2 to 4, the work is dedicated to the lens and lacks versatility for the work. For this reason, none of Patent Documents 1 to 4 has been adopted as the problem solving means of the present invention.

このように相対関係測定の分野では、測定の容易化及び高精度化の両立が強く望まれていたものの、従来は、これを同時に解決することのできる適切な技術が存在しなかった。   As described above, in the field of relative relationship measurement, there has been a strong demand for both easy measurement and high accuracy. However, conventionally, there has been no appropriate technique that can solve this simultaneously.

本発明は前記従来技術の課題に鑑みなされたものであり、その第一の目的は、ワークの相対向する測定面間の相対関係を簡単に及び高精度に得ることのできる、相対関係測定方法を提供することにある。
また本発明の第二の目的は、ワークの相対向する測定面間の相対関係を簡単に及び高精度に得ることのできる、相対関係測定用治具を提供することにある。
本発明の第三の目的は、ワークの相対向する測定面間の相対関係を簡単に及び高精度に得ることのできる、相対関係測定装置を提供することにある。
The present invention has been made in view of the above-described problems of the prior art, and a first object thereof is a relative relationship measuring method capable of easily and accurately obtaining a relative relationship between opposing measurement surfaces of a workpiece. Is to provide.
A second object of the present invention is to provide a relative relationship measuring jig capable of easily and accurately obtaining a relative relationship between measurement surfaces facing each other of a workpiece.
A third object of the present invention is to provide a relative relationship measuring apparatus capable of easily and accurately obtaining a relative relationship between measurement surfaces facing each other of a workpiece.

方法
前記第一の目的を達成するために、本発明にかかる相対関係測定方法は、所定の測定トレース線に沿って被測定物の凹凸を検出する形状測定機、並びに該形状測定機の凹凸検出方向に相対向する特徴点を持つトレース方向位置合わせ用ゲージ、平行及び所定寸法の相対向する表側基準面と裏側基準面とを持つ凹凸方向位置合わせ用ゲージ及びワークを保持する相対関係測定用治具を用いて、該ワークの相対向する表側測定面と裏側測定面間の相対関係を測定する相対関係測定方法であって、
表面測定工程と、ワーク回転工程と、裏面測定工程と、データ間位置合わせ工程と、解析工程と、を備えることを特徴とする。
ここで、前記表面測定工程は、前記相対関係測定用治具に保持されているトレース方向位置合わせ用ゲージ、凹凸方向位置合わせ用ゲージの表側基準面及びワークの表側測定面を、前記形状測定機で前記測定トレース線に沿って走査して、トレース方向位置合わせ用ゲージ情報、表側基準面情報及び表側測定面情報を含む表面形状データを取得する。
また、前記ワーク回転工程は、前記測定トレース線と直角をなす回転軸を中心に、前記相対関係測定用治具を回転する。
前記裏面測定工程は、前記ワーク回転工程後の相対関係測定用治具に保持されているトレース方向位置合わせ用ゲージ、凹凸方向位置合わせ用ゲージの裏側基準面及びワークの裏側測定面を、前記形状測定機で前記測定トレース線に沿って走査して、トレース方向位置合わせ用ゲージ情報、裏側基準面情報及び裏側測定面情報を含む裏面形状データを取得する。
前記データ間位置合わせ工程は、前記表面形状データのトレース方向位置合わせ用ゲージ情報の持つ特徴点情報、及び前記裏面形状データのトレース方向位置合わせ用ゲージ情報の持つ特徴点情報に基づき、該表面形状データと該裏面形状データとのトレース方向の位置合わせを行う。また、該データ間位置合わせ工程は、前記凹凸方向位置合わせ用ゲージの持つ平行情報及び寸法情報に基づき、該表面形状データと該裏面形状データとの凹凸検出方向の位置合わせを行う。
前記解析工程は、前記データ間位置合わせ工程で得られた表面形状データと裏面形状データとの関係に基づき、前記ワークの表側測定面と裏側測定面間の相対関係を求める。
Method In order to achieve the first object, a relative relationship measuring method according to the present invention includes a shape measuring machine for detecting unevenness of an object to be measured along a predetermined measurement trace line, and unevenness detection of the shape measuring machine. Trace direction alignment gauges having feature points opposite to each other, parallel and predetermined dimension unevenness alignment gauges having front and back reference surfaces opposite to each other, and a relative relationship measurement jig holding a workpiece Using a tool, a relative relationship measurement method for measuring a relative relationship between the front and back surfaces of the workpiece facing each other,
The method includes a front surface measurement step, a workpiece rotation step, a back surface measurement step, an inter-data alignment step, and an analysis step.
Here, in the surface measurement step, the shape measuring machine includes a trace direction alignment gauge held on the relative relationship measurement jig, a front side reference surface of the uneven direction alignment gauge, and a front side measurement surface of the workpiece. Then, scanning is performed along the measurement trace line, and surface shape data including gauge information for trace direction alignment, front side reference surface information, and front side measurement surface information is acquired.
In the work rotation step, the relative relationship measuring jig is rotated around a rotation axis that is perpendicular to the measurement trace line.
In the back surface measuring step, the shape of the trace direction alignment gauge, the back side reference surface of the uneven direction alignment gauge and the back side measurement surface of the workpiece, which are held in the relative relationship measurement jig after the work rotating step, Scanning is performed along the measurement trace line with a measuring machine, and back surface shape data including trace direction alignment gauge information, back side reference surface information, and back side measurement surface information is acquired.
The inter-data alignment step is based on the feature point information included in the trace direction alignment gauge information of the surface shape data and the feature point information included in the trace direction alignment gauge information of the back surface shape data. The data and the back surface shape data are aligned in the trace direction. In the inter-data alignment step, alignment of the surface shape data and the back surface shape data in the unevenness detection direction is performed based on the parallel information and the dimension information of the unevenness direction alignment gauge.
The analysis step obtains a relative relationship between the front-side measurement surface and the back-side measurement surface of the workpiece based on the relationship between the surface shape data and the back surface shape data obtained in the inter-data alignment step.

なお、本発明の相対関係測定方法において、前記データ間位置合わせ工程は、反転工程と、凹凸方向位置合わせ工程と、トレース方向位置合わせ工程と、を備えることが好適である。
ここで、前記反転工程は、前記表面形状データないし裏面形状データが、前記形状測定機のトレース線及び凹凸検出軸を通る平面上で反転するように、該表面形状データないし該裏面形状データを座標変換する。
また、前記凹凸方向位置合わせ工程は、前記反転工程後、前記表面形状データの表側基準面情報と、前記裏面形状データの裏側基準面情報とが、平行で及び前記凹凸検出方向位置合わせゲージの持つ所定寸法に応じた離隔距離をもつように、該表面形状データないし該裏面形状データを座標変換する。
前記トレース方向位置合わせ工程は、前記反転工程後、前記表面形状データのトレース方向位置合わせ用ゲージ情報に基づく特徴点と、前記裏面形状データのトレース方向位置合わせ用ゲージ情報に基づく特徴点とが、該測定トレース線方向において一致するように、該表面形状データないし該裏面形状データを座標変換する。
In the relative relationship measurement method of the present invention, it is preferable that the inter-data alignment step includes an inversion step, an uneven direction alignment step, and a trace direction alignment step.
Here, the reversing step coordinates the surface shape data or the back surface shape data so that the surface shape data or the back surface shape data is reversed on a plane passing through the trace line and the unevenness detection axis of the shape measuring machine. Convert.
Further, in the concave / convex direction alignment step, after the reversing step, the front side reference surface information of the surface shape data and the back side reference surface information of the back surface shape data are parallel and possessed by the concave / convex detection direction alignment gauge. The surface shape data or the back surface shape data is coordinate-transformed so as to have a separation distance corresponding to a predetermined dimension.
In the trace direction alignment step, after the reversing step, a feature point based on the trace direction alignment gauge information of the surface shape data and a feature point based on the trace direction alignment gauge information of the back surface shape data, The surface shape data or the back surface shape data is coordinate-transformed so as to coincide in the measurement trace line direction.

また、本発明の相対関係測定方法において、前記表面測定工程は、前記トレース方向位置合せ用ゲージとして、前記形状測定機のトレース線及び前記凹凸検出軸を通る平面方向の断面が、所定の直径及び真円度を有する円柱状のピンゲージ又は球状の基準球を測定する。
前記裏面測定工程は、前記トレース方向位置合せ用ゲージとして、前記ピンゲージ又は基準球を測定する。
前記トレース方向位置合わせ工程は、前記表面形状データのトレース方向位置合わせゲージ情報に基づく特徴点としての凹凸検出軸方向の極値と、前記裏面形状データのトレース方向位置合わせゲージ情報に基づく特徴点としての凹凸検出軸方向の極値とがトレース方向において一致するように、該表面形状データと該裏面形状データとのトレース方向の位置合わせを行うことが好適である。
Moreover, in the relative relationship measuring method of the present invention, the surface measuring step includes a trace section of the shape measuring machine and a cross section in the plane direction passing through the concave / convex detection axis as the trace direction alignment gauge, having a predetermined diameter and A cylindrical pin gauge having a roundness or a spherical reference sphere is measured.
The back surface measuring step measures the pin gauge or the reference sphere as the trace direction alignment gauge.
The trace direction alignment step includes, as feature points based on the extreme values of the unevenness detection axis direction as feature points based on the trace direction alignment gauge information of the surface shape data and the trace direction alignment gauge information of the back surface shape data. It is preferable to align the front surface shape data and the back surface shape data in the trace direction so that the extreme values in the unevenness detection axis direction of the surface coincide with each other in the trace direction.

