JP2746714B2 - Measuring device for refractive index distribution - Google Patents

Measuring device for refractive index distribution

Info

Publication number
JP2746714B2
JP2746714B2 JP2019618A JP1961890A JP2746714B2 JP 2746714 B2 JP2746714 B2 JP 2746714B2 JP 2019618 A JP2019618 A JP 2019618A JP 1961890 A JP1961890 A JP 1961890A JP 2746714 B2 JP2746714 B2 JP 2746714B2
Authority
JP
Japan
Prior art keywords
refractive index
preform
index distribution
light
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019618A
Other languages
Japanese (ja)
Other versions
JPH03225250A (en
Inventor
忠克 島田
和雄 神屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2019618A priority Critical patent/JP2746714B2/en
Publication of JPH03225250A publication Critical patent/JPH03225250A/en
Application granted granted Critical
Publication of JP2746714B2 publication Critical patent/JP2746714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/412Index profiling of optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は、例えば光ファイバ用プリフォームやロッド
レンズに使用される円柱ガラスの屈折率分布の測定装置
に関するものである。
The present invention relates to an apparatus for measuring a refractive index distribution of a cylindrical glass used for a preform or a rod lens for an optical fiber, for example.

【従来の技術】[Prior art]

光ファイバ用プリフォーム(母材)やロッドレンズに
使用される円柱ガラスは、半径方向の屈折率がほぼ2乗
分布、軸方向の屈折率は均一になっている。これを線引
きして光ファイバが形成される。線引き前のプリフォー
ムの屈折率分布を正確に測定することが良好な製品を得
るために必要である。 屈折率分布の測定法としては、例えば特開昭63−9533
6号公報に光ファイバ用のプリフォームの中心軸と垂直
方向から光線を入射させ、その出射角を求めてプリフォ
ームの屈折率分布を測定する方法が開示されている。第
10図には同公報に開示された屈折率分布測定装置を示し
てある。同図に示すように光源6とレンズ7からなる入
射光学系から、セル2内のマッチングオイル3中に設置
されたプリフォーム1に入射され、プリフォーム1を通
って出射された出射光はレンズ51を有する出射光学系を
通過してTVカメラ52の観察面に投影される。 第11図に示すようにプリフォーム1から出射されTVカ
メラ52の観察面43に投影された出射光の0次の回折光ス
ポット40、1次の回折光スポット41、2次の回折光スポ
ット42・・・の中から0次の回折光スポット40を2次元
的に解析して取り出し、この0次の回折光スポット40の
x座標xfと出射光学系の焦点距離fとから出射角φを φ=tan-1(xf/f) で求めている。そして、この出射角φからプリフォーム
1の屈折率分布n(r)を次式 で算出している。 特開昭63−95337号公報に開示された屈折率分布の測
定方法は、出射光学系にスリットを設けて出射光の0次
の回折光スポット40だけを取り出すことにより、高次の
回折光スポットの影響を受けずに屈折率分布を測定して
いる。
In a cylindrical glass used for a preform (base material) for optical fibers or a rod lens, the refractive index in the radial direction is substantially squared distribution, and the refractive index in the axial direction is uniform. This is drawn to form an optical fiber. It is necessary to accurately measure the refractive index distribution of the preform before drawing in order to obtain a good product. As a method of measuring the refractive index distribution, for example, JP-A-63-9533
Japanese Patent Application Laid-Open No. 6-26139 discloses a method in which a light beam is made incident from a direction perpendicular to the central axis of an optical fiber preform, and the exit angle is obtained to measure the refractive index distribution of the preform. No.
FIG. 10 shows a refractive index distribution measuring device disclosed in the publication. As shown in the drawing, the light emitted from the incident optical system including the light source 6 and the lens 7 is incident on the preform 1 installed in the matching oil 3 in the cell 2 and emitted through the preform 1. The light passes through the exit optical system having the light 51 and is projected onto the observation surface of the TV camera 52. As shown in FIG. 11, the 0th-order diffracted light spot 40, the 1st-order diffracted light spot 41, and the 2nd-order diffracted light spot 42 of the outgoing light emitted from the preform 1 and projected on the observation surface 43 of the TV camera 52 the zero-order diffracted light spot 40 from the ... two-dimensionally extraction analysis to the output angle φ and a focal length f of the emitting optical system this 0-order diffracted light spot 40 x coordinate x f seeking in the φ = tan -1 (x f / f). Then, from this emission angle φ, the refractive index distribution n (r) of the preform 1 is calculated by the following equation. It is calculated by The method of measuring the refractive index distribution disclosed in Japanese Patent Application Laid-Open No. 63-95337 discloses a method of providing a slit in an output optical system and extracting only a zero-order diffracted light spot 40 of the output light, thereby obtaining a higher-order diffracted light spot. The refractive index distribution is measured without being affected by.

