JPH01240804A - Measuring method for shape of transparent body - Google Patents

Measuring method for shape of transparent body

Info

Publication number
JPH01240804A
JPH01240804A JP6766188A JP6766188A JPH01240804A JP H01240804 A JPH01240804 A JP H01240804A JP 6766188 A JP6766188 A JP 6766188A JP 6766188 A JP6766188 A JP 6766188A JP H01240804 A JPH01240804 A JP H01240804A
Authority
JP
Japan
Prior art keywords
transparent body
refractive index
light
light beam
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6766188A
Other languages
Japanese (ja)
Inventor
Motohiro Yamane
基宏 山根
Fumihiko Abe
文彦 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6766188A priority Critical patent/JPH01240804A/en
Publication of JPH01240804A publication Critical patent/JPH01240804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To precisely determine the internal and external shapes of a transparent body, by measuring the external and internal shapes of the transparent body on the basis of the peak of a deflection angle of a light beam which is transmitted through the boundary part of water for adjustment of a refractive index and an axial core part and through the boundary part of the axial core part and a sheath part. CONSTITUTION:An irradiation light beam emitted from a laser light source 12 of a light irradiation system 11 is direct through a condenser lens 13 to a transparent body 51 in water 44 for adjustment of a refractive index. This light beam is deflected by a change in the refractive index inside the transparent body 51, and the light beam transmitted therethrough drops a spot light on a detector 23 through a condenser lens 22. An output signal being proportional to the position of incidence of this spot light is inputted from the detector 23 to a scanning device 31 through a signal processor 24, a computer 25 and a controller 26. A prescribed operation signal is inputted to a motor 34 so as to move a mounting surface 32 of a moving stage 33 in the direction of a Z-axis. Thus, the transparent body 51 is scanned in the direction of the Z-axis. Thereby the shape of the transparent body can be measured precisely by an optical non-destructive measuring means.

Description

【発明の詳細な説明】 r産業上の利用分野」 本発明は軸心部と外套部との屈折率が相互に異なる透明
体の形状を光学的手段により非接触非破壊測定する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION 1. Field of Industrial Application The present invention relates to a method for non-contact and non-destructive measurement of the shape of a transparent body in which the refractive index of the axial center portion and the outer portion are different from each other by optical means.

「従来の技術」 周知の通り、通信分野、光学分野においては、軸心部、
外套部相互の屈折率が異なる透明体が広く使用されてお
り、その代表例として、コア、クラッドを備えた光フア
イバ母材をあ゛げることができる。
“Conventional technology” As is well known, in the communication and optical fields, the shaft center,
Transparent bodies in which the refractive index of the mantle portions are different from each other are widely used, and a typical example thereof is an optical fiber base material having a core and a cladding.

光フアイバ母材については、外形寸法(クラッド外径〕
、内形寸法(コア外径)、コア、クラッド相互の偏心率
などを調べるべく、母材製造時あるいは母材製造後、上
記各部の形状が測定されるが、この際の測定手段として
は、光学系を利用した非接触非破壊測定法が一般である
For optical fiber base material, external dimensions (cladding outer diameter)
In order to check the internal dimensions (outer diameter of the core), eccentricity between the core and cladding, etc., the shape of each of the above parts is measured during or after manufacturing the base material, but the measurement means used at this time are: Non-contact, non-destructive measurement methods using optical systems are common.

かかる非接触非破壊測定法の場合、光フアイバ母材の外
形のみを測定するものが多く存在する。
In the case of such non-contact, non-destructive measurement methods, there are many methods that measure only the outer shape of the optical fiber base material.

このような測定法において、照射光線を光フアイバ母材
の外部から当該母材に向けて照射し、その透過光線より
光フアイバ母材の内形(コア)、コア位置をも測定しよ
うとするとき、光フアイバ母材の透過光線が大きく偏向
され、所要の光学的情報が得られないので測定下1おを
きたす。
In such a measurement method, when the irradiation light is irradiated from the outside of the optical fiber base material toward the base material, and the internal shape (core) and core position of the optical fiber base material are also measured from the transmitted light beam. In this case, the light beam transmitted through the optical fiber base material is greatly deflected, and the required optical information cannot be obtained, resulting in a measurement problem.