治具
また、前記第二の目的を達成するために、本発明にかかる相対関係測定用治具は、被測定物の凹凸情報を検出する形状測定機の測定トレース線上にセットされ、ワークの相対向する表側測定面と裏側測定面間の相対関係を測定する際に用いられる相対関係測定用治具であって、
トレース方向位置合わせ用ゲージと、凹凸方向位置合わせ用ゲージと、治具本体と、を備える。
ここで、前記トレース方向位置合わせ用ゲージは、前記形状測定機の凹凸検出軸方向に相対向する特徴点を持つ。
また、前記凹凸方向位置合わせ用ゲージは、平行及び所定寸法の相対向する表側基準面と裏側基準面とを持つ。
前記治具本体は、前記トレース方向位置合わせ用ゲージ、前記凹凸方向位置合わせ用ゲージ及び前記ワークが、前記測定トレース線上に位置するように、該トレース方向位置合わせ用ゲージ、該凹凸方向位置合わせ用ゲージ及び該ワークを保持する。
そして、該相対関係測定用治具は、前記形状測定機による表面測定工程と裏面測定工程との間で、前記測定トレース線と直角をなす回転軸を中心に、前記治具本体が回転されることを特徴とする。
Jig Also, in order to achieve the second object, the relative relationship measuring jig according to the present invention is set on a measurement trace line of a shape measuring machine for detecting unevenness information of an object to be measured. A relative measurement jig used to measure the relative relationship between the front measurement surface and the back measurement surface.
A trace direction alignment gauge, an uneven direction alignment gauge, and a jig body are provided.
Here, the trace direction alignment gauge has a feature point opposite to the concave / convex detection axis direction of the shape measuring machine.
The unevenness direction alignment gauge has parallel and predetermined front-side reference surfaces and back-side reference surfaces of predetermined dimensions.
The jig body includes the trace direction alignment gauge, the uneven direction alignment gauge, and the trace direction alignment gauge, and the uneven direction alignment so that the workpiece is positioned on the measurement trace line. Hold the gauge and the workpiece.
The relative measurement jig is rotated between the front surface measurement step and the rear surface measurement step by the shape measuring machine about a rotation axis that is perpendicular to the measurement trace line. It is characterized by that.

なお、本発明の相対関係測定用治具において、前記トレース方向位置合わせ用ゲージは、前記測定トレース線及び凹凸検出軸を通る平面方向の断面が、所定の直径及び真円度を有する円柱状のピンゲージ又は球状の基準球であることが好適である。   In the relative measurement jig according to the present invention, the trace direction alignment gauge has a columnar cross section having a predetermined diameter and roundness in a plane direction passing through the measurement trace line and the unevenness detection axis. A pin gauge or a spherical reference sphere is preferred.

また、本発明の相対関係測定用治具においては、回転テーブルと、回転手段と、を備えることが好適である。
ここで、前記回転テーブルは、前記治具本体が固定され、前記形状測定機の測定トレース線と直角をなす回転軸を中心に、該治具本体を回転する。
また、前記回転手段は、前記回転テーブルを回転する。
In the relative relationship measuring jig according to the present invention, it is preferable to include a rotary table and a rotating means.
Here, the jig main body is fixed to the rotary table, and the jig main body is rotated about a rotation axis that is perpendicular to a measurement trace line of the shape measuring machine.
The rotating means rotates the rotating table.

装置
前記第三の目的を達成するために、本発明にかかる相対関係測定装置は、本発明にかかる相対関係測定用治具と、所定の測定トレース線に沿って被測定物の凹凸情報を検出する形状測定機と、を備え、ワークの相対向する表側測定面と裏側測定面間の相対関係を測定する相対関係測定装置であって、
前記形状測定機は、表面測定工程で、前記相対関係測定用治具に保持されているトレース方向位置合わせ用ゲージ、前記凹凸方向位置合わせ用ゲージの表側基準面及び前記ワークの表側測定面を、所定の測定トレース線上に沿って走査して、表面形状データを取得する。また、該形状測定機は、前記相対関係測定用治具の回転後、裏面測定工程で、該相対関係測定用治具に保持されている該トレース方向位置合わせ用ゲージ、該凹凸方向位置合わせ用ゲージの裏側基準面及び該ワークの裏側測定面を、該測定トレース線上に沿って走査して、裏面形状データを取得する。
さらに、該相対関係測定装置は、データ間位置合わせ手段と、解析手段と、を備えることを特徴とする。
ここで、該データ間位置合わせ手段は、前記形状測定機の表面測定工程で得られたトレース方向位置合わせ用ゲージ情報の持つ特徴点情報、及び前記形状測定機の裏面測定工程で得られたトレース方向位置合わせ用ゲージ情報の持つ特徴点情報に基づき、前記表面形状データと前記裏面形状データとのトレース方向の位置合わせを行う。また、該データ間位置合わせ手段は、前記凹凸方向位置合わせ用ゲージの持つ平行情報及び寸法情報に基づき、該表面形状データと該裏面形状データとの凹凸検出方向の位置合わせを行う。
また、前記解析手段は、前記データ間位置合わせ手段で得られた表面形状データと裏面形状データとの関係に基づき、前記ワークの表側測定面と裏側測定面間の相対関係を求める。
In order to achieve the third object, the relative relationship measuring apparatus according to the present invention detects the unevenness information of the object to be measured along the relative measurement jig according to the present invention and a predetermined measurement trace line. A relative measuring device that measures the relative relationship between the front and back surfaces of the workpiece facing each other,
In the surface measurement process, the shape measuring machine includes a trace direction alignment gauge held on the relative relationship measurement jig, a front side reference surface of the uneven direction alignment gauge, and a front side measurement surface of the workpiece. Scan along a predetermined measurement trace line to obtain surface shape data. In addition, the shape measuring machine includes the trace direction alignment gauge and the concave / convex direction alignment held in the relative relationship measurement jig in a back surface measurement step after the rotation of the relative relationship measurement jig. The back side reference surface of the gauge and the back side measurement surface of the workpiece are scanned along the measurement trace line to acquire back surface shape data.
Further, the relative relationship measuring apparatus includes an inter-data alignment unit and an analysis unit.
Here, the inter-data alignment means includes the feature point information included in the trace direction alignment gauge information obtained in the surface measurement step of the shape measuring machine, and the trace obtained in the back surface measurement step of the shape measuring machine. Based on the feature point information included in the direction alignment gauge information, the surface shape data and the back surface shape data are aligned in the trace direction. The inter-data alignment means aligns the surface shape data and the back surface shape data in the unevenness detection direction based on the parallel information and the dimensional information of the unevenness direction alignment gauge.
The analysis means obtains a relative relationship between the front-side measurement surface and the back-side measurement surface of the workpiece based on the relationship between the surface shape data and the back surface shape data obtained by the inter-data alignment means.

本発明にかかる相対関係測定方法によれば、前記表面測定工程及び前記裏面測定工程と、前記ワーク回転工程と、前記データ間位置合わせ工程と、を備えることとしたので、ワークの相対向する測定面間の相対関係を、簡単に及び高精度に得ることができる。   According to the relative relationship measuring method according to the present invention, since the front surface measuring step and the back surface measuring step, the workpiece rotating step, and the inter-data alignment step are provided, the opposing measurement of the workpiece is performed. The relative relationship between the surfaces can be obtained easily and with high accuracy.

本発明にかかる相対関係測定用治具によれば、測定トレース線と直角をなす回転軸を中心に回転自在に設けられ、トレース方向位置合わせ用ゲージ、凹凸方向位置合わせ用ゲージ及びワークを保持する治具本体を備えることとしたので、ワークの相対向する測定面間の相対関係測定を、簡単に及び高精度に行うことができる。   According to the relative relationship measuring jig according to the present invention, it is rotatably provided around a rotation axis that is perpendicular to the measurement trace line, and holds the trace direction alignment gauge, the uneven direction alignment gauge, and the workpiece. Since the jig main body is provided, it is possible to easily and accurately measure the relative relationship between the measurement surfaces facing each other.

本発明にかかる相対関係測定装置によれば、前記形状測定機と、前記相対関係測定用治具と、前記データ間位置合わせ手段と、を備えることとしたので、ワークの相対向する測定面間の相対関係を、簡単に及び高精度に得ることができる。   According to the relative relationship measuring apparatus of the present invention, since the shape measuring machine, the relative relationship measuring jig, and the inter-data alignment means are provided, the measurement surface between the workpieces facing each other is provided. The relative relationship can be easily obtained with high accuracy.