【発明が解決しようとする課題】[Problems to be solved by the invention]

しかし、このような測定装置を用いて屈折率を求めた
場合、マッチング3液の温度変化によってマッチング液
3とプリフォーム1、あるいはセル2の入出光口である
石英ガラス窓との屈折角が変化し、求める出射角φに誤
差が生じることがある。また、測定中に温度変化が生じ
ると、屈折率分布が点対称のプリフォーム1を測定した
場合でも屈折率分布が非対称になるという問題があっ
た。 本発明は上記の問題を解決するためになされたもの
で、プリフォームのより正確な屈折率分布を得られる屈
折率分布の測定装置を提供することを目的とする。
However, when the refractive index is determined using such a measuring device, the change in the temperature of the three matching liquids causes a change in the refraction angle between the matching liquid 3 and the quartz glass window which is the entrance / exit light port of the preform 1 or the cell 2. However, an error may occur in the required emission angle φ. Further, when a temperature change occurs during the measurement, there is a problem that the refractive index distribution becomes asymmetric even when the preform 1 having the point symmetric refractive index distribution is measured. The present invention has been made in order to solve the above-mentioned problem, and an object of the present invention is to provide an apparatus for measuring a refractive index distribution capable of obtaining a more accurate refractive index distribution of a preform.

【課題を解決するための手段】[Means for Solving the Problems]

上記課題を解決するための本発明を適用する屈折率分
布の測定装置を実施例に対応する図面を用いて説明す
る。 第1図および第2図に示すように本発明の屈折率分布
の測定装置は、円柱ガラス1の中心軸1aと垂直方向から
光線を入射する入射光学系6と、入射光学系6から入射
して円柱ガラス1を通った出射光9を受光してその受光
像の電気信号を送り出す撮像手段10とを有している。円
柱ガラス1はその最外周部の屈折率に略等しいマッチン
グ液3を満たしたセル2に装着されている。第3図に示
すようにセル2の光線の入射位置と出射位置には入射光
に垂直な石英ガラス窓21が設けられ、セル2の外側には
マッチング液3の液温を制御する液体媒体23が循環する
ジャケット22が備えられている。
An apparatus for measuring a refractive index distribution to which the present invention is applied to solve the above problems will be described with reference to the drawings corresponding to the embodiments. As shown in FIG. 1 and FIG. 2, the refractive index distribution measuring apparatus of the present invention comprises an incident optical system 6 for receiving light from a direction perpendicular to the central axis 1a of the cylindrical glass 1, and an incident optical system 6 for receiving light from the incident optical system 6. Imaging means 10 for receiving the outgoing light 9 passing through the cylindrical glass 1 and sending out an electric signal of the received light image. The cylindrical glass 1 is mounted in a cell 2 filled with a matching liquid 3 having a refractive index substantially equal to the refractive index at the outermost periphery. As shown in FIG. 3, a quartz glass window 21 perpendicular to the incident light is provided at the light incident position and the light emitting position of the cell 2, and a liquid medium 23 for controlling the temperature of the matching liquid 3 is provided outside the cell 2. A jacket 22 for circulating is provided.