その対策として、特開昭62−14008号公報の発明
では、光フアイバ母材を屈折率調整液(シリコンオイル
:屈折率1.4570)に浸漬して当該母材に照射光線
を照射し、透過光線の偏向をできるだけ抑えるようにし
ている。
As a countermeasure to this problem, the invention disclosed in JP-A-62-14008 discloses that an optical fiber base material is immersed in a refractive index adjustment liquid (silicon oil: refractive index 1.4570), and the base material is irradiated with irradiation light. We try to suppress the deflection of the light beam as much as possible.

r発明が解決しようとする課題J 上述した公知例の場合、光フアイバ母材のコア屈折率が
理想的なSI型であることを前提としており、被検体た
る光フアイバ母材がこれを満足させるときは、安定して
コア外径、コア位置などを測定することができるが、コ
ア屈折率がわずかでも傾斜しているとか、そのコア屈折
率がGI型のとき、透過光線の偏向角が変化してしまい
、コアについての正確な情報を得るのが不十分となる。
rProblem to be solved by the invention J In the case of the above-mentioned known examples, it is assumed that the core refractive index of the optical fiber base material is an ideal SI type, and the optical fiber base material to be examined satisfies this. However, if the core refractive index is tilted even slightly, or if the core refractive index is GI type, the deflection angle of the transmitted light will change. This makes it insufficient to obtain accurate information about the core.

しかも、屈折率調整液が揮発性の低いシリコンオイルか
らなるので、測定後の母材からシリコンオイルを洗い落
す洗浄作業が必要となり、手数が余分にかかる。
Moreover, since the refractive index adjustment liquid is made of silicone oil with low volatility, a cleaning operation is required to wash off the silicone oil from the base material after measurement, which requires additional labor.

もっとも、屈折率調整液として揮発性の高いものを用い
た場合、母材洗浄の必要はなくなるが、その揮発成分が
作業環境を汚染し、作業者など、人体に有害な影響を与
える。
However, if a highly volatile refractive index adjustment liquid is used, cleaning the base material is not necessary, but the volatile components contaminate the working environment and have a harmful effect on the human body, including workers.

本発明は上述した課題に鑑み、透明体の屈折率仕様がバ
ラツキ、あるいは異なる場合でも、その透明体の内形、
外形が精度よく求まり、しかも、測定後における透明体
の洗浄作業を省略し、作業環境の汚染をも回避すること
のできる測定方法を提供しようとするものである。
In view of the above-mentioned problems, the present invention has been developed to improve the internal shape of the transparent body even when the refractive index specifications of the transparent body vary or differ.
It is an object of the present invention to provide a measuring method that allows the external shape to be determined with high precision, and also eliminates the need to clean the transparent body after measurement, thereby avoiding contamination of the working environment.

1課題を解決するための手段】 本発明に係る透明体の形状測定方法は、所期の目的を達
成するため、軸心部と外套部との屈折率が相互に異なる
透明体を屈折率調整用の水中に浸漬した後、光照射系か
ら出射した照射光線により、上記透明体をその軸心線と
交差する方向に光走査するとともに、その透過光線を受
光測定系により受光し、当該受光測定系において、屈折
率調整用の水と軸心部との境界部、および軸心部と外套
部との境界部を透過した光線の偏向角のピークに基づき
、透明体の外形、内形を測定することを特徴とする。
1. Means for Solving the Problems] In order to achieve the intended purpose, the method for measuring the shape of a transparent body according to the present invention adjusts the refractive index of a transparent body whose axial center portion and outer mantle portion have mutually different refractive indexes. After immersing the body in water, the transparent body is scanned by the irradiation light beam emitted from the light irradiation system in a direction intersecting its axis, and the transmitted light beam is received by the light reception measurement system, and the light reception measurement is performed. In the system, the external and internal shapes of the transparent body are measured based on the peak of the deflection angle of the light beam that passes through the boundary between the water for adjusting the refractive index and the shaft center, and the boundary between the shaft center and the mantle. It is characterized by

r実 施 例J 本発明に係る透明体の形状測定方法につき、図面を参照
して、その実施例を説明する。
rExample J An example of the method for measuring the shape of a transparent body according to the present invention will be described with reference to the drawings.