以下、図面に基づき本発明の好適な一実施形態について説明する。
装置
図1には、本発明の一実施形態にかかる相対関係測定方法を行うための相対関係測定装置の概略構成が示されている。
なお、同図(A)は表面測定工程を行う相対関係測定装置の様子、同図(B)は裏面測定工程を行う該相対関係測定装置の様子、同図(C)は該相対関係測定装置のデータ処理機構の概略構成である。
本実施形態では、例えばプレスされた板金(ワーク)の凹凸部の肉厚を測定する例について説明する。
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.
Apparatus FIG. 1 shows a schematic configuration of a relative relation measuring apparatus for performing a relative relation measuring method according to an embodiment of the present invention.
1A is a state of a relative relationship measuring apparatus for performing a front surface measuring step, FIG. 1B is a state of the relative relationship measuring apparatus for performing a back surface measuring step, and FIG. This is a schematic configuration of the data processing mechanism.
This embodiment demonstrates the example which measures the thickness of the uneven | corrugated | grooved part of the pressed sheet metal (work), for example.

同図に示す相対関係測定装置10は、形状測定機本体12と、相対関係測定用治具14と、データ処理機構16と、を備える。   The relative relationship measuring apparatus 10 shown in FIG. 1 includes a shape measuring machine main body 12, a relative relationship measuring jig 14, and a data processing mechanism 16.

ここで、形状測定機本体12は、表面測定工程で、相対関係測定用治具14に保持されているトレース方向位置合わせ用ゲージ(ピンゲージ、基準球等)18、凹凸方向位置合わせ用ゲージ(ゲージブロック等)20の表側基準面20a及びワーク22の表側測定面22aを、検出器26のスタイラス28で、所定の測定トレース線上に沿って(図中、左右方向に)走査して表面形状データを取得する。
また、形状測定機本体12は、相対関係測定用治具14の回転後、裏面測定工程で、相対関係測定用治具14に保持されているトレース方向位置合わせ用ゲージ18、凹凸方向位置合わせ用ゲージ20の裏側基準面20b及びワーク22の裏側測定面22bを、検出器26のスタイラス28で、測定トレース線上に沿って(図中、左右方向に)走査して裏面形状データを取得する。
Here, the shape measuring machine main body 12 includes a trace direction alignment gauge (pin gauge, reference sphere, etc.) 18 held in the relative measurement jig 14 and an uneven direction alignment gauge (gauge) in the surface measurement step. The front surface reference surface 20a of 20 and the front surface measurement surface 22a of the workpiece 22 are scanned along a predetermined measurement trace line (in the drawing in the left-right direction) with the stylus 28 of the detector 26 to obtain surface shape data. get.
In addition, the shape measuring machine main body 12 includes a trace direction alignment gauge 18 and a concave / convex direction alignment held in the relative relationship measurement jig 14 in the back surface measurement process after the rotation of the relative relationship measurement jig 14. The back side reference surface 20b of the gauge 20 and the back side measurement surface 22b of the workpiece 22 are scanned along the measurement trace line (in the left-right direction in the figure) by the stylus 28 of the detector 26 to acquire back surface shape data.

また、相対関係測定用治具14は、トレース方向位置合わせ用ゲージ18と、凹凸方向位置合わせ用ゲージ20と、治具本体30と、を備える。
ここで、前記トレース方向位置合わせ用ゲージ18は、形状測定機本体12の凹凸検出軸方向(Z軸方向)に相対向する特徴点を持つ。なお、本実施形態において、トレース方向位置合わせ用ゲージ18は、XZ断面(測定トレース線及び凹凸検出軸を通る平面方向の断面)が、所定の直径及び真円度を有する円柱状のピンゲージ又は球状の基準球であることが好適である。本実施形態では、ピンゲージを用いている。
また、前記凹凸方向位置合わせ用ゲージ20は、平行及びワーク22の肉厚とほぼ同厚(所定の寸法)の相対向する表側基準面20aと裏側基準面20bとを持つ。本実施形態では、ゲージブロックを用いている。
前記治具本体30は、トレース方向位置合わせ用ゲージ18、凹凸方向位置合わせ用ゲージ20及びワーク22が、スタイラス28の測定トレース線上に位置するように、トレース方向位置合わせ用ゲージ18、凹凸方向位置合わせ用ゲージ20、及びワーク22を保持している。
The relative relationship measuring jig 14 includes a trace direction alignment gauge 18, an uneven direction alignment gauge 20, and a jig body 30.
Here, the trace direction alignment gauge 18 has a feature point opposite to the concave / convex detection axis direction (Z-axis direction) of the shape measuring machine main body 12. In this embodiment, the trace direction alignment gauge 18 has a cylindrical pin gauge or spherical shape in which the XZ cross section (the cross section in the plane direction passing through the measurement trace line and the unevenness detection axis) has a predetermined diameter and roundness. The reference sphere is preferable. In this embodiment, a pin gauge is used.
Further, the concave / convex direction alignment gauge 20 has a front side reference surface 20a and a back side reference surface 20b facing each other in parallel and substantially the same thickness (predetermined dimension) as the thickness of the workpiece 22. In this embodiment, a gauge block is used.
The jig body 30 includes the trace direction alignment gauge 18, the uneven direction position gauge 18, the uneven direction position gauge 18, and the uneven direction position gauge 18 so that the workpiece 22 is positioned on the measurement trace line of the stylus 28. The alignment gauge 20 and the workpiece 22 are held.

そして、相対関係測定用治具14は、形状測定機本体12の測定トレース線上にセットされ、ワーク22の相対向する表側測定面22aと裏側測定面22b間の相対関係を測定する際に用いられる。
また、相対関係測定用治具14は、形状測定機本体12による表面測定工程と裏面測定工程との間で、測定トレース線と直角をなす回転軸(Y軸)を中心に治具本体30が回転される。
The relative relationship measuring jig 14 is set on the measurement trace line of the shape measuring machine main body 12 and used when measuring the relative relationship between the front-side measurement surface 22a and the back-side measurement surface 22b facing each other of the workpiece 22. .
The relative measurement jig 14 includes a jig main body 30 centering around a rotation axis (Y axis) perpendicular to the measurement trace line between the front surface measurement process and the rear surface measurement process by the shape measuring machine main body 12. It is rotated.

前記データ処理機構16は、例えばコンピュータ等よりなり、データメモリ32と、データ間位置合わせ手段34と、解析手段36と、を備える。   The data processing mechanism 16 is formed of, for example, a computer and includes a data memory 32, an inter-data alignment unit 34, and an analysis unit 36.

ここで、データメモリ32は、形状測定機本体12による表面測定工程で得られた表面形状データを記憶している。また、データメモリ32は、形状測定機本体12による裏面測定工程で得られた裏面形状データを記憶している。   Here, the data memory 32 stores the surface shape data obtained in the surface measurement process by the shape measuring machine main body 12. Further, the data memory 32 stores back surface shape data obtained in the back surface measuring process by the shape measuring machine main body 12.

また、データ間位置合わせ手段34は、形状測定機本体12の表面測定工程で得られたトレース方向位置合わせ用ゲージ情報の持つ特徴点情報及び形状測定機本体12の裏面測定工程で得られたトレース方向位置合わせ用ゲージ情報の持つ特徴点情報に基づき、表面形状データと裏面形状データとのトレース方向の位置合わせを行う。
また、このデータ間位置合わせ手段34は、凹凸方向位置合わせ用ゲージの持つ平行情報及び寸法情報に基づき、表面形状データと裏面形状データとの凹凸検出方向の位置合わせを行う。
Further, the inter-data alignment means 34 includes the feature point information included in the trace direction alignment gauge information obtained in the surface measurement process of the shape measuring machine main body 12 and the trace obtained in the back surface measurement process of the shape measuring machine main body 12. Based on the feature point information included in the direction alignment gauge information, the front surface shape data and the back surface shape data are aligned in the trace direction.
Further, the inter-data alignment means 34 aligns the surface shape data and the back surface shape data in the unevenness detection direction based on the parallel information and the dimension information that the unevenness direction alignment gauge has.

また、前記解析手段36は、データ間位置合わせ手段34で得られた表面形状データと裏面形状データとの関係に基づき、ワーク22の表側測定面22aと裏側測定面22b間の相対関係(肉厚等)を求める。   Further, the analyzing means 36 is based on the relationship between the front surface measurement surface 22a and the back surface measurement surface 22b (wall thickness) of the workpiece 22 based on the relationship between the surface shape data and the back surface shape data obtained by the inter-data alignment means 34. Etc.).