【作用】[Action]

本発明の測定装置では、円柱ガラスの中心軸1aと垂直
方向から入射して出た出射光9は撮像手段10によって受
光されてその出射角φが測定される。マッチング液3の
温度は、セル2のジャケット22を循環して温度制御する
液体媒体23により一定に保たれているため、マッチング
液3と円柱ガラス1や石英ガラス窓21との屈折角の変動
が抑制される。
In the measuring apparatus according to the present invention, the outgoing light 9 that enters and exits from the direction perpendicular to the central axis 1a of the cylindrical glass is received by the imaging means 10 and its outgoing angle φ is measured. Since the temperature of the matching liquid 3 is kept constant by the liquid medium 23 that circulates through the jacket 22 of the cell 2 and controls the temperature, the fluctuation of the refraction angle between the matching liquid 3 and the cylindrical glass 1 or the quartz glass window 21 is reduced. Is suppressed.

【実施例】【Example】

以下、本発明の実施例を詳細に説明する。 第1図には本発明の屈折率分布測定装置の一実施例の
概略構成、第2図には測定装置における光路が示してあ
る。これらの図において、2はプリフォーム1を装着し
たセルであり、セル2内にはプリフォーム1の表面にお
ける急激な屈折率変化を除くためにマッチングオイル3
が満たされている。プリフォーム1は移動テーブル4に
よりセル3ごと移動可能である。 5は例えばHe−Neレーザ発振器からなる光源、6は入
射光学系であり、入射光学系6は光源5からの入射光を
プリフォーム1の中心で最小になるように収斂してい
る。7a・7bはミラー、8はプリフォーム1から出射した
出射光9の投影像を形成するスクリーン、10はスクリー
ン8に投影された投影像を観察するTVカメラ、11はTVカ
メラ10で得た投影像の位置から出射角を求めて屈折率分
布を演算する制御部である。この装置全体はプリフォー
ム1の測定温度に設定した恒温室に設置されている。 第3図にセル2の拡大図を示す。セル2は直方体状の
容器で、その蓋2aと底面には機械的に研磨された石英ガ
ラスの窓21が設けられている。プリフォーム1はその側
面を貫通して装着される。セル2の内部にはプリフォー
ム1の最外周部と屈折率が略等しいマッチングオイル3
が満たされ、セル2の外側には液体媒体23を入れたジャ
ケット22が取り付けられている。第4図に示すように、
ジャケット22は媒体流入管24および媒体流出管25を介し
て液温調整容器31に連結され、液状媒体23の循環回路が
形成されている。36はポンプである。 セル2の内部にはマッチングオイル3の温度を測定す
る温度検出部33のセンサ32が取り付けられている。温度
検出部33にはその信号に基いて液体媒体23の温度を調節
する温度制御部35が接続され、液温調整容器31にはその
温度調節体34が収容されている。 第5図は制御部11の構成を示すブロック図である。同
図において、12はTVカメラ10で観察したスクリーン8上
の投影像40〜42(第6図参照)のデータを蓄えるフレー
ムメモリ、13はフレームメモリ12に蓄えられたデータを
2値化し直線近似を行なう演算手段、14は演算手段13で
得た直線とプリフォーム1の中心軸1aと垂直で入射光が
通る平面との交点を求める位置算出手段、15は位置算出
手段14で求めた交点の座標から出射角φを演算する出射
角演算手段である。16は出射角演算手段で演算した出射
角φによりプリフォーム1の屈折率分布を演算する屈折
率分布演算手段、17は表示部および記録部からなる出力
手段である。 プリフォーム1の屈折率分布測定は、測定装置全体を
測定温度に対して±1℃以内に設定した恒温室に設置し
て行なう。また、温度制御装置のポンプ36を駆動して液
状媒体23を循環させ、マッチング液3の液温を測定温度
に対して±0.1℃以内に調整しておく。 光源5から送られた光は、第2図に示すように光ファ
イバ用のプリフォーム1の中心軸1aに垂直な平面Pを通
り、ミラー7aで反射してプリフォーム1に入射し、屈折
されて出射する。プリフォーム1を通った出射光9はミ
ラー7bで反射し、プリフォーム1がない場合、つまりセ
ル2およびマッチングオイル3を通って出射された光線
と垂直なスクリーン8に至る。この入射光と出射光9の
点a、b、cはプリフォーム1の軸方向の屈折率に変化
がない場合は平面P上に存在するが、実際にはプリフォ
ーム1により散乱されて第6図のように投影される。そ
の各投影像40〜42をTVカメラ10で観察し、その出力信号
をフレームメモリ12に取り込む。次に、フレームメモリ
12に蓄えられた各投影像のデータを演算手段13で2値化
して最小2乗法により直線近似を行ない、同図に示す近
似直線20を求める。その後、位置算出手段14で近似直線
20とプリフォーム1の中心軸2と垂直で入射光が通る平
面、すなわち第6図に示すy軸との交点ycを求め、プリ
フォーム1のない場合、つまりセル2およびマッチング
オイル3を通る出射光の投影像を基準点0とした交点yc
の座標値から出射角演算手段15で出射角φを演算し、演
算した出射角φをメモリ18で蓄える。 この動作を移動テーブル4を移動させながらプリフォ
ーム1の半径方向の各位置で行ない、各位置における出
射角φを求めてメモリ18に記憶させる。このメモリ18に
記憶させた各出射角φを屈折率分布演算手段16に送って
屈折率分布n(r)を演算して出力手段17に送る。 測定中に例えば測定装置から発生する熱によってマッ
チング液3の温度が変動した場合でも、マッチング液3
の温度はセンサ32により常時測定され、温度制御部35が
循環する液状媒体23の液温を調整することによって常に
一定に保たれる。そのため、マッチング液3とプリフォ
ーム1や石英ガラス窓21との屈折角の変動が抑制され、
出射角φがばらつくことがなく、正確な屈折率分布を求
めることができる。 上記のようにして、例えば第7図に示すようにコアの
最大屈折率n1でクラッドの屈折率n2のプリフォーム1の
入射位置rと出射角φの関係を測定した結果を第8図に
示す。そして第8図に示す出射角φにより屈折率分布n
(r)を求めると第9図に示す特性を得ることができ
た。この測定を30回繰り返して次式で示す比屈折率差Δ Δ=(n1−n2)×100/n1 を求め、この比屈折率差Δの標準偏差σを算出して比屈
折率差Δで正規化した結果、 (σ/Δ)=0.001 を得ることができた。 なお、上記実施例においてはスクリーン8とTVカメラ
10で出射光の投影像を観察する場合について説明した
が、撮像素子により投影像を観察しても上記実施例と同
様な作用を奏することができる。
Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 shows a schematic configuration of an embodiment of the refractive index distribution measuring device of the present invention, and FIG. 2 shows an optical path in the measuring device. In these figures, reference numeral 2 denotes a cell on which a preform 1 is mounted, and a matching oil 3 is provided in the cell 2 in order to eliminate a sudden change in the refractive index on the surface of the preform 1.