第1図において、光照射系11は、レーザ光源12と集
光レンズ13とを備え、受光測定系21は、集光レンズ
22と検出器23と信号処理器24と計算機25とコン
トローラ26を備え、その検出器23は位置検出素子ま
たは検出素子アレイからなる。
In FIG. 1, the light irradiation system 11 includes a laser light source 12 and a condensing lens 13, and the light receiving measurement system 21 includes a condensing lens 22, a detector 23, a signal processor 24, a computer 25, and a controller 26. , the detector 23 consists of a position sensing element or a sensing element array.

第1図に例示の走査装置31は、載置面(上面)32の
高さが調整自在な移動ステージ33とステージ駆動用の
電動a34とを備え、当該走査装置31は、受光測定系
21のコントローラ26より信号を受けて作動するよう
になっている。
The scanning device 31 illustrated in FIG. 1 includes a movable stage 33 whose height of a mounting surface (upper surface) 32 is adjustable and an electric motor a34 for driving the stage. It operates upon receiving a signal from the controller 26.

第1図において、透明ガラスからなる被検体保持用の容
器41は1その両側部に光透過部42.43を有し、そ
の内部には屈折率調整用の水44が収容されている。
In FIG. 1, a container 41 for holding a subject made of transparent glass has light transmitting portions 42 and 43 on both sides thereof, and water 44 for adjusting the refractive index is stored inside the container.

かかる屈折率調整用水44としては、不純物を含まない
芯留水、純水などが用いられ、その屈折率は20℃にお
いて1.333である。
As the refractive index adjusting water 44, core distilled water, pure water, etc. containing no impurities is used, and its refractive index is 1.333 at 20°C.

上記容器41により保持される透明体51は、その軸心
部52と外套部53との屈折率が相互に異なる。
In the transparent body 51 held by the container 41, the refractive index of the axial center portion 52 and the outer mantle portion 53 are different from each other.

−例として、透明体51が光フアイバ母材からなるとき
、その母材のコアが軸心部52に該当し、その母材のク
ラッドが外套部53に該当するが、透明体51が円筒体
からなるとき、その軸心部52は中空である。
- For example, when the transparent body 51 is made of an optical fiber base material, the core of the base material corresponds to the axial center part 52, and the cladding of the base material corresponds to the mantle part 53, but the transparent body 51 is a cylindrical body. , the axial center portion 52 is hollow.

かかる透明体51は、第1図のごとく、容器41の前後
壁を気密(水密)に貫通して、その長手方向中間部が容
器41内の屈折率調整用水44中に浸漬されている。
As shown in FIG. 1, the transparent body 51 penetrates the front and rear walls of the container 41 airtightly (watertightly), and its longitudinal middle portion is immersed in the refractive index adjusting water 44 inside the container 41.

上述した光照射系11のレーザ光源12、集光レンズ1
3と、受光測定系21の集光レンズ22、検出器23と
は、これらの光軸が一致するように相対配置され、画集
光レンズ13.22には容器41が介在されて当該容器
41の光透過部42.43が集光レンズ13.22と対
面する。
The laser light source 12 of the light irradiation system 11 and the condenser lens 1 described above
3, the condensing lens 22 and the detector 23 of the light receiving measurement system 21 are arranged relative to each other so that their optical axes coincide, and a container 41 is interposed in the image condensing lens 13. The light transmitting part 42.43 faces the condensing lens 13.22.