なお、本実施形態おいて、データ間位置合わせ手段34は、反転手段38と、凹凸方向位置合わせ手段40と、トレース方向位置合わせ手段42と、を備える。
ここで、前記反転手段38は、表面形状データないし裏面形状データが、XZ平面上で反転するように、表面形状データないし裏面形状データを座標変換する。
また、前記凹凸方向位置合わせ手段40は、前記反転工程の完了後、表面形状データの表側基準面情報と、裏面形状データの裏側基準面情報とが、平行で及び凹凸検出方向位置合わせゲージ20の持つ所定寸法に応じた離隔距離をもつように、表面形状データないし裏面形状データを座標変換する。
前記トレース方向位置合わせ手段42は、前記反転工程の完了後、表面形状データのトレース方向位置合わせ用ゲージ情報に基づく特徴点と、裏面形状データのトレース方向位置合わせ用ゲージ情報に基づく特徴点とが、測定トレース線方向において一致するように、表面形状データないし裏面形状データを座標変換する。
In this embodiment, the inter-data alignment unit 34 includes a reversing unit 38, a concave / convex direction alignment unit 40, and a trace direction alignment unit 42.
Here, the reversing unit 38 performs coordinate conversion of the surface shape data or the back surface shape data so that the surface shape data or the back surface shape data is reversed on the XZ plane.
Further, after the reversing process is completed, the concave / convex direction alignment means 40 is such that the front side reference surface information of the front surface shape data and the back side reference surface information of the back surface shape data are parallel and of the concave / convex detection direction alignment gauge 20. The surface shape data or the back surface shape data is coordinate-transformed so as to have a separation distance corresponding to the predetermined dimension.
The trace direction alignment means 42 has a feature point based on the trace direction alignment gauge information of the front surface shape data and a feature point based on the trace direction alignment gauge information of the back surface shape data after the reversal process is completed. The surface shape data or the back surface shape data is coordinate-transformed so as to match in the measurement trace line direction.

このように本実施形態の相対関係測定装置10は、形状測定機本体12、相対関係測定用治具14の反転を用いて、ワーク22の相対向する表側測定面22aと裏側測定面22b間の肉厚(相対関係)を測定することができる。   As described above, the relative relationship measuring apparatus 10 according to the present embodiment uses the reversal of the shape measuring machine main body 12 and the relative relationship measuring jig 14 between the front-side measurement surface 22a and the back-side measurement surface 22b of the workpiece 22 facing each other. Thickness (relative relationship) can be measured.

例えば、本実施形態の相対関係測定装置10は、一のスタイラス28を備えた形状測定機本体12において、ワーク22の表裏の相対的な形状、例えばプレスされた板金の凹凸部の形状寸法、位置関係、肉厚等を測定する際、表面測定工程時と裏面測定工程時とで煩わしいスタイラス28の交換の必要がなく、簡単に及び正確に測定解析を行うことができる。   For example, the relative relationship measuring apparatus 10 according to the present embodiment includes a shape measuring machine main body 12 having one stylus 28, and a relative shape of the front and back of the work 22, for example, a shape dimension and a position of an uneven portion of a pressed sheet metal. When measuring the relationship, thickness, etc., there is no need to bother replacing the stylus 28 during the front surface measurement process and during the back surface measurement process, and measurement analysis can be performed easily and accurately.

方法
本実施形態にかかる相対関係測定装置10は、概略以上のように構成され、以下にその作用について説明する。
本実施形態にかかる相対関係測定方法は、図2に示されるような表面測定工程(S10)と、ワーク回転工程(S12)と、裏面測定工程(S14)と、を備える。
Method The relative relationship measuring apparatus 10 according to the present embodiment is configured as described above, and the operation thereof will be described below.
The relative relationship measuring method according to the present embodiment includes a front surface measuring step (S10), a workpiece rotating step (S12), and a back surface measuring step (S14) as shown in FIG.

ここで、表面測定工程(S10)では、図2(A)に示されるように、相対関係測定用治具14に保持されているトレース方向位置合わせ用ゲージ18、凹凸方向位置合わせ用ゲージ20の表側基準面20a及びワーク22の表側測定面22aを、スタイラス28で測定トレース線に沿って走査して、トレース方向位置合わせ用ゲージ情報、表側基準面情報及び表側測定面情報を含む表面形状データを取得する。   Here, in the surface measurement step (S10), as shown in FIG. 2A, the trace direction alignment gauge 18 and the concave / convex direction alignment gauge 20 held by the relative measurement jig 14 are used. The front-side reference surface 20a and the front-side measurement surface 22a of the workpiece 22 are scanned along the measurement trace line with the stylus 28, and surface shape data including trace direction alignment gauge information, front-side reference surface information, and front-side measurement surface information is obtained. get.

また、ワーク回転工程(S12)では、図2(B)に示されるように、測定トレース線と直角をなす回転軸40を中心に、相対関係測定用治具14を回転し、ワーク22の裏表を回転する。   In the workpiece rotation step (S12), as shown in FIG. 2B, the relative measurement jig 14 is rotated around the rotation axis 40 perpendicular to the measurement trace line, so Rotate.

ここで、本実施形態においては、ワークの表裏を測定するのにワークの回転手法を採用し、一のスタイラスを備えた形状測定機本体12でワーク22の表裏を測定することができるので、装置10の構造が簡単、安価となる。   Here, in this embodiment, since the work rotation method is adopted to measure the front and back of the work, and the front and back of the work 22 can be measured by the shape measuring machine main body 12 having one stylus, The structure of 10 is simple and inexpensive.

また、測定トレースに対して回転軸が直角であれば、回転に必要な段取りが容易である。
すなわち、凹凸方向位置合わせ用ゲージ20の平行と寸法が保証されているので、ワークの回転は、従来方式、つまりちょうど180度でなくてもよく、またワークの裏表をトレースできるようにワークの裏表を回転できるのであれば、任意の回転角度とすることができるので、ちょうど180度のような従来方式に比較し、回転に必要な段取りが容易となる。
If the rotation axis is perpendicular to the measurement trace, the setup necessary for rotation is easy.
That is, since the parallelism and dimensions of the alignment gauge 20 are guaranteed, the rotation of the workpiece does not have to be the conventional method, that is, just 180 degrees, and the back and front of the workpiece can be traced. Since the rotation angle can be set to an arbitrary rotation angle, the setup necessary for the rotation becomes easier as compared with the conventional method of just 180 degrees.

また、測定トレースに対して回転軸が直角であれば、回転中心も、従来方式、治具の中心を中心とする軸対象とする必要がなく、ワークの裏表をトレースできるようにワークの裏表を回転できるのであれば、任意の回転中心を設定することができるので、回転中心を所定のところに正確に位置決めする必要のある従来方式に比較し、回転に必要な段取りが容易となる。   In addition, if the rotation axis is perpendicular to the measurement trace, the center of rotation does not need to be an axis target centered on the center of the conventional method or jig, and the back and front of the work can be traced so that the back and front of the work can be traced. Any rotation center can be set as long as the rotation is possible, so that the setup necessary for the rotation is facilitated as compared with the conventional method in which the rotation center needs to be accurately positioned at a predetermined position.

裏面測定工程(S14)では、ワーク回転工程(S12)の完了後の相対関係測定用治具14に保持されているトレース方向位置合わせ用ゲージ18、凹凸方向位置合わせ用ゲージ20の裏側基準面20b及びワーク22の裏側測定面22bを、スタイラス28で測定トレース線に沿って走査して、トレース方向位置合わせ用ゲージ情報、裏側基準面情報及び裏側測定面情報を含む裏面形状データを取得する。   In the back surface measurement step (S14), the back side reference surface 20b of the trace direction alignment gauge 18 and the concave / convex direction alignment gauge 20 held by the relative relationship measurement jig 14 after the completion of the workpiece rotation step (S12). The back side measurement surface 22b of the workpiece 22 is scanned along the measurement trace line with the stylus 28, and back surface shape data including the gauge information for trace direction alignment, the back side reference surface information, and the back side measurement surface information is acquired.

本実施形態にかかる相対関係測定方法は、さらに、データ処理工程として、図3に示されるようなデータ間位置合わせ工程(S16)と、解析工程(S18)とを含む。
データ間位置合わせ工程(S16)では、表面形状データDのトレース方向位置合わせ用ゲージ情報d1aの持つ特徴点情報d0a及び裏面形状データD´のトレース方向位置合わせ用ゲージ情報d1b´の持つ特徴点情報d0b´に基づき表面形状データDと裏面形状データD´とのトレース方向の位置合わせを行う。また、データ間位置合わせ工程(S16)では、凹凸方向位置合わせ用ゲージの持つ平行情報及び寸法情報に基づき、表面形状データDと裏面形状データD´との凹凸検出方向の位置合わせを行う。
The relative relationship measuring method according to the present embodiment further includes an inter-data alignment step (S16) and an analysis step (S18) as shown in FIG. 3 as data processing steps.
In the data between the positioning step (S16), the surface shape data D a trace direction feature point information with the positioning gauge information d 1a d 0a and back shape data D b 'trace direction alignment gauge information d 1b of' Based on the feature point information d 0b ′, the front surface shape data D a and the back surface shape data D b ′ are aligned in the trace direction. Further, in the inter-data alignment step (S16), alignment of the surface shape data D a and the back surface shape data D b ′ in the unevenness detection direction is performed based on the parallel information and the dimension information of the unevenness direction alignment gauge. .