Is satisfied. The preform 1 can be moved together with the cell 3 by the movement table 4. Reference numeral 5 denotes a light source composed of, for example, a He-Ne laser oscillator, and reference numeral 6 denotes an incident optical system. The incident optical system 6 converges incident light from the light source 5 so as to be minimum at the center of the preform 1. 7a and 7b are mirrors, 8 is a screen for forming a projected image of the outgoing light 9 emitted from the preform 1, 10 is a TV camera for observing the projected image projected on the screen 8, and 11 is a projection obtained by the TV camera 10. This is a control unit for calculating the refractive index distribution by calculating the emission angle from the position of the image. This entire apparatus is installed in a constant temperature room set to the measurement temperature of the preform 1. FIG. 3 shows an enlarged view of the cell 2. The cell 2 is a rectangular parallelepiped container, and has a lid 2a and a window 21 made of mechanically polished quartz glass on its bottom surface. The preform 1 is mounted through its side. A matching oil 3 having a refractive index substantially equal to that of the outermost periphery of the preform 1 is provided inside the cell 2.
And a jacket 22 containing a liquid medium 23 is attached to the outside of the cell 2. As shown in FIG.
The jacket 22 is connected to a liquid temperature adjusting container 31 via a medium inflow pipe 24 and a medium outflow pipe 25, and a circulation circuit of the liquid medium 23 is formed. 36 is a pump. A sensor 32 of a temperature detector 33 for measuring the temperature of the matching oil 3 is mounted inside the cell 2. A temperature controller 35 for adjusting the temperature of the liquid medium 23 based on the signal is connected to the temperature detector 33, and the temperature controller 34 accommodates the temperature controller 34. FIG. 5 is a block diagram showing the configuration of the control unit 11. In FIG. 1, reference numeral 12 denotes a frame memory for storing data of projected images 40 to 42 (see FIG. 6) on the screen 8 observed by the TV camera 10, and 13 denotes a binary approximation of the data stored in the frame memory 12. Calculating means 14 for calculating the intersection of the straight line obtained by the calculating means 13 and a plane perpendicular to the central axis 1a of the preform 1 and through which the incident light passes, and 15 is the intersection of the intersection calculated by the position calculating means 14. This is an emission angle calculation means for calculating the emission angle φ from the coordinates. Reference numeral 16 denotes a refractive index distribution calculating means for calculating the refractive index distribution of the preform 1 based on the output angle φ calculated by the output angle calculating means, and 17 denotes an output means comprising a display unit and a recording unit. The measurement of the refractive index distribution of the preform 1 is performed by installing the entire measurement apparatus in a constant temperature room set within ± 1 ° C. with respect to the measurement temperature. Further, the liquid medium 23 is circulated by driving the pump 36 of the temperature control device, and the temperature of the matching liquid 3 is adjusted within ± 0.1 ° C. with respect to the measured temperature. The light transmitted from the light source 5 passes through a plane P