かくて、容器41が所定位置に介在されたとき、その容
器41を介して保持された透明体51の軸心線(X軸)
と、光照射系11から受光測定系21にわたる光軸(Y
軸)とが互いに直交し、さらに、透明体51は走査装置
31により上下(2輛)方向に移動自在に支持される。
Thus, when the container 41 is placed in a predetermined position, the axial center line (X-axis) of the transparent body 51 held through the container 41
and the optical axis (Y
The transparent body 51 is supported by a scanning device 31 so as to be movable in the vertical (two) directions.

第1図において、本発明方法を実施するとき、光照射系
11のレーザ光源12から出射された照射光線は、集光
レンズ13を経由して屈折率調整用水44中の透明体5
1に照射される。
In FIG. 1, when carrying out the method of the present invention, the irradiation light beam emitted from the laser light source 12 of the light irradiation system 11 passes through the condensing lens 13 to the transparent body 5 in the refractive index adjustment water 44.
1.

透明体51内に入射した上記光線は、その透明体51内
部の屈折率変化により偏向されて当該透明体51を透過
し、この際の透過光線が、集光レンズ22を経由して検
出器23上にスポット光を落す。
The light beam that has entered the transparent body 51 is deflected by the change in the refractive index inside the transparent body 51 and is transmitted through the transparent body 51, and the transmitted light beam passes through the condenser lens 22 and reaches the detector 23. Shine a spotlight on top.

検出器23は上記スポット光の入射位置に比例した出力
信号を信号処理器24へ送り、当該信号処理器24から
の処理信号が、計算機25、コントローラ26を介して
順次処理され、走査装置31に入力される。
The detector 23 sends an output signal proportional to the incident position of the spot light to the signal processor 24 , and the processed signal from the signal processor 24 is sequentially processed via the computer 25 and controller 26 and sent to the scanning device 31 . is input.

すなわち、信号処理器24からの処理信号が計算機25
に入力されたとき、当該計算機25が、その信号を電気
的、電子的に演算処理して前述した透過光線の偏向角を
透明体51内部の屈折率変化と対応させて求める。
That is, the processed signal from the signal processor 24 is sent to the computer 25.
When the signal is input to the transparent body 51, the computer 25 electrically and electronically processes the signal to determine the deflection angle of the transmitted light beam in correspondence with the change in the refractive index inside the transparent body 51.

さらに、計算機25からの信号が入力されたコントロー
ラ26は、移動ステージ33の載首面32を2軸方向の
上方へ移動させるべく、所定の操作信号を電動機34へ
入力する。
Furthermore, the controller 26 to which the signal from the computer 25 has been input inputs a predetermined operation signal to the electric motor 34 in order to move the head surface 32 of the moving stage 33 upward in the two-axis direction.

かくて、移動ステージ33のa蓋面32にある透明体5
1が所定速度にてZ軸方向へ走査される。
Thus, the transparent body 5 on the a lid surface 32 of the moving stage 33
1 is scanned in the Z-axis direction at a predetermined speed.

本発明方法は上述のごとく、照射光線と透明体51とを
相対移動させる光走査手段にて、透明体51の一断面を
第1図のZ軸方向に光走査し、その際の透過光線を測定
手段により測定して、透明体51の外形、内形を求める
のであり、かかる光照射状況、測定状況を説明すると、
第2図、第3図のようになる。
As described above, in the method of the present invention, one section of the transparent body 51 is optically scanned in the Z-axis direction in FIG. The outer shape and inner shape of the transparent body 51 are determined by measuring with a measuring means, and the light irradiation situation and measurement situation will be explained as follows.
It will look like Figures 2 and 3.

第2図の透明体51は一例として光ファイ/へ母材から
なり、その透明体51における軸心部(コア)52の屈
折率をIllとし、外套部(クラッド)53の屈折率(
1,458)をn2とし、屈折率調整用水44の屈折率
(1,333)をn3とした場合、これらの屈折率は、
nl > n2> 113となっている。
The transparent body 51 in FIG. 2 is made of an optical fiber base material as an example, and the refractive index of the axial center portion (core) 52 of the transparent body 51 is Ill, and the refractive index of the cladding portion 53 (
1,458) as n2 and the refractive index (1,333) of the refractive index adjustment water 44 as n3, these refractive indices are as follows.
nl>n2>113.

第2図において矢印Z方向を光走査方向とし、照射光線
を光照射系11側から受光測定系21側へと照射した際
、一部の照射光線は屈折率調整用水44のみを透過し、
他の一部の照射光線は屈折率調整用水44→外套部53
(透明体51)→屈折率調整用水44のごとく透過し、
さらに他の一部の照射光線は屈折率調整用水44→外套
部53(透明体51)→軸心部52(透明体51)→外
套部53(透明体51)→屈折率調整用水44のごとく
透過する。
In FIG. 2, when the arrow Z direction is the light scanning direction and the irradiation light beam is irradiated from the light irradiation system 11 side to the light receiving measurement system 21 side, a part of the irradiation light beam passes through only the refractive index adjustment water 44,
The other part of the irradiation light is transmitted through the refractive index adjusting water 44 → the outer mantle 53
(Transparent body 51)→Transmits like the refractive index adjustment water 44,
Furthermore, some of the other irradiation light beams are transmitted as follows: water for adjusting the refractive index 44 → mantle part 53 (transparent body 51) → shaft center part 52 (transparent body 51) → mantle part 53 (transparent body 51) → water for refractive index adjustment 44 To Penetrate.

周知の通り、光の屈折は、その光が通る媒質の屈折率変
化により生じる。
As is well known, refraction of light is caused by a change in the refractive index of a medium through which the light passes.

したがって第2図の場合、屈折率調整用水44のみを透
過する光線には光の屈折が生じないが、異なる屈折率の
媒質を透過した他の各光線には、それぞれ光の屈折が生
じる。
Therefore, in the case of FIG. 2, no refraction of light occurs in the light rays that pass through only the refractive index adjustment water 44, but refraction occurs in each of the other light rays that pass through media with different refractive indexes.

この場合、外套部53に対する屈折率調整用水44の屈
折率が小さいので、透明体51の外周付近を透過する光
りには、第2図のごとく、大きな屈折が生じる。
In this case, since the refractive index of the refractive index adjusting water 44 with respect to the outer mantle 53 is small, the light that passes through the vicinity of the outer periphery of the transparent body 51 undergoes a large refraction as shown in FIG.

しかし、透明体51の外周付近は、これの光学的特性上
、重要な形状でないので、当該透明体51については、
その外径りに対し90%程度の部分の情報(透過光)が
得られれば十分である。
However, since the vicinity of the outer periphery of the transparent body 51 is not an important shape in terms of its optical properties, the transparent body 51 has the following characteristics:
It is sufficient to obtain information (transmitted light) about 90% of the outer diameter.

前述したように、外套部53のn2が1.458 、屈
折率21g!整用水44のn3が1.333である場合
、第2図のごと<  0.9X (D/2)の位置に光
が入射したとすると、その透過光の偏向角φo9は、下
記(1)式のようになる。
As mentioned above, the n2 of the mantle 53 is 1.458 and the refractive index is 21g! When n3 of the water treatment water 44 is 1.333, and if light is incident at a position < 0.9X (D/2) as shown in Fig. 2, the deflection angle φo9 of the transmitted light is as follows (1) It becomes like the expression.

φo q =2X(sin−1(0,9)−sin−]
[(1,333/1.458)Xo、9]) ”(1)
かかる透過光を検出器23へ有効に導くための集光レン
ズ22として、焦点距離f = 120mmのものを選
ぶと、集光レンズ22の必要な有効径LDは、下記(2
)式のようになる。
φo q =2X(sin-1(0,9)-sin-]
[(1,333/1.458)Xo,9]) ”(1)
If a focal length f = 120 mm is selected as the condensing lens 22 for effectively guiding such transmitted light to the detector 23, the necessary effective diameter LD of the condensing lens 22 is expressed as follows (2
) is as follows.

LD/2=120Xtan(8,8deg) ・・・・
”(2)この場合、検出器23の大きさが37.2mm
以上であれば、透明体51の外径DX90%の透過光が
検出器23へ入力されるようになり、目的とする形状測
定が可能となる。
LD/2=120Xtan (8,8deg)...
(2) In this case, the size of the detector 23 is 37.2 mm.
If this is the case, the transmitted light of 90% of the outer diameter DX of the transparent body 51 will be input to the detector 23, and the intended shape measurement will be possible.

したがって、上述した条件を満足させながら、第1図で
述べた透明体51の形状を測定した場合、第3図のよう
な結果が得られる。
Therefore, when the shape of the transparent body 51 described in FIG. 1 is measured while satisfying the above-mentioned conditions, results as shown in FIG. 3 are obtained.

第3図において、横軸は、透明体51の断面位置をあら
れし、縦軸は、得られる信号の大きさ(偏向角)をあら
れす。
In FIG. 3, the horizontal axis represents the cross-sectional position of the transparent body 51, and the vertical axis represents the magnitude (deflection angle) of the obtained signal.

かかる第3図において、ビークP1〜P6間が透明体5
1の外套部53、すなわち、透明体51の外径に該当し
、ピーク23〜P4間が透明体51の軸心部52に該当
する。
In FIG. 3, the transparent body 5 is located between the beaks P1 to P6.
1, that is, the outer diameter of the transparent body 51, and the area between peaks 23 and P4 corresponds to the axial center portion 52 of the transparent body 51.

P2、P4の各ピークは、透明体51が光フアイバ母材
である場合、その母材製作時に生じる屈折率の変化点で
ある。
When the transparent body 51 is an optical fiber base material, each of the peaks P2 and P4 is a point of change in the refractive index that occurs when the base material is manufactured.

なお、透明体51と屈折率調整用水44との屈折率差が
大きいため、Pl、P2、P4、P6などは、かなり両
端寄りあられれるが、これは、透明体51、屈折率調整
用水44の両屈折率が既知であるので、容易に補正する
ことができる。
In addition, since the refractive index difference between the transparent body 51 and the refractive index adjusting water 44 is large, Pl, P2, P4, P6, etc. are quite close to both ends. Since both refractive indices are known, they can be easily corrected.

したがって、受光測定系21において上記各ピークP1
. P3、P4、P6を求めることにより、透明体51
の外形(外套部53の外径)、透明体51の内形(軸心
部52の外径)が判明し、併せて、軸心部52と外套部
53との偏心率、透明体51を製作する上で重要な各ピ
ークP2.24なども求まる。
Therefore, in the light receiving measurement system 21, each of the above peaks P1
.. By determining P3, P4, and P6, the transparent body 51
The outer shape (outer diameter of the mantle 53) and the inner shape of the transparent body 51 (outer diameter of the shaft center part 52) are known, and the eccentricity between the shaft center part 52 and the mantle 53 and the transparent body 51 Each important peak P2.24 etc. in manufacturing can also be found.

本発明方法の場合、以下のような対応もとることができ
る。
In the case of the method of the present invention, the following measures can also be taken.

例えば、透明体51の内形、外径を求めるとき、光照射
系11のレーザ光を廁〈絞ったとしてもそのビーム径が
有限であるので、測定値と真の値とに差を生じるが、こ
れは原因が明らかであるので補正することができる。
For example, when determining the inner shape and outer diameter of the transparent body 51, even if the laser beam of the light irradiation system 11 is narrowed down, the beam diameter is finite, so there will be a difference between the measured value and the true value. , this can be corrected since the cause is clear.

透明体51において、その軸心部52に問題となる屈折
率の傾きが生じている場合、これが測定値に影響するこ
とがあるが、少なくとも同じ製法で作製された透明体5
1については、その測定誤差範囲が十分小さくなるよう
に補正することができる。
If the transparent body 51 has a problematic refractive index gradient in its axial center 52, this may affect the measured value, but at least the transparent body 5 manufactured by the same manufacturing method
1 can be corrected so that the measurement error range becomes sufficiently small.

受光測定系21において、その検出器23の大きさを限
定した場合、一般例では測定不能をきたすことがあるが
、既述のごとく、検出器23が位置検出素子または検出
素子アレイからなる場合、すべての光線を受光して、前
記ピークP1、P3、P4、P6を判断基準とするので
、装置構成を改造せずとも、各種の透明体51に対応で
きるようになる。
In the light receiving measurement system 21, if the size of the detector 23 is limited, measurement may become impossible in general cases, but as described above, when the detector 23 is composed of a position detection element or a detection element array, Since all the light beams are received and the peaks P1, P3, P4, and P6 are used as criteria for judgment, it becomes possible to deal with various types of transparent bodies 51 without modifying the device configuration.

なお、本発明方法の場合、透過光線の偏向角を正確に求
めるので、その際のデータから透明体各部の屈折率をも
求めることができる。
In the case of the method of the present invention, since the deflection angle of the transmitted light beam is accurately determined, the refractive index of each part of the transparent body can also be determined from the data obtained at that time.

ちなみに1本発明方法により透明体51の外套部外径、
軸心部外径を求めた場合、その測定誤差を1107p以
下に抑えることができる。
Incidentally, according to the method of the present invention, the outer diameter of the outer part of the transparent body 51,
When determining the shaft center outer diameter, the measurement error can be suppressed to 1107p or less.

「発明の効果】 以上説明した通り、本発明は所定の測定方法において、
相互に屈折率が相違する部分の境界部を透過した光線の
偏向角のピークに基づき、透明体の外形、内形を測定す
るから、当該透明体の形状が光学的な非破壊測定手段に
より精度よく測定でき、透明体の品質管理に頁献するこ
とができる。
“Effects of the Invention” As explained above, the present invention provides the following effects in a predetermined measurement method:
The external and internal shapes of the transparent body are measured based on the peak of the deflection angle of the light rays that have passed through the boundary between parts with mutually different refractive indexes. It can be measured well and can be used as a reference for quality control of transparent objects.

しかも、屈折率調整用として水を用いるので、測定後の
透明体を洗浄する必要がなく、作業環境汚染や作業者へ
の有害な影響もない。
Furthermore, since water is used for adjusting the refractive index, there is no need to wash the transparent body after measurement, and there is no contamination of the working environment or harmful effects on workers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明透明体の一実施例を略示した説明図、第
2図は本発明方法における透明体の光透過状況を示した
説明図、第3図は透過光線の偏向角のピークを示した説
明図である。 11・・・・・・光照射系 12・・・・・・光照射系のレーザ光源13・・・・・
・光照射系の集光レンズ21・・・・・・受光測定系 22・・・・・・受光測定系の集光レンズ23・・・・
・・受光測定系の検出器 24・・・・・・受光測定系の信号処理器25・・・・
・・受光測定系の計算機 26・・・・・・受光測定系のコントローラ31・・・
・・・走査装置 32・・・・・・移動ステージの載置面33・・・・・
・走査装置の移動ステージ34・・・・・・走査装置の
電動機 41・・・・・・被検体保持用の容器 42・・・・・・容器の光透過部 43・・・・・・容器の光透過部 44・・・・・・屈折率調整用の水 51・・・・・・透明体 52・・・・・・透明体の外套部 53・・・・・・透明体の軸心部 代理人 弁理士 斎 藤 義 雄 第1図 第2図 4−−−−−讐−、−−−−一トーーーー1ム    
    1・
Fig. 1 is an explanatory diagram schematically showing an embodiment of the transparent body of the present invention, Fig. 2 is an explanatory diagram showing the light transmission state of the transparent body in the method of the present invention, and Fig. 3 is the peak of the deflection angle of the transmitted light beam. FIG. 11... Light irradiation system 12... Laser light source 13 of the light irradiation system...
- Condensing lens 21 of the light irradiation system... Light receiving measurement system 22... Condensing lens 23 of the light receiving measurement system...
...Detector 24 of the light reception measurement system...Signal processor 25 of the light reception measurement system...
... Computer 26 of the light reception measurement system ... Controller 31 of the light reception measurement system ...
...Scanning device 32...Movement stage mounting surface 33...
- Moving stage 34 of the scanning device...Electric motor 41 of the scanning device...Container 42 for holding a subject...Light transmitting part 43 of the container...Container Light transmitting portion 44...Water 51 for refractive index adjustment...Transparent body 52...Transparent body mantle 53...Axis of the transparent body Department agent Patent attorney Yoshio Saifuji Figure 1 Figure 2
1・

Claims (1)

【特許請求の範囲】[Claims] 軸心部と外套部との屈折率が相互に異なる透明体を屈折
率調整用の水中に浸漬した後、光照射系から出射した照
射光線により、上記透明体をその軸心線と交差する方向
に光走査するとともに、その透過光線を受光測定系によ
り受光し、当該受光測定系において、屈折率調整用の水
と軸心部との境界部、および軸心部と外套部との境界部
を透過した光線の偏向角のピークに基づき、透明体の外
形、内形を測定することを特徴とする透明体の形状測定
方法。
After immersing a transparent body in which the refractive index of the axial center portion and the mantle portion are different from each other in water for adjusting the refractive index, the transparent body is irradiated with the irradiation light beam emitted from the light irradiation system in a direction that intersects the axial center line of the transparent body. At the same time, the transmitted light is received by a light receiving measurement system, and in the light receiving measurement system, the boundary between the water for adjusting the refractive index and the shaft center part, and the boundary between the shaft center part and the outer mantle part are measured. A method for measuring the shape of a transparent body, characterized by measuring the outer shape and inner shape of the transparent body based on the peak of the deflection angle of the transmitted light beam.
JP6766188A 1988-03-22 1988-03-22 Measuring method for shape of transparent body Pending JPH01240804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6766188A JPH01240804A (en) 1988-03-22 1988-03-22 Measuring method for shape of transparent body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6766188A JPH01240804A (en) 1988-03-22 1988-03-22 Measuring method for shape of transparent body

Publications (1)

Publication Number Publication Date
JPH01240804A true JPH01240804A (en) 1989-09-26

Family

ID=13351412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6766188A Pending JPH01240804A (en) 1988-03-22 1988-03-22 Measuring method for shape of transparent body

Country Status (1)

Country Link
JP (1) JPH01240804A (en)

Similar Documents

Publication Publication Date Title
US20090237670A1 (en) Prism design for scanning applications and illumination of microscopy sample
US4441811A (en) Apparatus and method for determining refractive index profile in a cylindrical article
US4359282A (en) Optical measuring method and apparatus
JPH01240804A (en) Measuring method for shape of transparent body
CA1177665A (en) Fibre index profilers
JP3162364B2 (en) Optical sensor device
US5078488A (en) Method and apparatus for determining refractive index distribution
JP2002257706A (en) Probe for measuring light scattering
JP2021071724A (en) Microscope and method for determining aberration in microscope
JPS59166838A (en) Device for measuring refractive index of optical fiber
JP2505230B2 (en) Method for calibrating laser beam deflection angle measuring device
JPH01304339A (en) Instrument for measuring angle of refraction
CN113465885B (en) Bessel glass cutting head light beam quality testing system
JPH0781928B2 (en) Structure measuring device
JP2624501B2 (en) Method of measuring characteristics of refractive index distribution type cylindrical lens and apparatus used therefor
RU2710976C1 (en) Device with spaced arms for measuring the radius of curvature of concave optical parts
JP2746714B2 (en) Measuring device for refractive index distribution
JP2661001B2 (en) Method and apparatus for measuring refractive index distribution
JPH01161126A (en) Shape measuring method for transparent body
JP3155569B2 (en) Dispersion distribution measurement method
JP2903263B2 (en) Measuring device for refractive index distribution
JPH02309228A (en) Measuring method and apparatus of distribution of index of refraction
JP2814255B2 (en) How to measure the refractive index distribution
JP2814260B2 (en) How to measure the refractive index distribution
JP3064329B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device