JPH06347732A - Lens meter - Google Patents
Lens meterInfo
- Publication number
- JPH06347732A JPH06347732A JP14060193A JP14060193A JPH06347732A JP H06347732 A JPH06347732 A JP H06347732A JP 14060193 A JP14060193 A JP 14060193A JP 14060193 A JP14060193 A JP 14060193A JP H06347732 A JPH06347732 A JP H06347732A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- light
- inspected
- optical axis
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
- Eyeglasses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、レンズメータに関し、
より詳しくは、累進焦点レンズの測定,PD(眼鏡レン
ズの光学中心間距離),プリズムの処方等を適確に行う
ことができるレンズメータに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lens meter,
More specifically, the present invention relates to a lens meter capable of appropriately measuring a progressive-focus lens, PD (optical center distance of a spectacle lens), prescription of a prism, and the like.
【0002】[0002]
【従来の技術】従来よりレンズ,プリズム等の光学特性
を自動的に測定するレンズメータが各種提案されてい
る。2. Description of the Related Art Conventionally, various lens meters for automatically measuring optical characteristics of lenses, prisms, etc. have been proposed.
【0003】従来のレンズメータにおいては、例えば、
被検レンズの光学中心やある特定のプリズム量の位置を
特定するために、このレンズメータに設けた表示手段に
表示される球面度数等の光学特性値を見ながらレンズ受
上の被検レンズを所定の位置まで手動により移動してい
た。In a conventional lens meter, for example,
In order to identify the optical center of the lens to be inspected or the position of a certain amount of prism, the lens to be inspected on the lens receiver is checked while observing optical characteristic values such as spherical power displayed on the display means provided in this lens meter. It was manually moved to a predetermined position.
【0004】また、累進焦点レンズの場合も、上述した
場合と同様に光学特性値を見ながら、又は累進焦点レン
ズ測定用の表示を見ながら、累進帯に沿ってレンズを手
動で移動し、例えば、この累進焦点レンズの遠用度数,
近用点における加入度数及びその位置を把握していた。Also in the case of a progressive-focus lens, the lens is manually moved along the progressive zone while observing the optical characteristic value or the display for measuring the progressive-focus lens as in the case described above. , Distance power of this progressive focus lens,
He knew the addition power at the near point and its position.
【0005】被検レンズの光学的特性の評価について
は、特開昭60-17335号,特開平2-216428号に開示されて
いる。これらの発明の場合、図16に示すように、被検
レンズ50は直径8mm程度のレンズ受51上に置か
れ、被検レンズ50の裏面の位置は常にレンズ受51の
上端面と接するようにしている。The evaluation of the optical characteristics of the lens under test is disclosed in JP-A-60-17335 and JP-A-2-216428. In the case of these inventions, as shown in FIG. 16, the lens 50 to be inspected is placed on a lens receiver 51 having a diameter of about 8 mm, and the position of the back surface of the lens 50 to be inspected is always in contact with the upper end surface of the lens receiver 51. ing.
【0006】ところで、被検レンズ50を手動にて移動
する場合、この被検レンズ50は直径8mm程度のレン
ズ受51に沿うように移動する訳であるが、この被検レ
ンズ50を機構的に保持し、自動的に移動させようとす
る場合、被検レンズ50をレンズ受51に沿って移動さ
せること又はレンズ受51に沿う状態と同様に移動させ
ることは複雑高価な機構を必要とするという問題があ
る。When the lens 50 to be inspected is manually moved, the lens 50 to be inspected moves along a lens receiver 51 having a diameter of about 8 mm, but the lens 50 to be inspected mechanically. When holding and automatically moving the lens 50, it is necessary to move the lens 50 to be inspected along the lens receiver 51 or to move the lens 50 in the same manner as the lens receiver 51 requires a complicated and expensive mechanism. There's a problem.
【0007】また、被検レンズ50を測定光軸Qと垂直
な面内のみで移動させる場合には、被検レンズ50を2
次元的に移動すれば良く機構的には簡単になるが、被検
レンズ50の裏面の曲率によってその裏面と測定光軸Q
の交点の位置が図17に示すようにずれしてしまう。こ
の場合、被検レンズ50の裏面から像面までの距離は裏
面の曲率が被検レンズ50毎に異なるために不明であ
り、頂点屈折力を求めることは不可能となる。When the lens 50 to be inspected is moved only in the plane perpendicular to the measurement optical axis Q, the lens 50 to be inspected is
Although it suffices if the lens 50 moves dimensionally, it becomes mechanically simple.
The position of the intersection point of is shifted as shown in FIG. In this case, the distance from the back surface of the lens 50 to be tested to the image plane is unknown because the curvature of the back surface is different for each lens 50 to be tested, and it becomes impossible to obtain the vertex refractive power.
【0008】[0008]
【発明が解決しようとする課題】そこで、従来において
図18に示すような構成のレンズメータが提案されてい
る。このレンズメータは、測定光軸Qからずれた位置に
配置した光源LS,コリメートレンズL1 ,測定用のス
リットを設けたパターン板P,結像レンズL2 ,主平面
TL を有する被検レンズ,投影レンズL3 ,CCDを用
いた受光素子Rを具備している。Therefore, conventionally, a lens meter having a structure as shown in FIG. 18 has been proposed. This lens meter includes a light source LS arranged at a position displaced from the measurement optical axis Q, a collimator lens L1, a pattern plate P provided with a slit for measurement, an imaging lens L2, a lens under test having a principal plane TL, and a projection lens. It is equipped with a light receiving element R using L3 and CCD.