perpendicular to the central axis 1a of the optical fiber preform 1 as shown in FIG. 2, is reflected by a mirror 7a, enters the preform 1, and is refracted. Out. The outgoing light 9 passing through the preform 1 is reflected by the mirror 7b, and reaches the screen 8 perpendicular to the light emitted through the cell 2 and the matching oil 3 when the preform 1 is not present. The points a, b, and c of the incident light and the outgoing light 9 exist on the plane P when there is no change in the refractive index in the axial direction of the preform 1, but are actually scattered by the preform 1 Projected as shown. The projected images 40 to 42 are observed by the TV camera 10, and the output signals are taken into the frame memory 12. Next, the frame memory
The data of each projection image stored in 12 is binarized by the arithmetic means 13 and linear approximation is performed by the least squares method to obtain an approximate straight line 20 shown in FIG. Then, the approximate straight line is
20 and the preform 1 of the central axis 2 and the plane in which incident light passes in the vertical, i.e. obtain the intersection y c and y axis shown in FIG. 6, through the absence of the preforms 1, i.e. the cell 2 and the matching oil 3 intersection y c a projected image of the emitted light as a reference point 0
The emission angle φ is calculated by the emission angle calculation means 15 from the coordinate values of, and the calculated emission angle φ is stored in the memory 18. This operation is performed at each position in the radial direction of the preform 1 while moving the moving table 4, and the emission angle φ at each position is obtained and stored in the memory 18. Each output angle φ stored in the memory 18 is sent to the refractive index distribution calculating means 16 to calculate the refractive index distribution n (r) and sent to the output means 17. Even if the temperature of the matching liquid 3 fluctuates during measurement due to, for example, heat generated from the measuring device, the matching liquid 3
Is constantly measured by the sensor 32, and is constantly maintained by adjusting the liquid temperature of the circulating liquid medium 23 by the temperature control unit 35. Therefore, the fluctuation of the refraction angle between the matching liquid 3 and the preform 1 or the quartz glass window 21 is suppressed,
An accurate refractive index distribution can be obtained without variation in the emission angle φ. As described above, for example, as shown in FIG. 7, the result of measuring the relationship between the incident position r of the preform 1 having the maximum refractive index n 1 of the core and the refractive index n 2 of the clad and the exit angle φ is shown in FIG. Shown in Then, the refractive index distribution n is determined by the emission angle φ shown in FIG.
When (r) was obtained, the characteristics shown in FIG. 9 could be obtained. This measurement is repeated 30 times to obtain a relative refractive index difference Δ Δ = (n 1 −n 2 ) × 100 / n 1 represented by the following formula, and a standard deviation σ of the relative refractive index difference Δ is calculated to obtain a relative refractive index. As a result of normalization with the difference Δ, (σ / Δ) = 0.001 was obtained. In the above embodiment, the screen 8 and the TV camera are used.
Although the case of observing the projected image of the emitted light has been described in 10, the same operation as in the above embodiment can be achieved even if the projected image is observed by the image sensor.