また、本実施形態において、前記データ間位置合わせ工程(S16)は、反転工程(S20)と、凹凸方向位置合わせ工程(S22)と、トレース方向位置合わせ工程(S24)と、を備える。
ここで、反転工程(S20)は、図3(A)に示されるような表面形状データD及び裏面形状データDが、XZ平面(形状測定機のトレース線及び凹凸検出軸を通る平面)上で反転するように、表面形状データDないし裏面形状データDを座標変換する。本実施形態においては、裏面形状データDを座標変換しており、同図では、反転後の裏面形状データを、裏面形状データD´としている(図3(B))。
In the present embodiment, the inter-data alignment step (S16) includes a reversing step (S20), an uneven direction alignment step (S22), and a trace direction alignment step (S24).
Here, the inversion step (S20), the surface shape data D a and the back surface shape data D b, as shown in FIG. 3 (A), XZ plane (trace line and a plane passing through the concave-convex detecting axis of the profile measuring instrument) The surface shape data Da or the back surface shape data Db is coordinate-transformed so as to be inverted above. In the present embodiment, the back surface shape data Db is coordinate-converted. In the same figure, the back surface shape data after inversion is the back surface shape data D b ′ (FIG. 3B).

凹凸方向位置合わせ工程(S22)は、反転工程(S20)の完了後、表面形状データDの表側基準面情報d2aと、裏面形状データD´の裏側基準面情報d2b´とが、平行及び凹凸検出方向位置合わせゲージの持つ所定寸法に応じた離隔距離Lを持つように、表面形状データDないし裏面形状データD´を座標変換する(図3(C))。
このように本実施形態においては、凹凸方向位置合わせ用ゲージの表側基準面情報d2aと裏側基準面情報d2b´とで表面形状データDと裏面形状データD´との平行出しを行い、また、表面形状データDと裏面形状データD´とを、凹凸方向位置合わせ用ゲージの持つ寸法分の距離を離している。
Irregularities direction aligning step (S22) after completion of the inversion process (S20), and the front reference plane information d 2a of the surface shape data D a, a 'back reference plane information d 2b' of the back surface shape data D b is, The surface shape data D a or the back surface shape data D b ′ are coordinate-transformed so as to have a separation distance L corresponding to a predetermined dimension of the parallel and unevenness detection direction alignment gauge (FIG. 3C).
As described above, in the present embodiment, the front surface shape data D a and the back surface shape data D b ′ are parallelized by the front side reference surface information d 2a and the back side reference surface information d 2b ′ of the unevenness direction alignment gauge. Further, the surface shape data D a and the back surface shape data D b ′ are separated by a distance corresponding to the dimension of the unevenness direction alignment gauge.

前記トレース方向位置合わせ工程(S24)では、表面形状データDのトレース方向位置合わせゲージ情報d1aに基づく特徴点(極値)d0aと、裏面形状データD´のトレース方向位置合わせゲージ情報d1b´に基づく特徴点(極値)d0b´とがトレース方向において一致するように、表面形状データDないし裏面形状データD´を座標変換する。このようにして、表面形状データDと裏面形状データD´とのトレース方向の位置合わせを行っている(図3(D))。 In the trace direction aligning step (S24), feature points based on the surface shape data D a trace direction alignment gauge information d 1a of the (extreme) d 0a, trace direction alignment gauge information back surface shape data D b ' The surface shape data D a to the back surface shape data D b ′ are coordinate-transformed so that the feature point (extreme value) d 0b ′ based on d 1b ′ matches in the trace direction. In this way, the front surface shape data D a and the back surface shape data D b ′ are aligned in the trace direction (FIG. 3D).

このような状態で、ワークの形状を忠実に表現したことになる。   In this state, the shape of the workpiece is faithfully expressed.

解析工程(S18)では、前記トレース方向位置合わせ工程(S24)で得られた表面形状データDの表側測定面情報d3aと、裏面形状データD´の裏側測定面情報d3b´との関係に基づき、ワークの表側測定面と裏側測定面間の相対関係を求める。 In the analysis step (S18), the front-side measurement surface information d 3a of the surface shape data D a obtained in the trace direction alignment step (S24) and the back-side measurement surface information d 3b ′ of the back surface shape data D b ′ Based on the relationship, the relative relationship between the front side measurement surface and the back side measurement surface of the workpiece is obtained.

従来においても、形状測定機を使ってワークの肉厚を測定することが考えられる。
しかしながら、従来方式では上下2本のスタイラスを使った構造や、スタイラスの付け替えによって実現していたので、構造が複雑で高価、段取りが複雑等、デメリットがあった。
Conventionally, it is conceivable to measure the thickness of a workpiece using a shape measuring machine.
However, in the conventional method, it was realized by a structure using two upper and lower styluses or by changing the stylus, so there were disadvantages such as complicated structure, high cost, and complicated setup.

また従来においても、治具を用いて、ワークの裏表を回転して測定することも考えられる。
しかしながら、通常は治具をきちんと180度、回転する必要があり、段取りが面倒である。
Conventionally, it is also conceivable to measure by rotating the front and back of the workpiece using a jig.
However, it is usually necessary to rotate the jig properly by 180 degrees, and the setup is troublesome.

また、治具の回転を採用した場合、表面形状データと裏面形状データとの位置合わせが非常に重要であり、通常は、これを行うための測定、データ処理等の段取りが非常に複雑であり、面倒であった。   In addition, when using jig rotation, it is very important to align the surface shape data with the back surface shape data. Usually, the setup for measurement, data processing, etc. is very complicated. It was troublesome.

これに対し、本発明は、一方向へのトレースする標準の構造で、ワークを回転する方法により測定を行い、ワークの周辺に、ある工夫を施し、取り込んだデータを座標変換等の処理をすることにより、簡単に正確な測定結果が得られる。
つまり、本実施形態においては、ワークと共に、位置合わせ用ゲージを治具に保持しておき、ワークを回転して得られた表面形状データ及び裏面形状データの取得後は、位置合わせ用ゲージの持つ特徴点情報、並びに平行情報及び寸法情報に基づき、表面形状データないし裏面形状データを座標変換することにより、表面形状データと裏面形状データとの位置合わせを、簡単化及び高精度化している。しかも、本実施形態は複雑な段取りを大幅に低減することで、より確実な高精度化も達成した。
On the other hand, the present invention is a standard structure that traces in one direction, performs measurement by a method of rotating the workpiece, applies some contrivance to the periphery of the workpiece, and performs processing such as coordinate conversion on the captured data. Thus, an accurate measurement result can be easily obtained.
That is, in this embodiment, the alignment gauge is held in the jig together with the workpiece, and after the surface shape data and the back surface shape data obtained by rotating the workpiece are obtained, the alignment gauge has. By aligning the surface shape data or the back surface shape data based on the feature point information, the parallel information, and the dimension information, the alignment between the surface shape data and the back surface shape data is simplified and made highly accurate. In addition, the present embodiment has achieved more reliable high accuracy by greatly reducing complicated setup.

このように本実施形態においては、以下の効果がある。
(1)簡単測定
特殊な測定機の構築や、複雑な段取りが必要なく、簡単に測定解析が行える。
(2)高精度化
原理的に方法が簡単で、段取りも少なく不確かさの要因が少ないので、測定解析の高精度化が行える。
As described above, the present embodiment has the following effects.
(1) Easy measurement There is no need to build a special measuring machine or complicated setup, and measurement analysis can be performed easily.
(2) Higher accuracy In principle, the method is simple, the setup is small, and the cause of uncertainty is low, so the accuracy of measurement analysis can be improved.

治具
以下に、本実施形態において特徴的な相対関係測定用治具について、より具体的に説明する。
図4は相対関係測定用治具の主要部を側方より見た図である。
図5は相対関係測定用治具の全体を上方より見た図であり、同図(A)は表面測定工程時の様子、同図(B)は裏面測定工程時の様子である。
In the following, the relative relationship measuring jig characteristic of the present embodiment will be described more specifically.
FIG. 4 is a view of the main part of the relative relationship measuring jig as viewed from the side.
5A and 5B are views of the entire relative relationship measuring jig as viewed from above. FIG. 5A shows the state during the front surface measurement process, and FIG. 5B shows the state during the back surface measurement process.

本実施形態にかかる相対関係測定用治具14は、トレース方向位置合わせ用ゲージ18と、凹凸方向位置合わせ用ゲージ20と、治具本体30と、を備える。
ここで、トレース方向位置合わせ用ゲージ18は、例えばピンゲージ又は基準球等よりなり、形状測定機の凹凸検出軸方向に相対向する特徴点を持つ。本実施形態においては、トレース方向位置合わせ用ゲージ18として、XZ断面が、所定の直径及び真円度を有する円柱状のピンゲージを用いている。
凹凸方向位置合わせ用ゲージ20は、例えばゲージブロック等よりなり、平行及び所定寸法の相対向する表側基準面と裏側基準面とを持つ。
治具本体30は、トレース方向位置合わせ用ゲージ18、凹凸方向位置合わせ用ゲージ20及びワーク22が、測定トレース線上に位置するように、該トレース方向位置合わせ用ゲージ18、該凹凸方向位置合わせ用ゲージ20及びワーク22を保持する。
そして、相対関係測定用治具14は、形状測定機本体の測定トレース線上にセットされ、ワーク22の相対向する表側測定面と裏側測定面間の相対関係を測定する際に用いられる。
The relative relationship measuring jig 14 according to the present embodiment includes a trace direction alignment gauge 18, an uneven direction alignment gauge 20, and a jig body 30.
Here, the trace direction alignment gauge 18 is made of, for example, a pin gauge, a reference sphere, or the like, and has a feature point that is opposed to the direction of the unevenness detection axis of the shape measuring machine. In the present embodiment, a cylindrical pin gauge whose XZ cross section has a predetermined diameter and roundness is used as the trace direction alignment gauge 18.
The concave / convex direction alignment gauge 20 is made of, for example, a gauge block, and has a parallel reference surface and a reverse reference surface having a predetermined dimension.
The jig main body 30 includes the trace direction alignment gauge 18, the concave / convex direction alignment gauge 20, and the concave / convex direction alignment gauge 18 and the concave / convex direction alignment so that the workpiece 22 is positioned on the measurement trace line. The gauge 20 and the work 22 are held.
Then, the relative relationship measuring jig 14 is set on the measurement trace line of the shape measuring machine main body, and is used when measuring the relative relationship between the front-side measurement surface and the back-side measurement surface of the workpiece 22 facing each other.

また、形状測定機による表面測定工程と裏面測定工程との間で、測定トレース線と直角をなす回転軸を中心に前記治具本体が回転される。
このために本実施形態においては、さらに、回転台50を備える。
この回転台50は、回転テーブル52と、外形四角の回転手段54と、レバー56と、を備える。
ここで、回転テーブル52は、治具本体30が固定され、形状測定機の測定トレース線と直角をなす回転軸を中心に、治具本体30を回転する。
回転手段54は、回転テーブル52を回転する。
レバー56は、その回転操作により、回転手段54による回転テーブル52の回転を行わせる。
In addition, the jig main body is rotated around a rotation axis that is perpendicular to the measurement trace line between the front surface measurement step and the back surface measurement step by the shape measuring machine.
For this purpose, in this embodiment, a turntable 50 is further provided.
The turntable 50 includes a turntable 52, an outer square rotation means 54, and a lever 56.
Here, the jig body 30 is fixed to the rotary table 52, and the jig body 30 is rotated around a rotation axis that is perpendicular to the measurement trace line of the shape measuring machine.
The rotating means 54 rotates the rotary table 52.
The lever 56 causes the rotating table 52 to rotate by the rotating means 54 by the rotation operation.

なお、本実施形態において、トレース方向位置合わせ用ゲージ18、凹凸方向位置合わせ用ゲージ20、及びワーク22は、治具本体30に、押え部材60、固定部材62で固定されている。   In the present embodiment, the trace direction alignment gauge 18, the concave / convex direction alignment gauge 20, and the work 22 are fixed to the jig main body 30 by a pressing member 60 and a fixing member 62.

そして、該治具は、一の形状測定機をもつ形状測定機による表面測定工程と裏面測定工程との間で、測定トレース線と直角をなす回転軸を中心に、治具本体が回転され、ワークの表裏を反転する。   And the jig body is rotated around the rotation axis perpendicular to the measurement trace line between the surface measurement process and the back surface measurement process by the shape measuring machine having one shape measuring machine, Reverse the front and back of the workpiece.

このようにして本実施形態の治具を構成することにより、本実施形態の装置による、本実施形態の方法を、簡単に及び確実に行うことができるので、ワークの相対向する測定面間の相対関係を、簡単に及び高精度に得ることができる。   By configuring the jig of the present embodiment in this way, the method of the present embodiment by the apparatus of the present embodiment can be easily and reliably performed. The relative relationship can be obtained easily and with high accuracy.

また、本実施形態においては、トレース方向位置合わせ用ゲージとして、断面が所定の直径及び真円度をもつ円柱状のピンゲージ又は球状の基準球を用いることにより、前記データ処理手段によるデータ処理(位置合わせ)の際に、より簡単に確実に開始点(特徴点)を確認することができるので、より正確にデータの位置合わせができる。
したがって、本実施形態においては、他のものに比較し、ワークの相対向する測定面間の相対関係を、より簡単に及び高精度に得ることができる。
Further, in the present embodiment, as the gauge for alignment in the trace direction, a cylindrical pin gauge having a predetermined diameter and roundness or a spherical reference sphere is used, whereby data processing (position by the data processing means) In this case, the starting point (feature point) can be confirmed more easily and reliably, so that the data can be aligned more accurately.
Therefore, in the present embodiment, the relative relationship between the measurement surfaces facing each other of the workpiece can be obtained more easily and with higher accuracy than in the other embodiments.

変形例
なお、前記各構成では、トレース方向位置合わせ用ゲージとして、ピンゲージを用いた例について説明したが、本発明はこれに限定されるものでなく、ピンゲージに代えて、基準球を用いることも好ましい。
In each of the above configurations, an example using a pin gauge as a trace direction alignment gauge has been described, but the present invention is not limited to this, and a reference sphere may be used instead of the pin gauge. preferable.

また前記各構成では、形状測定機として、形状測定機が接触式のプローブ(スタイラス)を用いた例について説明したが、本発明はこれに限定されるものでなく、接触式のものに代えて、非接触式のものを用いることも好ましい。   In each of the above-described configurations, the example in which the shape measuring machine uses a contact type probe (stylus) is described as the shape measuring machine. However, the present invention is not limited to this, and instead of the contact type. It is also preferable to use a non-contact type.

前記各構成では、ワークと形状測定機の検出器との測定トレース線方向への相対移動として、ワークに対し形状測定機の検出器(スタイラス)を測定トレース線方向に相対移動した例について説明したが、本発明はこれに限定されるものでなく、形状測定機の検出器に対しワークを測定トレース線方向に相対移動することも好ましい。   In each of the above-described configurations, an example in which the detector (stylus) of the shape measuring machine is moved relative to the workpiece in the direction of the measurement trace line as the relative movement of the workpiece and the detector of the shape measuring machine in the direction of the measurement trace line. However, the present invention is not limited to this, and it is also preferable to move the workpiece relative to the detector of the shape measuring machine in the direction of the measurement trace line.

本発明の一実施形態にかかる相対関係測定装置の概略構成の説明図である。It is explanatory drawing of schematic structure of the relative relationship measuring apparatus concerning one Embodiment of this invention. 本発明の一実施形態にかかる相対関係測定方法の手順の内の測定手法の手順示すフローチャートである。It is a flowchart which shows the procedure of the measuring method in the procedure of the relative relationship measuring method concerning one Embodiment of this invention. 本発明の一実施形態にかかる相対関係測定方法の内のデータ処理手法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the data processing method in the relative relationship measuring method concerning one Embodiment of this invention. 本発明の一実施形態にかかる相対関係測定用治具を側方より見た図である。It is the figure which looked at the jig for relative relation measurement concerning one embodiment of the present invention from the side. 本発明の一実施形態にかかる相対関係測定用治具を上方より見た図である。It is the figure which looked at the jig for relative relation measurement concerning one embodiment of the present invention from the upper part.

符号の説明Explanation of symbols

10 相対関係測定装置
12 形状測定機本体
14 相対関係測定用治具
16 データ処理機構
18 トレース方向位置合わせ用ゲージ
20 凹凸方向位置合わせ用ゲージ
30 治具本体
34 データ間位置合わせ手段
36 解析手段
DESCRIPTION OF SYMBOLS 10 Relative measurement apparatus 12 Shape measuring machine main body 14 Relative measurement jig 16 Data processing mechanism 18 Trace direction alignment gauge 20 Uneven direction alignment gauge 30 Jig main body 34 Inter-data alignment means 36 Analysis means

Claims (7)

所定の測定トレース線に沿って被測定物の凹凸を検出する形状測定機、並びに該形状測定機の凹凸検出方向に相対向する特徴点を持つトレース方向位置合わせ用ゲージ、平行及び所定寸法の相対向する表側基準面と裏側基準面とを持つ凹凸方向位置合わせ用ゲージ及びワークを保持する相対関係測定用治具を用いて、該ワークの相対向する表側測定面と裏側測定面間の相対関係を測定する相対関係測定方法であって、
前記相対関係測定用治具に保持されているトレース方向位置合わせ用ゲージ、該凹凸方向位置合わせ用ゲージの表側基準面及び前記ワークの表側測定面を、前記形状測定機で前記測定トレース線に沿って走査して、トレース方向位置合わせ用ゲージ情報、表側基準面情報及び表側測定面情報を含む表面形状データを取得する表面測定工程と、
前記測定トレース線と直角をなす回転軸を中心に、前記相対関係測定用治具を回転するワーク回転工程と、
前記ワーク回転工程後の相対関係測定用治具に保持されているトレース方向位置合わせ用ゲージ、前記凹凸方向位置合わせ用ゲージの裏側基準面及び前記ワークの裏側測定面を、前記形状測定機で前記測定トレース線に沿って走査して、トレース方向位置合わせ用ゲージ情報、裏側基準面情報及び裏側測定面情報を含む裏面形状データを取得する裏面測定工程と、
前記表面形状データのトレース方向位置合わせ用ゲージ情報の持つ特徴点情報及び裏面形状データのトレース方向位置合わせ用ゲージ情報の持つ特徴点情報に基づき表面形状データと裏面形状データとのトレース方向の位置合わせを行い、また前記凹凸方向位置合わせ用ゲージの持つ平行情報及び寸法情報に基づき、該表面形状データと該裏面形状データとの凹凸検出方向の位置合わせを行うデータ間位置合わせ工程と、
前記データ間位置合わせ工程で得られた表面形状データと裏面形状データとの関係に基づき、前記ワークの表側測定面と裏側測定面間の相対関係を求める解析工程と、
を備えたことを特徴とする相対関係測定方法。
A shape measuring machine that detects unevenness of the object to be measured along a predetermined measurement trace line, and a trace direction alignment gauge having feature points opposite to the unevenness detection direction of the shape measuring machine, parallel and relative to a predetermined dimension Relative relationship between the front and back measurement surfaces facing each other using a concave / convex direction alignment gauge having a facing reference surface and a back reference surface and a relative measurement jig holding the workpiece A relative relationship measuring method for measuring
Trace direction alignment gauges held in the relative relationship measurement jig, the reference side surface of the uneven direction alignment gauge, and the front side measurement surface of the workpiece along the measurement trace line with the shape measuring machine A surface measurement step of scanning and acquiring surface shape data including gauge information for alignment in the trace direction, front side reference surface information and front side measurement surface information;
A work rotation step of rotating the relative measurement jig about a rotation axis perpendicular to the measurement trace line;
The trace direction alignment gauge held in the relative relationship measurement jig after the workpiece rotation step, the back side reference surface of the uneven direction alignment gauge and the back side measurement surface of the workpiece are measured with the shape measuring machine. Back surface measurement step of scanning along the measurement trace line to obtain back surface shape data including gauge information for trace direction alignment, back side reference surface information and back side measurement surface information,
Alignment in the trace direction between the surface shape data and the back surface shape data based on the feature point information possessed by the gauge information for the trace direction alignment of the surface shape data and the feature point information possessed by the gauge information for the trace direction alignment of the back surface shape data. And an inter-data alignment step of aligning the surface shape data and the back surface shape data in the unevenness detection direction based on parallel information and dimension information of the unevenness direction alignment gauge,
Based on the relationship between the surface shape data and the back surface shape data obtained in the data alignment step, an analysis step for obtaining a relative relationship between the front side measurement surface and the back side measurement surface of the workpiece,
A relative relationship measuring method comprising:
請求項1記載の相対関係測定方法において、
前記データ間位置合わせ工程は、前記表面形状データないし裏面形状データが、前記形状測定機のトレース線及び凹凸検出軸を通る平面上で反転するように、該表面形状データないし該裏面形状データを座標変換する反転工程と、
前記反転工程後、前記表面形状データの表側基準面情報と前記裏面形状データの裏側基準面情報とが、平行で及び前記凹凸検出方向位置合わせゲージの持つ所定寸法に応じた離隔距離をもつように、該表面形状データないし該裏面形状データを座標変換する凹凸方向位置合わせ工程と、
前記反転工程後、前記表面形状データのトレース方向位置合わせ用ゲージ情報に基づく特徴点と、前記裏面形状データのトレース方向位置合わせ用ゲージ情報に基づく特徴点とが、前記測定トレース線方向において一致するように、該表面形状データないし該裏面形状データを座標変換するトレース方向位置合わせ工程と、
を備えたことを特徴とする相対関係測定方法。
The relative relationship measuring method according to claim 1,
The inter-data alignment step coordinates the surface shape data or the back surface shape data so that the surface shape data or back surface shape data is reversed on a plane passing through the trace line and the unevenness detection axis of the shape measuring machine. An inversion process to convert,
After the reversing step, the front side reference surface information of the surface shape data and the back side reference surface information of the back surface shape data are parallel and have a separation distance according to a predetermined dimension of the unevenness detection direction alignment gauge. , A concave / convex direction alignment step for converting the coordinates of the surface shape data or the back surface shape data;
After the inversion step, the feature point based on the trace direction alignment gauge information of the surface shape data and the feature point based on the trace direction alignment gauge information of the back surface shape data match in the measurement trace line direction. As described above, a trace direction alignment step for converting the coordinates of the surface shape data or the back surface shape data,
A relative relationship measuring method comprising:
請求項2記載の相対関係測定方法において、
前記表面測定工程は、前記トレース方向位置合せ用ゲージとして、前記形状測定機のトレース線及び凹凸検出軸を通る平面方向の断面が、所定の直径及び真円度を有する円柱状のピンゲージ又は球状の基準球を測定し、
前記裏面測定工程は、前記トレース方向位置合せ用ゲージとして、前記ピンゲージ又は基準球を測定し、
前記トレース方向位置合わせ工程は、前記表面形状データのトレース方向位置合わせゲージ情報に基づく特徴点としての凹凸検出軸方向の極値と、前記裏面形状データのトレース方向位置合わせゲージ情報に基づく特徴点としての凹凸検出軸方向の極値とがトレース方向において一致するように、該表面形状データと該裏面形状データとのトレース方向の位置合わせを行うことを特徴とする相対関係測定方法。
The relative relationship measuring method according to claim 2,
In the surface measurement step, as the trace direction alignment gauge, a cross-section in the plane direction passing through the trace line and the unevenness detection axis of the shape measuring machine has a cylindrical pin gauge or spherical shape having a predetermined diameter and roundness. Measure the reference sphere,
The back surface measuring step measures the pin gauge or the reference sphere as the trace direction alignment gauge,
The trace direction alignment step includes, as feature points based on the extreme values of the unevenness detection axis direction as feature points based on the trace direction alignment gauge information of the surface shape data and the trace direction alignment gauge information of the back surface shape data. A method of measuring a relative relationship, wherein the surface shape data and the back surface shape data are aligned in the trace direction so that the extreme value in the unevenness detection axis direction of the first and second surfaces coincides in the trace direction.
被測定物の凹凸情報を検出する形状測定機の測定トレース線上にセットされ、ワークの相対向する表側測定面と裏側測定面間の相対関係を測定する際に用いられる相対関係測定用治具であって、
前記形状測定機の凹凸検出軸方向に相対向する特徴点を持つトレース方向位置合わせ用ゲージと、
平行及び所定寸法の相対向する表側基準面と裏側基準面とを持つ凹凸方向位置合わせ用ゲージと、
前記トレース方向位置合わせ用ゲージ、前記凹凸方向位置合わせ用ゲージ及び前記ワークが測定トレース線上に位置するように、該トレース方向位置合わせ用ゲージ、該凹凸方向位置合わせ用ゲージ及び該ワークを保持する治具本体と、
を備え、前記形状測定機による表面測定工程と裏面測定工程との間で、前記測定トレース線と直角をなす回転軸を中心に、前記治具本体が回転されることを特徴とする測定関係測定用治具。
This is a relative measurement jig that is set on the measurement trace line of a shape measuring machine that detects unevenness information of the object to be measured and used to measure the relative relationship between the front and back measurement surfaces facing each other. There,
A trace direction alignment gauge having feature points opposite to the unevenness detection axis direction of the shape measuring machine;
Concave and convex direction alignment gauges having parallel and predetermined front and back reference surfaces opposite to each other, and
The trace direction alignment gauge, the uneven direction alignment gauge, and the jig for holding the workpiece so that the trace direction alignment gauge, the uneven direction alignment gauge, and the work are positioned on the measurement trace line. The tool body,
And the jig body is rotated about a rotation axis perpendicular to the measurement trace line between the front surface measurement step and the back surface measurement step by the shape measuring machine. Jig.
請求項4記載の相対関係測定用治具において、
前記トレース方向位置合わせ用ゲージは、前記測定トレース線及び凹凸検出軸を通る平面方向の断面が、所定の直径及び真円度を有する円柱状のピンゲージ又は球状の基準球であることを特徴とする相対関係測定用治具。
In the relative relationship measuring jig according to claim 4,
The trace direction alignment gauge is a cylindrical pin gauge or a spherical reference sphere having a predetermined diameter and roundness in a plane section passing through the measurement trace line and the unevenness detection axis. Relative measurement jig.
請求項4記載の相対関係測定用治具において、
前記治具本体が固定され、前記形状測定機の測定トレース線と直角をなす回転軸を中心に、前記治具本体を回転する回転テーブルと、
前記回転テーブルを回転する回転手段と、
を備えたことを特徴とする相対関係測定用治具。
In the relative relationship measuring jig according to claim 4,
The jig body is fixed, and a rotary table that rotates the jig body around a rotation axis that is perpendicular to the measurement trace line of the shape measuring machine;
Rotating means for rotating the rotating table;
A jig for measuring a relative relationship, comprising:
請求項4〜6のいずれかに記載の相対関係測定用治具と、
所定の測定トレース線に沿って被測定物の凹凸情報を検出する形状測定機と、
を備え、前記ワークの相対向する表側測定面と裏側測定面間の相対関係を測定する相対関係測定装置であって、
前記形状測定機は、表面測定工程で、前記相対関係測定用治具に保持されているトレース方向位置合わせ用ゲージ、前記凹凸方向位置合わせ用ゲージの表側基準面及び前記ワークの表側測定面を所定の測定トレース線上に沿って走査して表面形状データを取得し、また該相対関係測定用治具の回転後、裏面測定工程で、該相対関係測定用治具に保持されている該トレース方向位置合わせ用ゲージ、該凹凸方向位置合わせ用ゲージの裏側基準面及び該ワークの裏側測定面を測定トレース線上に沿って走査して裏面形状データを取得し、
さらに、前記形状測定機の表面測定工程で得られたトレース方向位置合わせ用ゲージ情報の持つ特徴点情報及び前記形状測定機の裏面測定工程で得られたトレース方向位置合わせ用ゲージ情報の持つ特徴点情報に基づき、前記表面形状データと裏面形状データとのトレース方向の位置合わせを行い、また前記凹凸方向位置合わせ用ゲージの持つ平行情報及び寸法情報に基づき、該表面形状データと該裏面形状データとの凹凸検出方向の位置合わせを行うデータ間位置合わせ手段と、
前記データ間位置合わせ手段で得られた表面形状データと裏面形状データとの関係に基づき、前記ワークの表側測定面と裏側測定面間の相対関係を求める解析手段と、
を備えたことを特徴とする相対関係測定装置。
A relative relationship measuring jig according to any one of claims 4 to 6,
A shape measuring machine that detects unevenness information of an object to be measured along a predetermined measurement trace line,
A relative relationship measuring device for measuring a relative relationship between the front and back measurement surfaces facing each other of the workpiece,
In the surface measurement process, the shape measuring machine predetermines a trace direction alignment gauge held on the relative relationship measurement jig, a front side reference surface of the uneven direction alignment gauge, and a front side measurement surface of the workpiece. The surface shape data is obtained by scanning along the measurement trace line, and after the rotation of the relative relationship measurement jig, the trace direction position held by the relative relationship measurement jig in the back surface measurement step The back surface shape data is obtained by scanning the alignment gauge, the back side reference surface of the unevenness direction alignment gauge and the back side measurement surface of the workpiece along the measurement trace line,
Further, feature point information possessed by the gauge information for trace direction alignment obtained in the surface measurement process of the shape measuring machine and feature point possessed by the gauge information for trace direction alignment obtained in the back surface measurement process of the shape measuring machine Based on the information, the surface shape data and the back surface shape data are aligned in the trace direction, and the surface shape data and the back surface shape data are based on the parallel information and the dimension information of the unevenness direction alignment gauge. An inter-data alignment means for performing alignment in the unevenness detection direction of
Based on the relationship between the surface shape data and the back surface shape data obtained by the inter-data alignment means, analysis means for obtaining a relative relationship between the front side measurement surface and the back side measurement surface of the workpiece,
A relative relationship measuring apparatus comprising:
JP2005274961A 2005-09-22 2005-09-22 Relative relationship measurement method and relative relationship measurement device Active JP4705828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274961A JP4705828B2 (en) 2005-09-22 2005-09-22 Relative relationship measurement method and relative relationship measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005274961A JP4705828B2 (en) 2005-09-22 2005-09-22 Relative relationship measurement method and relative relationship measurement device