【0009】ところで、被検レンズの主平面TL は、被
検レンズの平行移動によって光軸方向には移動しない
が、被検レンズの形状,厚さ等によって位置が変化す
る。By the way, the principal plane TL of the lens under test does not move in the optical axis direction due to the parallel movement of the lens under test, but its position changes depending on the shape, thickness, etc. of the lens under test.
【0010】図18に主平面TL が変化した場合にパタ
ーン板Pの中心を通る光束が結像素子Rの像面を横切る
様子を示した。FIG. 18 shows how the light flux passing through the center of the pattern plate P traverses the image plane of the image forming element R when the principal plane TL changes.
【0011】図18中、主平面TL の基準位置を実線で
示し、このときの光束も実線で示した。また、主平面T
L がずれて点線で示す主平面TL1となったときの光束は
点線で示した。In FIG. 18, the reference position of the principal plane TL is shown by a solid line, and the luminous flux at this time is also shown by a solid line. Also, the main plane T
The light flux when L is displaced to become the principal plane TL1 shown by the dotted line is shown by the dotted line.
【0012】図18から明らかなように、この場合の配
置では受光素子Rの像面上でのパターン像の中心位置は
I0 ,I1 とずれが生じ、測定結果に誤差を生じる。As is apparent from FIG. 18, in the arrangement in this case, the center position of the pattern image on the image plane of the light receiving element R deviates from I0 and I1 and causes an error in the measurement result.
【0013】パターン板Pが結像レンズL2 の前側焦点
位置にある場合は、図19に示すように、結像レンズL
2 から主平面TL を有する被検レンズを通る光束は測定
光軸Qと平行になるのでパターン像の位置誤差は生じな
い。しかし、この場合には、受光素子Rの像面上のパタ
ーン像はボケてしまい、正確な測定は困難となる。When the pattern plate P is at the front focus position of the imaging lens L2, as shown in FIG.
Since the light flux passing through the lens to be inspected having the principal plane TL from 2 becomes parallel to the measurement optical axis Q, no positional error of the pattern image occurs. However, in this case, the pattern image on the image plane of the light receiving element R is blurred and accurate measurement becomes difficult.
【0014】そこで、本発明は、構成を改良し、常に正
確に被検レンズの光学特性を測定することが可能なレン
ズメータを提供することを目的とするものである。Therefore, it is an object of the present invention to provide a lens meter having an improved structure and capable of always accurately measuring the optical characteristics of a lens under test.
【0015】[0015]
【課題を解決するための手段】請求項1記載の発明は、
被検レンズに光源部からの光によるパターン像の光束を
照射し、被検レンズを経た前記光束を受光手段により受
光して、この受光手段の出力信号を基に被検レンズの光
学特性を求めるレンズメータにおいて、前記光源部を測
定光軸上に配置するとともに、前記被検レンズを測定光
軸と略直交する任意の方向に駆動するレンズ駆動部と、
このレンズ駆動部により任意の方向に駆動される被検レ
ンズの測定光軸との各交点を通過した前記パターン像の
光束による受光手段の各出力信号を基に被検レンズの測
定すべき点の光学特性を求める演算手段とを有するもの
である。The invention according to claim 1 is
The light beam of the pattern image formed by the light from the light source unit is applied to the lens to be inspected, the light beam passing through the lens to be inspected is received by the light receiving means, and the optical characteristics of the lens to be inspected are obtained based on the output signal of the light receiving means. In the lens meter, while arranging the light source unit on the measurement optical axis, a lens drive unit that drives the lens under test in an arbitrary direction substantially orthogonal to the measurement optical axis,
Based on each output signal of the light receiving means by the light flux of the pattern image that has passed through each intersection with the measurement optical axis of the lens under test driven in this direction by the lens driving unit, And a calculation means for obtaining optical characteristics.
【0016】請求項2記載の発明は、前記レンズ駆動部
により、被検レンズの測定すべき点から概知の少なくと
も3箇所以上の位置を光軸に合致させるようにこの被検
レンズを駆動するようにしたものである。According to a second aspect of the present invention, the lens driving section drives the lens to be inspected so that at least three or more known positions from the point to be measured of the lens to be inspected coincide with the optical axis. It was done like this.
【0017】請求項3記載の発明は、被検レンズに光源
部からの光によるパターン像の光束を照射し、被検レン
ズを経た前記光束を受光手段により受光して、この受光
手段の出力信号を基に被検レンズの光学特性を求めるレ
ンズメータにおいて、前記光源部は、測定光軸と直交す
る面で、かつ、所定距離離れた少なくとも3個の光源を
具備し、前記被検レンズを任意位置に載置した状態で少
なくとも3個の光源を発光して得られる各パターン像の
光束による受光手段の各出力信号を基に被検レンズの測
定すべき点の光学特性を求める演算手段を有するもので
ある。According to a third aspect of the invention, the light beam of the pattern image formed by the light from the light source unit is applied to the lens to be inspected, the light beam passing through the lens to be inspected is received by the light receiving means, and the output signal of the light receiving means is received. In the lens meter for obtaining the optical characteristics of the lens to be inspected based on, the light source unit includes at least three light sources that are orthogonal to the measurement optical axis and are separated by a predetermined distance, and the lens to be inspected is arbitrary. And an arithmetic means for obtaining the optical characteristic of the point to be measured of the lens to be measured based on each output signal of the light receiving means by the light flux of each pattern image obtained by emitting at least three light sources in a state of being mounted on the position. It is a thing.
【0018】[0018]
【作用】以下に上述した各発明の作用を説明する。The function of each invention described above will be described below.