【発明の効果】【The invention's effect】

以上説明したように本発明の屈折率分布の測定装置
は、円柱ガラスおよびマッチング液の温度が常に一定に
制御されている。そのため、マッチング液と円柱ガラス
やセルの入出光口である石英ガラス窓との屈折角が変化
して出射角に誤差が生じることがなく、プリフォームの
屈折率分布を高精度で測定することができる。
As described above, in the refractive index distribution measuring device of the present invention, the temperatures of the cylindrical glass and the matching liquid are constantly controlled. Therefore, it is possible to measure the refractive index distribution of the preform with high accuracy without changing the refraction angle between the matching liquid and the cylindrical glass or the quartz glass window which is the light entrance / exit of the cell and causing an error in the exit angle. it can.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を適用する装置の実施例の概略側面図、
第2図は上記実施例における屈折率分布測定の原理を示
す説明図、第3図は上記実施例のセルを示す拡大斜視
図、第4図は上記実施例の温度制御装置の概略説明図、
第5図は上記実施例の制御部を示すブロック図、第6図
は上記実施例の投影像を示す図、第7図はプリフォーム
の屈折率分布を示す特性図、第8図は上記実施例により
測定した出射角特性図、第9図はその出射角特性から得
た屈折率分布特性図、第10図は従来例の概略平面図、第
11図は従来例の投影像を示す図である。 1……プリフォーム、2……セル 3……マッチング液、4……移動テーブル 5……光源、6……入射光学系 7a・7b……ミラー、8……スクリーン 9……出射光、10……TVカメラ 11……制御部、12……フレームメモリ 13……演算手段、14……位置算出手段 15……出射角演算手段、16……演算手段 17……出力手段、18……メモリ 20……近似直線、21……石英ガラス窓 22……ジャケット、23……液体媒体 24……媒体流入管、25……媒体流出管 31……液温調整容器、32……センサ 33……温度検出部、34……温度調節体 35……温度制御部、36……ポンプ
FIG. 1 is a schematic side view of an embodiment of an apparatus to which the present invention is applied,
FIG. 2 is an explanatory view showing the principle of the refractive index distribution measurement in the above embodiment, FIG. 3 is an enlarged perspective view showing a cell of the above embodiment, FIG. 4 is a schematic explanatory view of a temperature control device of the above embodiment,
FIG. 5 is a block diagram showing a control unit of the above embodiment, FIG. 6 is a diagram showing a projected image of the above embodiment, FIG. 7 is a characteristic diagram showing a refractive index distribution of the preform, and FIG. FIG. 9 is an emission angle characteristic diagram measured by the example, FIG. 9 is a refractive index distribution characteristic diagram obtained from the emission angle characteristic, FIG.
FIG. 11 is a diagram showing a projection image of a conventional example. DESCRIPTION OF SYMBOLS 1 ... Preform, 2 ... Cell 3 ... Matching liquid, 4 ... Moving table 5 ... Light source, 6 ... Incident optical system 7a / 7b ... Mirror, 8 ... Screen 9 ... Outgoing light, 10 ... TV camera 11 ... Control unit, 12 ... Frame memory 13 ... Calculation means, 14 ... Position calculation means 15 ... Emission angle calculation means, 16 ... Calculation means 17 ... Output means, 18 ... Memory 20 approximation straight line, 21 quartz glass window 22 jacket 23 liquid medium 24 medium inlet tube 25 medium outlet tube 31 liquid temperature adjustment container 32 sensor 33 Temperature detector, 34 ... Temperature controller 35 ... Temperature controller, 36 ... Pump