Publications (2)

Publication Number Publication Date
JP2007085882A true JP2007085882A (en) 2007-04-05
JP4705828B2 JP4705828B2 (en) 2011-06-22

Family

ID=37973004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274961A Active JP4705828B2 (en) 2005-09-22 2005-09-22 Relative relationship measurement method and relative relationship measurement device

Country Status (1)

Country Link
JP (1) JP4705828B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008193A (en) * 2008-06-26 2010-01-14 Mitsutoyo Corp Fixture for measuring shape of object to be measured and method for measuring three-dimensional shape
JP2010008192A (en) * 2008-06-26 2010-01-14 Mitsutoyo Corp Fixture for measuring shape of object to be measured and method for measuring three-dimensional shape
JP2015096808A (en) * 2013-11-15 2015-05-21 Jfeスチール株式会社 Method of measuring plate thickness

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344329A (en) * 1998-05-29 1999-12-14 Canon Inc Three dimensional shape measuring device
JPH11344330A (en) * 1998-05-29 1999-12-14 Canon Inc Three dimensional shape measuring device
JP2000097684A (en) * 1998-09-22 2000-04-07 Olympus Optical Co Ltd Measurement method for position relation between faces of optical devices and holding device holding optical device used for it
JP2001056217A (en) * 1999-08-17 2001-02-27 Olympus Optical Co Ltd Optical element shape measuring method and device
JP2002071344A (en) * 2000-08-28 2002-03-08 Matsushita Electric Ind Co Ltd Method and instrument for measuring shape
JP2005083914A (en) * 2003-09-09 2005-03-31 Olympus Corp Measuring tool and three-dimensional shape measuring method using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344329A (en) * 1998-05-29 1999-12-14 Canon Inc Three dimensional shape measuring device
JPH11344330A (en) * 1998-05-29 1999-12-14 Canon Inc Three dimensional shape measuring device
JP2000097684A (en) * 1998-09-22 2000-04-07 Olympus Optical Co Ltd Measurement method for position relation between faces of optical devices and holding device holding optical device used for it
JP2001056217A (en) * 1999-08-17 2001-02-27 Olympus Optical Co Ltd Optical element shape measuring method and device
JP2002071344A (en) * 2000-08-28 2002-03-08 Matsushita Electric Ind Co Ltd Method and instrument for measuring shape
JP2005083914A (en) * 2003-09-09 2005-03-31 Olympus Corp Measuring tool and three-dimensional shape measuring method using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008193A (en) * 2008-06-26 2010-01-14 Mitsutoyo Corp Fixture for measuring shape of object to be measured and method for measuring three-dimensional shape
JP2010008192A (en) * 2008-06-26 2010-01-14 Mitsutoyo Corp Fixture for measuring shape of object to be measured and method for measuring three-dimensional shape
JP2015096808A (en) * 2013-11-15 2015-05-21 Jfeスチール株式会社 Method of measuring plate thickness

Also Published As

Publication number Publication date
JP4705828B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
CN103586740B (en) A kind of fine precision process tool work pattern is at position detecting method
WO2020228494A1 (en) Detection device and working method for detection device
JP4791118B2 (en) Image measuring machine offset calculation method
JP4764040B2 (en) A method for measuring the eccentricity of the aspherical axis of a lens
US7869060B2 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
JP5571007B2 (en) Sphere shape measuring device
US10578414B2 (en) Inner-wall measuring instrument and offset-amount calculation method
CN104154881B (en) Measuring method for parallelism error of shaft hole end face of telescope four-way
JP4705792B2 (en) Inter-axis angle correction method
JP5270138B2 (en) Calibration jig and calibration method
JP4705828B2 (en) Relative relationship measurement method and relative relationship measurement device
JP4891629B2 (en) Surface texture measuring machine, shape analysis program and recording medium
Tong et al. A novel laser-based system for measuring internal thread parameters
JP2005037353A (en) Width measuring method and surface property measuring equipment
JP2007263895A (en) Method and device for measuring deflection of tubular body
JP6757391B2 (en) Measuring method
JP4922905B2 (en) Method and apparatus for measuring position variation of rotation center line
JP2017161421A (en) Screw shape automatic measuring system
JP4686125B2 (en) Width measuring method and surface texture measuring machine
JP7360593B2 (en) calibration unit
JP2001201339A (en) Correcting method for straightness precision of measuring instrument
US11635291B2 (en) Workpiece holder for utilization in metrology system for measuring workpiece in different orientations
JP6052953B2 (en) Method to acquire position information and posture information of CMM and lever probe
JP2011215108A (en) Measuring method and shape measuring device
JP4046110B2 (en) Hole positioning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R150 Certificate of patent or registration of utility model

Ref document number: 4705828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250