【0019】請求項1記載のレンズメータにおける測定
光軸上に配置した光源部からの光によるパターン像の光
束は、被検レンズを経た後受光手段により受光される
が、このとき、レンズ駆動部は前記被検レンズを測定光
軸と略直交する任意の方向に駆動する。このような被検
レンズの任意の方向への移動により被検レンズの測定光
軸との各交点を通過した前記パターン像の光束が各々受
光手段により受光され、受光手段は各パターン像の光束
に応じた出力信号を送出する。演算手段は、受光手段か
らの各出力信号を基に被検レンズの測定すべき点の光学
特性を求める。The light flux of the pattern image formed by the light from the light source section arranged on the measurement optical axis in the lens meter according to the first aspect is received by the light receiving means after passing through the lens to be inspected. Drives the lens under test in an arbitrary direction substantially orthogonal to the measurement optical axis. The light flux of the pattern image passing through each intersection with the measurement optical axis of the test lens by the movement of the test lens in any direction is received by the light receiving means, and the light receiving means changes the light flux of each pattern image. The corresponding output signal is transmitted. The calculation means obtains the optical characteristic of the point to be measured of the lens to be measured based on each output signal from the light receiving means.
【0020】この結果、常に正確に被検レンズの測定す
べき点の光学特性を測定することが可能となる。As a result, it becomes possible to always accurately measure the optical characteristics of the point to be measured of the lens to be measured.
【0021】請求項2記載のレンズメータによれば、前
記レンズ駆動部により、被検レンズの測定すべき点から
概知の少なくとも3箇所以上の位置を光軸に合致させる
ようにこの被検レンズを駆動するようにしたので、測定
すべき点から概知の少なくとも3箇所以上の位置の光学
特性を演算手段により求めて測定すべき点の光学特性を
正確に算出することができる。According to the second aspect of the lens meter, the lens driving unit causes the lens to be measured so that at least three or more known positions from the point to be measured of the lens to be measured are aligned with the optical axis. Since it is driven, it is possible to accurately calculate the optical characteristics of the points to be measured by obtaining the optical characteristics at at least three or more known positions from the points to be measured by the calculating means.
【0022】請求項3記載のレンズメータにおける測定
光軸と直交する面で、かつ、測定光軸から所定距離離れ
た少なくとも3個の光源からの光による各パターン像の
光束は、任意位置に載置した被検レンズを経た後、各々
受光手段により受光され、受光手段は各光束に応じた出
力信号を送出する。演算手段は、受光手段からの少なく
とも3個の出力信号を基に被検レンズの測定すべき点の
光学特性を求める。In the lens meter according to the third aspect, the light flux of each pattern image formed by light from at least three light sources on a surface orthogonal to the measurement optical axis and at a predetermined distance from the measurement optical axis is placed at an arbitrary position. After passing through the placed test lens, each is received by the light receiving means, and the light receiving means sends out an output signal corresponding to each light flux. The calculation means obtains the optical characteristic of the point to be measured of the lens to be measured based on at least three output signals from the light receiving means.
【0023】この結果、常に正確に被検レンズの測定す
べき点の光学特性を測定することが可能となる。As a result, the optical characteristic of the point to be measured of the lens to be measured can always be measured accurately.
【0024】[0024]
【実施例】以下に、本発明の実施例を詳細に説明する。EXAMPLES Examples of the present invention will be described in detail below.
【0025】図1に示すレンズメータ1は、測定光軸Q
上の光源部15と、コリメートレンズ16と、測定用の
スリットを設けたパターン板Pと、結像レンズ17と、
投影レンズ18と、CCDを用いた受光素子19とから
なる測定光学系を有し、前記結像レンズ17の後側焦点
位置に被検レンズ20を配置している。The lens meter 1 shown in FIG. 1 has a measurement optical axis Q.
An upper light source unit 15, a collimator lens 16, a pattern plate P having a slit for measurement, an imaging lens 17,
A measuring optical system including a projection lens 18 and a light receiving element 19 using a CCD is provided, and a lens 20 to be inspected is arranged at a rear focal position of the imaging lens 17.
【0026】前記パターン板Pは、サーボコントロール
機能をもった軸方向駆動部31により結像レンズ17の
前側焦点位置を基準として測定光軸Qの方向(z方向)
に駆動されるようになっている。The pattern plate P is directed in the direction of the measurement optical axis Q (z direction) by the axial drive unit 31 having a servo control function, with the front focus position of the imaging lens 17 as a reference.
It is designed to be driven by.
【0027】また、前記被検レンズ20は、結像レンズ
17の後側焦点位置を含む測定光軸Qと直交する平面に
おいてレンズ保持部21により保持され、このレンズ保
持部21を、X−Yテーブルを用い、サーボコントロー
ル機能を具備するレンズ駆動部32によりx,y各方向
に駆動されるようになっている。The lens 20 to be inspected is held by a lens holding portion 21 on a plane orthogonal to the measurement optical axis Q including the rear focal position of the imaging lens 17, and the lens holding portion 21 is moved to XY. A lens drive unit 32 having a servo control function is driven in each of the x and y directions using a table.
【0028】前記光源部15は、測定光軸Qに臨ませた
第1の光源8を具備している。The light source section 15 comprises a first light source 8 facing the measurement optical axis Q.
【0029】この光源部15の代りに、図2に示すよう
に、測定光軸Qを中心として等間隔の円形配置とした第
2乃至第4の光源9乃至11を具備した光源部15Aを
用いることもできる。Instead of the light source unit 15, as shown in FIG. 2, a light source unit 15A having second to fourth light sources 9 to 11 arranged in a circle at equal intervals around the measurement optical axis Q is used. You can also
【0030】図3は、レンズメータ1の制御系を示すも
のであり、全体の制御を行うCPUを含む制御手段30
に、前記軸方向駆動部31,レンズ駆動部32,受光素
子19を接続している。FIG. 3 shows a control system of the lens meter 1, and a control means 30 including a CPU for controlling the whole.
The axial drive unit 31, the lens drive unit 32, and the light receiving element 19 are connected to the.
【0031】また、制御手段30に、各種情報を記憶す
る記憶部33と、受光素子19により電気信号に変換す
るパターン像の情報を基に被検レンズ20の球面度数
S,円柱度数C,軸角度A,プリズム値,後述する眼鏡
40の場合のPD等の各種光学特性を求める演算手段3
4と、この演算手段34の演算結果を表示する液晶ディ
スプレイ,CRTディスプレイ等の表示手段35と、演
算手段34の演算結果を用紙にプリントアウトするプリ
ンタ37と、通常測定モード,累進測定モード等のモー
ド設定,数値,文字等の入力を行う入力手段36とを接
続している。The control unit 30 stores a variety of information in the storage unit 33 and the information of the pattern image converted into an electric signal by the light receiving element 19 based on the spherical power S, the cylindrical power C, and the axis of the lens 20 to be measured. Arithmetic means 3 for obtaining various optical characteristics such as the angle A, the prism value, and the PD in the case of the spectacles 40 described later.
4, a display means 35 such as a liquid crystal display or a CRT display for displaying the calculation result of the calculation means 34, a printer 37 for printing out the calculation result of the calculation means 34 on paper, a normal measurement mode, a progressive measurement mode, etc. The input means 36 for inputting mode settings, numerical values, characters, etc. is connected.
【0032】次に、上述したレンズメータ1の作用を図
4乃至図15をも参照して説明する。Next, the operation of the above-described lens meter 1 will be described with reference to FIGS. 4 to 15.
【0033】前記光源部15の測定光軸Q上の光源8の
みを用いる場合、被検レンズ20の任意の1点の粗測定
値をもとにパターン板Pの移動量を決定するが、前記光
源部15Aを構成する3個の光源9乃至11を用いる場
合には、被検レンズ20を移動することなく粗測定を行
うことができる。When only the light source 8 on the measurement optical axis Q of the light source unit 15 is used, the movement amount of the pattern plate P is determined based on the rough measurement value at any one point of the lens 20 to be inspected. When using the three light sources 9 to 11 forming the light source unit 15A, rough measurement can be performed without moving the lens 20 to be inspected.
【0034】即ち、受光素子19上のパターン像のボケ
を補正するため、前記軸方向駆動部31によりパターン
板Pを結像レンズ17と被検レンズ20の主平面TL と
の合成前側焦点位置(図1に点線で示す。)へ移動して
も、パターン板Pの中心を通る光束は常に測定光軸Qと
一致しているため、結像位置のズレは生じない。但し、
この場合には、測定は測定光軸Q上の一点でしか行わな
いため、その位置でのプリズム値の測定しかできず、球
面度数S,円柱度数C,軸角度Aの演算はできない。こ
の時のプリズム量P(Δ)は、受光素子19の受光面
(像面)上でパターン像中心と測定光軸Qとの距離を図
5に示すようにhとし、投影レンズ18の焦点距離を図
6に示すようにf3 とすると、下記数1で表すことがで
きる。That is, in order to correct the blurring of the pattern image on the light receiving element 19, the pattern plate P is moved by the axial driving unit 31 to the front focus position (composite of the imaging lens 17 and the principal plane TL of the lens 20 to be tested). 1) (shown by the dotted line in FIG. 1), the light flux passing through the center of the pattern plate P always coincides with the measurement optical axis Q, so that the image forming position is not displaced. However,
In this case, since the measurement is performed only at one point on the measurement optical axis Q, only the prism value at that position can be measured, and the spherical power S, the cylindrical power C, and the axial angle A cannot be calculated. The prism amount P (Δ) at this time is set such that the distance between the center of the pattern image and the measurement optical axis Q on the light receiving surface (image surface) of the light receiving element 19 is h as shown in FIG. Is expressed as f3 as shown in FIG. 6, it can be expressed by the following formula 1.
【0035】 [数1]P(Δ)=f3 /100 ・h[Equation 1] P (Δ) = f3 / 100 · h
【0036】そこで、被検レンズ20を前記レンズ駆動
部32により測定光軸Qと垂直な平面内でx,y方向に
移動し、任意の測定しようとする点から等距離の少なく
とも3点以上を通過する前記パターン板Pによる各パタ
ーン像を前記受光素子19に入射し、この受光素子19
からの各出力信号を基に前記演算手段34により各々プ
リズム値を測定し、各プリズム値を基に球面度数S,円
柱度数C,軸角度Aの演算を行う。図4にこの様子を示
す。Therefore, the lens 20 to be inspected is moved in the x and y directions in the plane perpendicular to the measuring optical axis Q by the lens driving section 32, and at least three points equidistant from any point to be measured are moved. Each pattern image of the pattern plate P passing therethrough is incident on the light receiving element 19 and
The prism values are measured by the calculating means 34 based on the respective output signals from, and the spherical power S, the cylindrical power C, and the axial angle A are calculated based on each prism value. This is shown in FIG.
【0037】図4に示すように、被検レンズ20のa,
b,cの3点の各プリズム値を基にこれらの中心に位置
するα点の光学特性は、測定光軸Qが被検レンズ20の
a,b,cの各点と交差するように被検レンズ20を移
動し、図8に示すように測定した際の各々のパターン像
A,B,Cを得る。このとき、被検レンズ20のa,
b,c各点が図7に示すように前記α点から等しい距離
rであるとすれば、α点におけるプリズム量P(Δ)
は、パターン像A,B,Cの重心点αi と測定光軸Qと
の距離をhとすれば、前記数1から求めることができ
る。As shown in FIG. 4, a,
Based on the prism values of the three points b and c, the optical characteristics of the α point located at the center of the prism values are measured so that the measurement optical axis Q intersects the points a, b and c of the lens 20 to be measured. The inspection lens 20 is moved to obtain respective pattern images A, B, and C at the time of measurement as shown in FIG. At this time, a of the lens 20 to be inspected,
Assuming that the points b and c have the same distance r from the α point as shown in FIG. 7, the prism amount P (Δ) at the α point
Can be obtained from the above equation 1 if the distance between the center of gravity αi of the pattern images A, B and C and the measurement optical axis Q is h.
【0038】また、パターン像A,B,Cの重心点αi
から各パターン像A,B,Cの中心までの距離をRとと
し、結像レンズ17の前側焦点位置からの移動量をzと
すれば、その径線方向の屈折力Dは下記数2で表すこと
ができる。The center of gravity αi of the pattern images A, B and C
Let R be the distance from the center of the pattern images A, B, and C to Z, and z be the amount of movement of the imaging lens 17 from the front focus position, then the refractive power D in the radial direction is Can be represented.
【0039】 [数2]D=1000/rf3 ・R+1000/f2 2 ・z[Equation 2] D = 1000 / rf3 · R + 1000 / f2 2 · z
【0040】被検レンズ20が球面度数Sのみを有する
レンズである場合、一径線方向の屈折力Dによって球面
度数Sを求めることができるが、乱視度数Cを含んでい
る場合には少なくとも3径線方向の屈折力Dの値により
球面度数S,乱視度数C,軸角度Aを求めることがで
き、以下同様にして被検レンズ20のa,c,dの3点
の各プリズム値を基にこれらの中心に位置するβ点の光
学特性を求めることができる。When the lens 20 to be inspected is a lens having only the spherical power S, the spherical power S can be obtained from the refractive power D in the radial direction, but when the astigmatic power C is included, it is at least 3. The spherical power S, the astigmatic power C, and the axial angle A can be obtained from the value of the refractive power D in the radial direction. Similarly, based on the prism values of the three points a, c, and d of the lens 20 to be tested, in the same manner. Then, the optical characteristics of the β point located at the center can be obtained.
【0041】また、前記レンズ保持部31に累進焦点レ
ンズ20Aをセットし、前記入力手段36により累進測
定モードを設定した状態で、上述した場合と同様な動作
の基に、累進焦点レンズ20Aをx−y面内で細く測定
し、これらの球面度数S,乱視度数C,軸角度Aの測定
値を基に、球面度数S,乱視度数C,軸角度Aが変化し
ない領域の球面度数Sを遠用度数とし、乱視度数C,軸
角度Aが変化しない領域を累進帯とし、累進帯における
球面度数Sが最大となる点を近用度数とし、これらの値
を表示手段35に表示することができる。また、これら
の値に対応するパターンを表示手段35に表示すること
ができる。Further, with the progressive focusing lens 20A set in the lens holding portion 31 and the progressive measuring mode is set by the input means 36, the progressive focusing lens 20A is moved to the x position based on the same operation as described above. -Measure finely in the y-plane, and based on the measured values of these spherical power S, astigmatism C, and axial angle A, calculate the spherical power S, astigmatism C, and spherical power S in the area where the axial angle A does not change. It is possible to display these values on the display means 35 as the dioptric power, the region where the astigmatic power C and the axial angle A do not change is the progressive band, and the point where the spherical power S in the progressive band is the maximum is the near dioptric power. . Further, the pattern corresponding to these values can be displayed on the display means 35.
【0042】また、球面度数S、乱視度数C、プリズム
量P(Δ)の各々の値の変化を図9乃至図11に示すよ
うに等高線状に表示手段35に表示することもでき、こ
の場合、等高線状の等乱視度線の表示に対して図12に
示すように線種又は線色を変えてプリズム量P(Δ)を
重畳することもできる。さらに、図13に示すように、
表示手段35上の遠用部、近用部及び累進体のグラフィ
ック表示に加えて球面度数S,乱視度数C,プリズム量
P(Δ)の各々の測定値を併せて表示することもでき
る。Further, changes in the respective values of the spherical power S, the astigmatic power C, and the prism amount P (Δ) can be displayed on the display means 35 in contour lines as shown in FIGS. 9 to 11, and in this case. It is also possible to superimpose the prism amount P (Δ) by changing the line type or line color as shown in FIG. Further, as shown in FIG.
In addition to the graphic display of the distance portion, the near portion and the progressive body on the display means 35, it is also possible to display the respective measured values of the spherical power S, the astigmatic power C and the prism amount P (Δ) together.
【0043】さらにまた、図示してないが、印点針と被
検レンズ受21を相対的に移動させ、上述したようなパ
ターンを直接累進焦点レンズ20Aに描画することも可
能である。Although not shown, it is also possible to draw the pattern as described above directly on the progressive-focus lens 20A by moving the marking needle and the lens receiver 21 under test relatively.
【0044】尚、通常の被検レンズ20においても、測
定値を基にこの被検レンズ20の光学中心又は任意のプ
リズム位置を測定光軸Qまで移動し、従来慣用されてい
る手段で印点すれば、自動的に光学中心位置又はプリズ
ム処方位置を知ることができる。Even in the ordinary lens 20 to be inspected, the optical center of the lens 20 to be inspected or an arbitrary prism position is moved to the measurement optical axis Q on the basis of the measured value, and the mark is made by means conventionally used. Then, the optical center position or the prism prescription position can be automatically known.
【0045】一方、前記光源部15Aの第2乃至第4の
光源9乃至11を用いる場合の動作は以下のとおりであ
る。即ち、第2乃至第4の光源9乃至11からの光によ
る各パターン像の光束は、定位置に固定した被検レンズ
20を経た後、各々受光素子19により受光され、受光
素子19は各光束に応じた出力信号を送出する。On the other hand, the operation when using the second to fourth light sources 9 to 11 of the light source section 15A is as follows. That is, the light flux of each pattern image formed by the light from the second to fourth light sources 9 to 11 is received by the light receiving element 19 after passing through the test lens 20 fixed in a fixed position, and the light receiving element 19 receives each light flux. The output signal according to is transmitted.
【0046】この場合、受光素子19の受光面での像の
移動は2次元であるため、受光面に置かれるCCDは2
次元CCDであることが望ましい。In this case, since the movement of the image on the light receiving surface of the light receiving element 19 is two-dimensional, the CCD placed on the light receiving surface has two dimensions.
A dimensional CCD is desirable.
【0047】しかし、2次元CCDは高価である上、そ
の処理回路が複雑になるといった問題があり、2本の1
次元CCD19a,19bからなる受光素子19の中心
に交点を有する直線状スリット21a,21bを設けた
図14に示すターゲットパターン板Paを用いることに
より1次元CCDを用いてパターン中心の2次元的な移
動量を求めることがてきる。However, the two-dimensional CCD is expensive and has a problem that its processing circuit becomes complicated.
Two-dimensional movement of the pattern center using the one-dimensional CCD by using the target pattern plate Pa shown in FIG. 14 in which the linear slits 21a and 21b having the intersections are provided at the center of the light receiving element 19 including the three-dimensional CCDs 19a and 19b. You can ask for the amount.
【0048】この場合、配置されたCCDと水平な方向
への移動量は、基準位置から移動した画素数から得るこ
とができ、垂直な方向への移動量は、交差する2本のス
リット21a,21bの角度X1 ,X2 が既知であれ
ば、各々のCCD19a,19bにかかる2本のスリッ
ト像の間隔により求めることができる。In this case, the amount of movement in the horizontal direction with respect to the arranged CCD can be obtained from the number of pixels moved from the reference position, and the amount of movement in the vertical direction is the two slits 21a, If the angles X1 and X2 of 21b are known, it can be obtained by the distance between the two slit images on the CCDs 19a and 19b.
【0049】前記演算手段24は、受光素子19からの
3個の出力信号を基に被検レンズ20の測定すべき点の
光学特性を求める。The calculating means 24 obtains the optical characteristics of the point to be measured of the lens 20 to be measured based on the three output signals from the light receiving element 19.
【0050】この結果、常に正確に被検レンズ20の測
定すべき点の光学特性を測定することが可能となる。As a result, it becomes possible to always accurately measure the optical characteristics of the point to be measured of the lens 20 to be measured.
【0051】さらに、被検レンズ20の測定光軸Qの方
向へのズレは測定に影響しないため、従来のレンズ受け
位置よりも上方に図15に示すようなX−Yテーブル4
1を設ければ、眼鏡40の左右のレンズ40a,40b
を測定する場合に、眼鏡40をX−Yテーブル41に一
度セットし、このX−Yテーブル41により上述した場
合と同様眼鏡40をx−y方向に駆動することで、両レ
ンズ40a,40bの光学特性を自動的に測定すること
が可能となる。Further, since the deviation of the lens 20 to be measured in the direction of the measurement optical axis Q does not affect the measurement, the XY table 4 as shown in FIG. 15 is arranged above the conventional lens receiving position.
1 is provided, the left and right lenses 40a and 40b of the glasses 40 are provided.
When the eyeglasses 40 are to be measured, the eyeglasses 40 are once set on the XY table 41, and the eyeglasses 40 are driven in the xy direction by the XY table 41 in the same manner as in the case described above. It is possible to automatically measure the optical characteristics.
【0052】逆に、ホロプターやPDメータを用いて測
定した被検者のPD値を外部入力又はオンライン入力
し、被検眼鏡を入力値の量だけ移動して測定すれば、被
検者と眼鏡とのプリズムフィッティングを見ることがで
きる。On the contrary, if the PD value of the subject measured by using a horopter or PD meter is externally input or online and the eyeglasses to be inspected are moved by the amount of the input value and the eyeglasses are measured, You can see the prism fitting with.
【0053】さらに、一方のレンズ40aの光学中心位
置を求め、他方のレンズ40bの光学中心位置までのX
−Yテーブル41のx方向への移動量を求めれば、眼鏡
40のPDの測定も可能となる。Further, the optical center position of one lens 40a is obtained, and X to the optical center position of the other lens 40b is obtained.
If the amount of movement of the Y table 41 in the x direction is obtained, the PD of the glasses 40 can be measured.
【0054】さらに、本実施例のレンズメータ1によれ
ば、前記レンズ保持部31の代りに従来装置の場合と同
様のレンズ受を配置し、入力手段36により通常測定モ
ードを設定することで、従来のレンズメータと同様な測
定も可能となる。Further, according to the lens meter 1 of the present embodiment, the same lens receiver as in the case of the conventional device is arranged in place of the lens holding portion 31 and the normal measuring mode is set by the input means 36. Measurements similar to those of conventional lens meters are possible.
【0055】本発明は、上述した実施例の他、その要旨
の範囲内で種々の変形が可能である。The present invention can be modified in various ways within the scope of the invention in addition to the above-described embodiments.
【0056】例えば、前記光源部は4個以上としてもよ
く、また、前記レンズ駆動部により駆動して被検レンズ
の測定光軸に臨ませる点は4個,5個等任意数として実
施できる。For example, the number of the light source units may be four or more, and the number of points which are driven by the lens driving unit to face the measurement optical axis of the lens to be inspected may be any number such as four and five.
【0057】[0057]
【発明の効果】以上説明した本発明によれば、以下の効
果を奏する。According to the present invention described above, the following effects are obtained.
【0058】請求項1記載の発明によれば、1個の光源
部を用い、被検レンズを測定光軸と略直交する任意の方
向に移動して複数の点の光学特性を求めることで、常に
正確に被検レンズの測定すべき点の光学特性を測定する
ことが可能なレンズメータを提供することができる。According to the first aspect of the present invention, by using one light source section, the lens under test is moved in an arbitrary direction substantially orthogonal to the measurement optical axis to obtain the optical characteristics of a plurality of points. It is possible to provide a lens meter capable of always accurately measuring the optical characteristics of the point to be measured of the lens to be measured.
【0059】請求項2記載の発明によれば、測定すべき
点から概知の少なくとも3箇所以上の位置の光学特性を
基に測定すべき点の光学特性を正確に算出することが可
能なレンズメータを提供することができる。According to the second aspect of the present invention, a lens capable of accurately calculating the optical characteristic of the point to be measured based on the optical characteristic of at least three or more known positions from the point to be measured. A meter can be provided.
【0060】請求項3記載の発明によれば、測定光軸か
ら所定距離離れた少なくとも3個の光源を用い、被検レ
ンズを任意の位置に載置した構成で、常に正確に被検レ
ンズの測定すべき点の光学特性を測定することが可能な
レンズメータを提供することができる。According to the third aspect of the present invention, at least three light sources that are separated from the measurement optical axis by a predetermined distance are used, and the lens to be inspected is placed at an arbitrary position. It is possible to provide a lens meter capable of measuring optical characteristics of a point to be measured.
【図1】本発明のレンズメータの実施例を示す光学配置
図FIG. 1 is an optical layout diagram showing an embodiment of a lens meter of the present invention.
【図2】本実施例のレンズメータにおける光源部の側面
図FIG. 2 is a side view of a light source unit in the lens meter of the present embodiment.
【図3】本実施例のレンズメータの制御系を示すブロッ
ク図FIG. 3 is a block diagram showing a control system of the lens meter of this embodiment.
【図4】本実施例のレンズメータによる被検レンズの測
定状態を示す説明図FIG. 4 is an explanatory diagram showing a measurement state of a lens under test by the lens meter of the present embodiment.
【図5】本実施例のレンズメータにおける測定光軸とパ
ターン像中心との距離を示す説明図FIG. 5 is an explanatory diagram showing a distance between a measurement optical axis and a pattern image center in the lens meter of the present embodiment.
【図6】本実施例のレンズメータの各要素の焦点距離の
関係を示す光学配置図FIG. 6 is an optical layout diagram showing a relationship of focal lengths of respective elements of the lens meter of the present embodiment.
【図7】本実施例のレンズメータにおける被検レンズ裏
面を示す説明図FIG. 7 is an explanatory diagram showing the back surface of the lens to be tested in the lens meter of the present embodiment.
【図8】本実施例のレンズメータにおける測定光軸と像
面との関係を示す説明図FIG. 8 is an explanatory diagram showing the relationship between the measurement optical axis and the image plane in the lens meter of the present embodiment.
【図9】本実施例のレンズメータにおける等乱視度線の
グラフィック表示を示す説明図FIG. 9 is an explanatory diagram showing a graphic display of equal astigmatism lines in the lens meter of the present embodiment.
【図10】本実施例のレンズメータにおける等屈折度線
のグラフィック表示を示す説明図FIG. 10 is an explanatory diagram showing a graphic display of iso-refraction lines in the lens meter of the present embodiment.
【図11】本実施例のレンズメータにおける等プリズム
線のグラフィック表示を示す説明図FIG. 11 is an explanatory diagram showing a graphic display of equal prism lines in the lens meter of the present embodiment.
【図12】本実施例のレンズメータにおける等乱視度
線、等屈折度線、等プリズム線のグラフィック表示を示
す説明図FIG. 12 is an explanatory view showing a graphic display of equal astigmatism lines, equal refraction lines, and equal prism lines in the lens meter of the present embodiment.
【図13】本実施例のレンズメータにおけるグラフィッ
ク表示及び測定値表示を示す説明図FIG. 13 is an explanatory diagram showing a graphic display and a measurement value display in the lens meter of the present embodiment.
【図14】本実施例のレンズメータにおけるターゲット
パターン板を示す平面図FIG. 14 is a plan view showing a target pattern plate in the lens meter of the present embodiment.
【図15】本実施例のレンズメータにおける眼鏡の測定
配置を示す説明図FIG. 15 is an explanatory diagram showing a measurement arrangement of glasses in the lens meter of the present embodiment.
【図16】従来装置におけるレンズ受に被検レンズを載
置した状態を示す断面図FIG. 16 is a cross-sectional view showing a state in which a lens to be inspected is mounted on a lens receiver in a conventional device.
【図17】従来装置におけるレンズ受に被検レンズを載
置した状態を示す断面図FIG. 17 is a cross-sectional view showing a state in which a lens to be inspected is mounted on a lens receiver in a conventional device.
【図18】従来のレンズメータの光学配置図FIG. 18 is an optical layout diagram of a conventional lens meter.
【図19】従来のレンズメータの光学配置図FIG. 19 is an optical layout diagram of a conventional lens meter.
1 レンズメータ 15 光源部 16 コリメートレンズ 17 結像レンズ 18 投影レンズ 19 受光素子 20 被検レンズ 20A 累進焦点レンズ Q 測定光軸 DESCRIPTION OF SYMBOLS 1 Lens meter 15 Light source part 16 Collimating lens 17 Imaging lens 18 Projection lens 19 Light receiving element 20 Test lens 20A Progressive focus lens Q Measurement optical axis
Claims (3)
ーン像の光束を照射し、被検レンズを経た前記光束を受
光手段により受光して、この受光手段の出力信号を基に
被検レンズの光学特性を求めるレンズメータにおいて、
前記光源部を測定光軸上に配置するとともに、前記被検
レンズを測定光軸と略直交する任意の方向に駆動するレ
ンズ駆動部と、このレンズ駆動部により任意の方向に駆
動される被検レンズの測定光軸との各交点を通過した前
記パターン像の光束による受光手段の各出力信号を基に
被検レンズの測定すべき点の光学特性を求める演算手段
とを有することを特徴とするレンズメータ。1. A test lens is irradiated with a light flux of a pattern image by light from a light source section, the light flux passing through the test lens is received by a light receiving means, and the test lens is based on an output signal of the light receiving means. In the lens meter that seeks the optical characteristics of
A lens driving unit that arranges the light source unit on the measurement optical axis and drives the lens under test in an arbitrary direction substantially orthogonal to the measurement optical axis, and a test object driven by the lens driving unit in the arbitrary direction. And a calculation means for obtaining the optical characteristic of the point to be measured of the lens to be measured based on each output signal of the light receiving means by the light flux of the pattern image passing through each intersection with the measurement optical axis of the lens. Lens meter.
すべき点から概知の少なくとも3箇所以上の位置を光軸
に合致させるようにこの被検レンズを駆動するものであ
る請求項1記載のレンズメータ。2. The lens driving section drives the lens to be inspected so that at least three or more known positions from the point to be measured of the lens to be inspected coincide with the optical axis. The described lens meter.
ーン像の光束を照射し、被検レンズを経た前記光束を受
光手段により受光して、この受光手段の出力信号を基に
被検レンズの光学特性を求めるレンズメータにおいて、
前記光源部は、測定光軸と直交する面で、かつ、測定光
軸から所定距離離れた少なくとも3個の光源を具備し、
前記被検レンズを任意位置に載置した状態で少なくとも
3個の光源を発光して得られる各パターン像の光束によ
る受光手段の各出力信号を基に被検レンズの測定すべき
点の光学特性を求める演算手段を有することを特徴とす
るレンズメータ。3. A test lens is irradiated with a light flux of a pattern image by light from a light source section, the light flux passing through the test lens is received by a light receiving means, and the test lens is based on an output signal of the light receiving means. In the lens meter that seeks the optical characteristics of
The light source unit includes at least three light sources in a plane orthogonal to the measurement optical axis and at a predetermined distance from the measurement optical axis,
The optical characteristic of the point to be measured of the lens to be measured based on each output signal of the light receiving means by the light flux of each pattern image obtained by emitting light from at least three light sources in a state where the lens to be tested is placed at an arbitrary position. A lens meter having a calculating means for obtaining.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14060193A JPH06347732A (en) | 1993-06-11 | 1993-06-11 | Lens meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14060193A JPH06347732A (en) | 1993-06-11 | 1993-06-11 | Lens meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06347732A true JPH06347732A (en) | 1994-12-22 |
Family
ID=15272504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14060193A Pending JPH06347732A (en) | 1993-06-11 | 1993-06-11 | Lens meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06347732A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10185765A (en) * | 1996-12-20 | 1998-07-14 | Topcon Corp | Lens meter |
KR20020066378A (en) * | 2001-02-09 | 2002-08-16 | 호야 가부시키가이샤 | A lens meter for measuring properties of a spectacle lens or a contact lens |
JP2008256393A (en) * | 2007-04-02 | 2008-10-23 | Ryusyo Industrial Co Ltd | Lens meter |
-
1993
- 1993-06-11 JP JP14060193A patent/JPH06347732A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10185765A (en) * | 1996-12-20 | 1998-07-14 | Topcon Corp | Lens meter |
KR20020066378A (en) * | 2001-02-09 | 2002-08-16 | 호야 가부시키가이샤 | A lens meter for measuring properties of a spectacle lens or a contact lens |
JP2008256393A (en) * | 2007-04-02 | 2008-10-23 | Ryusyo Industrial Co Ltd | Lens meter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5173739A (en) | Automatic lensmeter for progressive addition lens | |
KR20050052385A (en) | Eccentricity measuring method and eccentricity measuring apparatus | |
JP5362159B2 (en) | Lens meter | |
WO1999037985A1 (en) | Lens specifying device | |
JP2007155413A (en) | Lens meter | |
JP3435019B2 (en) | Lens characteristic measuring device and lens characteristic measuring method | |
US6088089A (en) | Process and device for measuring the optical properties of spectacle lenses by means of an optical detector of engravings in the spectacle lenses | |
US5075560A (en) | Moire distance measurements using a grating printed on or attached to a surface | |
CN115839826B (en) | Detection device and detection method for optical fiber transmittance and numerical aperture | |
JPH0466312B2 (en) | ||
JPH06347732A (en) | Lens meter | |
JP5015429B2 (en) | Lens meter | |
CN109186955B (en) | Progressive multi-focus lens distance area double-channel focal power measuring equipment and method | |
JPS6219146A (en) | Alignment apparatus for ophthalmic machine | |
JP5397882B2 (en) | Lens meter | |
JPH0360260B2 (en) | ||
JPH0346774B2 (en) | ||
JP3011742B2 (en) | Automatic lens meter | |
JP3069311B2 (en) | Automatic lens meter | |
JP2005003667A (en) | Reference axis setting optical system, eccentricity measuring machine and eccentricity-measuring method using the optical system | |
US3535042A (en) | Optical gage | |
JP2829453B2 (en) | Lens meter | |
JP3396676B2 (en) | Lens meter | |
JP2577700B2 (en) | Lens meter | |
JP2001183255A (en) | Lens meter |