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円柱ガラスの中心軸と垂直方向から光線を
入射する入射光学系と、前記入射光学系から入射して円
柱ガラスを通った出射光を受光してその受光像の電気信
号を送り出す撮像手段とを有し、該円柱ガラスがその最
外周部の屈折率に略等しいマッチング液を満たしたセル
に装着された屈折率分布測定装置において、前記セルの
光線の入射位置と出射位置に入射光に垂直な石英ガラス
窓が設けられ、セルの外側にマッチング液の液温を制御
する液体媒体が循環するジャケットが備えられているこ
とを特徴とする屈折率分布の測定装置。
1. An incident optical system which receives a light beam from a direction perpendicular to the central axis of a cylindrical glass, receives light emitted from the incident optical system and passed through the cylindrical glass, and sends out an electric signal of the received light image. Having an imaging means, wherein the cylindrical glass is mounted on a cell filled with a matching liquid having a refractive index substantially equal to the refractive index of the outermost peripheral portion thereof. An apparatus for measuring a refractive index distribution, wherein a quartz glass window perpendicular to light is provided, and a jacket for circulating a liquid medium for controlling the temperature of a matching liquid is provided outside the cell.
JP2019618A 1990-01-30 1990-01-30 Measuring device for refractive index distribution Expired - Fee Related JP2746714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019618A JP2746714B2 (en) 1990-01-30 1990-01-30 Measuring device for refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019618A JP2746714B2 (en) 1990-01-30 1990-01-30 Measuring device for refractive index distribution

Publications (2)

Publication Number Publication Date
JPH03225250A JPH03225250A (en) 1991-10-04
JP2746714B2 true JP2746714B2 (en) 1998-05-06

Family

ID=12004177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019618A Expired - Fee Related JP2746714B2 (en) 1990-01-30 1990-01-30 Measuring device for refractive index distribution

Country Status (1)

Country Link
JP (1) JP2746714B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782120B (en) * 2021-01-28 2021-11-26 清华大学 Method and device for measuring refractive index of transparent solid with convex cambered surface

Also Published As

Publication number Publication date
JPH03225250A (en) 1991-10-04

Similar Documents

Publication Publication Date Title
US4764016A (en) Instrument for measuring the topography of a surface
US4943157A (en) Fiber optic triangulation gage
JP2019113554A (en) Variable focal length lens system including focal state reference subsystem
JP2001021448A (en) Apparatus and method for measuring refractive index profile
JPH0364044B2 (en)
JP2746714B2 (en) Measuring device for refractive index distribution
JP2001281101A (en) Device and method for determining refracting power by spatial resolution
CN112748562B (en) Microscope and method for determining aberrations in a microscope
JP2903263B2 (en) Measuring device for refractive index distribution
US5078488A (en) Method and apparatus for determining refractive index distribution
JP2008256504A (en) Shape measuring apparatus
JP2505230B2 (en) Method for calibrating laser beam deflection angle measuring device
JPH0812130B2 (en) Method and apparatus for measuring refractive index distribution
JP3948852B2 (en) Refractive index distribution measuring apparatus and refractive index distribution measuring method
JPH07117476B2 (en) Refractive index distribution measuring method and measuring apparatus
JPH01304339A (en) Instrument for measuring angle of refraction
JP4629835B2 (en) Abbe number measuring apparatus and Abbe number measuring method
JP2661001B2 (en) Method and apparatus for measuring refractive index distribution
JPH09269278A (en) Lens performance measuring method and measuring device
JPH0373822A (en) Instrument for measuring distribution of refractive index
JP3077725B2 (en) Refractive index measuring method and apparatus
JPH06347732A (en) Lens meter
JPH01240804A (en) Measuring method for shape of transparent body
JPH03130639A (en) Optical-axis aligning method for mtf measuring apparatus
SU408186A1 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees