JPH02309228A - Measuring method and apparatus of distribution of index of refraction - Google Patents

Measuring method and apparatus of distribution of index of refraction

Info

Publication number
JPH02309228A
JPH02309228A JP13099389A JP13099389A JPH02309228A JP H02309228 A JPH02309228 A JP H02309228A JP 13099389 A JP13099389 A JP 13099389A JP 13099389 A JP13099389 A JP 13099389A JP H02309228 A JPH02309228 A JP H02309228A
Authority
JP
Japan
Prior art keywords
light
refractive index
cylindrical glass
index distribution
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13099389A
Other languages
Japanese (ja)
Other versions
JPH0812130B2 (en
Inventor
Tadakatsu Shimada
忠克 島田
Kazuo Kamiya
和雄 神屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1130993A priority Critical patent/JPH0812130B2/en
Publication of JPH02309228A publication Critical patent/JPH02309228A/en
Publication of JPH0812130B2 publication Critical patent/JPH0812130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/412Index profiling of optical fibres

Abstract

PURPOSE:To measure the distribution of the index of refraction in a short time with high accuracy by allowing a plurality of light beams of different wavelengths from a plurality of light sources to be incident upon a coaxial cylindrical glass and measuring each projecting angle of said incident light beams from said coaxial columnar glass. CONSTITUTION:A light from a light source 5 through a lens 6 is incident upon a coaxial cylindrical glass (preform) 1 in a direction perpendicular to the central axis of the glass 1. At the same time, a light of a different wavelength is emitted from a light source 7, passing through a lens 8 and entering the preform 1 in a direction perpendicular to the central axis of the preform 1. These light having different wavelengths from the light sources 5 and 7 are respectively refracted by the preform 1 and projected therefrom. Each projecting angle of a plurality of light beams of different wavelengths from the preform 1 can be measured at one time. Accordingly, the quality evaluation of a preform for an optical fiber etc. which is used with various wavelengths can be carried out by one measurement in a short time.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば光フアイバ用プリフォームやロッドレ
ンズに使用される円柱ガラスの屈折率分布を測定する測
定方法及び測定装置に関するもので、特に異なる波長に
おけるプリフォーム等の屈折率分布測定の簡易化、高精
度化に役立つものである。
The present invention relates to a measuring method and a measuring device for measuring the refractive index distribution of a cylindrical glass used, for example, in an optical fiber preform or a rod lens, and in particular to simplifying the measurement of the refractive index distribution of a preform, etc. at different wavelengths. , which is useful for increasing precision.

【従来の技術】[Conventional technology]

光フアイバ用プリフォーム(母材)やロッドレンズに使
用される円柱ガラスは、半径方向の屈折率がほぼ2乗分
布、軸方向の屈折率は均一になっている。これを線引き
して光ファイバが形成される。線引き前のプリフォーム
の屈折率分布を正確に測定することが良好な製品を得る
ために必要である。 屈折率分布の測定法としては、例えば特開昭63−95
336号公報に光フアイバ用の・プリフォームの中心軸
と垂直方向から光線を入射させ、その出射角を求めてプ
リフォームの屈折率分布を測定する方法が開示されてい
る。第5図には同公報に開示された屈折率分布測定装置
を示しである。図に示すように光源5とレンズ6からな
る入射光学系から、セル2内のマツチングオイル3中に
設置されたプリフォームlに入射され、プリフォーム1
を通って出射された出射光はレンズ21を有する出射光
学系を通過してTV右カメラ2の観察面に投影される。 この投影像をTV右カメラ2で取り出し、投影像の座標
Xと出射光学系の焦点距離fとから出射角φを φ= tan−’ (x/f) で求めている。そしてパルスモータによりプリフォーム
を載置した移動テーブル4を移動しながら求めた出射角
φを用いプリフォーム1の屈折率分布n(r)を次式 で算出している。 あるいは出射光学系を通った出射光の像をスクリーン上
に形成し、スクリーン上の投影像をTV右カメラ2で観
察して出射角φを求めている。
Cylindrical glass used for optical fiber preforms (base materials) and rod lenses has a refractive index in the radial direction that has a substantially square distribution, and a refractive index in the axial direction that is uniform. An optical fiber is formed by drawing this. Accurately measuring the refractive index distribution of the preform before drawing is necessary to obtain a good product. As a method for measuring refractive index distribution, for example, Japanese Patent Application Laid-Open No. 1983-1995
No. 336 discloses a method for measuring the refractive index distribution of an optical fiber preform by making a light ray enter the preform in a direction perpendicular to its central axis and determining its exit angle. FIG. 5 shows a refractive index distribution measuring device disclosed in the publication. As shown in the figure, from an incident optical system consisting of a light source 5 and a lens 6, the light enters the preform l placed in the matching oil 3 in the cell 2, and the preform 1
The emitted light passes through an emitting optical system having a lens 21 and is projected onto the viewing surface of the TV right camera 2. This projected image is taken out by the TV right camera 2, and the output angle φ is determined from the coordinates X of the projected image and the focal length f of the output optical system as φ=tan-' (x/f). Then, the refractive index distribution n(r) of the preform 1 is calculated using the following equation using the exit angle φ obtained while moving the movable table 4 on which the preform is placed by a pulse motor. Alternatively, an image of the output light that has passed through the output optical system is formed on a screen, and the projected image on the screen is observed with the TV right camera 2 to determine the output angle φ.

【発明が解決しようとする課題】[Problem to be solved by the invention]

光ファイバを伝搬する光は、目的に応じて種々の波長が
使用されている。一方、物質の屈折率は光の波長により
変化する。そのため、光ファイバを種々の波長の光で使
用するためには、プリフォームlの屈折率分布を種々の
波長の光で測定する必要がある。 しかし、上記した従来の屈折率分布の測定においては、
入射光学系の光源5から一定の波長の光を出射している
ため、異なった波長の光で屈折率分布を測定するために
は、光源5を変えて測定しなければならず、屈折率分布
の測定が容易でないという問題があった。光源5を変え
るたびに光源5やレンズ6等の光軸を合せる必要がある
。そのため異なった波長の光で異る波長における屈折率
分布を測定する場合には、かなりの手間がかかる。 本発明は、これらの欠点を解消するためになされたもの
であり、屈折率分布を短時間で高精度に測定することが
できる屈折率分布の測定方法及び測定装置を得ることを
目的とするものである。
Various wavelengths are used for light propagating through optical fibers depending on the purpose. On the other hand, the refractive index of a substance changes depending on the wavelength of light. Therefore, in order to use the optical fiber with light of various wavelengths, it is necessary to measure the refractive index distribution of the preform I with light of various wavelengths. However, in the conventional refractive index distribution measurement described above,
Since light of a fixed wavelength is emitted from the light source 5 of the input optical system, in order to measure the refractive index distribution using light of a different wavelength, it is necessary to change the light source 5 and perform the measurement. There was a problem that it was not easy to measure. Each time the light source 5 is changed, it is necessary to align the optical axes of the light source 5, lens 6, etc. Therefore, it takes considerable effort to measure the refractive index distribution at different wavelengths using light of different wavelengths. The present invention has been made to eliminate these drawbacks, and aims to provide a refractive index distribution measuring method and measuring device that can measure refractive index distribution with high precision in a short time. It is.

【課題を解決するための手段】[Means to solve the problem]

上記課題を解決するための本発明を適用する屈折率分布
の測定方法は、軸方向には均一な屈折率、径方向には屈
折率が変化する円柱ガラスの中心軸と垂直方向から光を
入射させ、その出射角を測定して同軸円柱ガラスの径方
向に対する屈折率分布を求める屈折率分布測定方法にお
いて、入射光学系に設けられた複数の光源から波長の異
なる複数の光線を同軸円柱ガラスに入射させ、入射した
光線の同軸円柱ガラスからの出射角をそれぞれ測定する
ことを特徴とする。 同軸円柱ガラスからの出射角を測定するにあたり、同軸
円柱ガラスからの出射光を光学系を介することな(、直
接、撮像管により受光して出射角をそれぞれ測定する。 また上記課題を解決するための本発明を適用する屈折率
分布の測定装置は、異なった波長の光を出射する光源と
、その光源から出射する光を集光し同軸円柱ガラスに入
射させるレンズとを有する入射光学系を備えたことを特
徴とする。 この屈折率分布の測定装置では、同軸円柱ガラスからの
出射光の光路上に光学系を介することなく撮像管を配置
しである。
In order to solve the above problems, the method of measuring refractive index distribution applying the present invention is to incident light from a direction perpendicular to the central axis of a cylindrical glass whose refractive index is uniform in the axial direction and changes in the radial direction. In the refractive index distribution measurement method, the refractive index distribution in the radial direction of a coaxial cylindrical glass is determined by measuring the exit angle of the coaxial cylindrical glass. It is characterized by measuring the exit angle of each incident light ray from the coaxial cylindrical glass. In order to measure the exit angle from the coaxial cylindrical glass, the exit light from the coaxial cylindrical glass is not passed through an optical system (it is directly received by the image pickup tube and the exit angle is measured. A refractive index distribution measuring device to which the present invention is applied includes an input optical system having a light source that emits light of different wavelengths and a lens that condenses the light emitted from the light source and makes it enter a coaxial cylindrical glass. This refractive index distribution measuring device is characterized in that an imaging tube is placed on the optical path of the light emitted from the coaxial cylindrical glass without passing through an optical system.

【作用] 上記本発明においては、あらかじめ入射光学系に設けら
れた複数の光源からレンズを介して同軸円柱ガラスに波
長の異なる複数の光線を入射することにより、同軸円柱
ガラスから出射する波長の異なる複数の光線の出射角を
同時に測定することができる。 【実施例】 以下、本発明の実施例を図面により詳細に説明する。 第1図は本発明を適用する屈折率分布測定装置の一実施
例の概略構成平面図、第2図はその側面図である。これ
らの図において、■はプリフォーム、2はプリフォーム
1を装着したセルであり、セル2内にはプリフォーム1
の表面における急激な屈折率変化を除(ためにマツチン
グオイル3が満たされている。4はセル2が設置された
移動テーブルであり、移動テーブル4はパルスモータ(
不図示)により駆動され、プリフォームlをX軸とy軸
方向に移動させる。 5は例えば波長が632.δnmのレーザ光を出射する
H e −N eレーザ発振器からなる光源、6は光源
5から出射する光をプリフォームlに集光するレンズで
ある。7は波長が1152.3nmのレーザ光を出射す
るHe−Neレーザ発振器からなる光源であり、光源7
は出射する光が光源5から出射する光と平行になるよう
に光軸が調整されている。8は光源7から出射する光を
プリフォーム1に集光するレンズである。光源5.7及
びレンズ6.8で入射光学系を構成している。9はプリ
フォームlの出射光を受光して、その像の電気信号を送
り出す撮像管、lOは撮像管9から送り出された電気信
号のデータを蓄えるフレームメモリ、11は中央処理装
置である。中央処理装置11はフレームメモリ10に蓄
えられたデータの直線近似等を行ない出射角φを演算し
表示部12に出力する。 次に、上記のように構成された屈折率分布測定装置によ
りプリフォーム1の屈折率分布を測定するときの動作を
説明する。 光源5からレンズ6を通って送られた光はプリフォーム
lの中心軸と垂直方向から入射する。同時に、光源7か
ら光源5と波長の異なる光が出射され、レンズ8を通っ
てプリフォーム1の中心軸と垂直方向に入射する。この
光源5と光源7から送られる波長の異なった光はそれぞ
れプリフォームlにより屈折されて出射する。この2つ
の出射光は撮像管9で観察され、その像の画像データが
フレームメモリ10に送られて蓄えられる。このデータ
を中央処理装置11に送り、中央処理装置11で出射光
の像の座標値から出射角φを演算して表示部12に送る
。そしてプリフォームlを搭載した移動テーブル4をレ
ンズ6および8の光軸に対して垂直方向であるX軸方向
に移動しながら、プリフォーム1に入射する光の位置を
変えて出射角φの変化を求める。 上記のようにして、例えば第3図に示すようなコアの最
大屈折率n+(凡)、クラッドの屈折率nz(ん)のプ
リフォームlの入射位’Jlrと出射角φの関係を異な
る波長んの光で測定する。測定した出射角φにより屈折
率分布n (r)を求めると5異なる波長んの光による
屈折率分布n (r)を同時に測定することができる 実際に波長1152.3nmの光で測定した屈折率で次
式に示す比屈折率差へ Δ” (n+−n2) X100/n+を求めると比屈
折率差Δ=1.05%であり、波長632.8nmの光
で測定した場合はΔ= i、iz%であった。 第4図は本発明を適用する屈折率分布測定装置の別な実
施例の概略構成図である。同図に示すように、光源5と
レンズ6の間に光源5の光軸に対して45度傾けたハー
フミラ−13を設け、光源7からの光をハーフミラ−1
3の反射面と平行な反射面を有するミラー14で反射さ
せ、その反射光をハーフミラ7−13で反射させてレン
ズ6を介してプリフォームlに入射する。9の撮像管の
像を解析し、光源5からの光の像と光源7からの光の像
を分別することにより同一場所の異なる波長における屈
折率分布の測定ができる。
[Function] In the present invention, a plurality of light beams with different wavelengths are incident on the coaxial cylindrical glass via a lens from a plurality of light sources provided in the input optical system in advance, so that different wavelengths are emitted from the coaxial cylindrical glass. The exit angles of multiple light beams can be measured simultaneously. Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic plan view of an embodiment of a refractive index distribution measuring device to which the present invention is applied, and FIG. 2 is a side view thereof. In these figures, ■ is a preform, 2 is a cell equipped with preform 1, and inside cell 2, preform 1 is installed.
A matching oil 3 is filled in order to eliminate sudden changes in refractive index on the surface of
(not shown) to move the preform l in the X-axis and y-axis directions. For example, 5 has a wavelength of 632. A light source includes a H e -N e laser oscillator that emits a laser beam of δ nm, and 6 is a lens that focuses the light emitted from the light source 5 onto the preform l. 7 is a light source consisting of a He-Ne laser oscillator that emits a laser beam with a wavelength of 1152.3 nm;
The optical axis is adjusted so that the emitted light is parallel to the light emitted from the light source 5. A lens 8 focuses the light emitted from the light source 7 onto the preform 1. A light source 5.7 and a lens 6.8 constitute an input optical system. Reference numeral 9 denotes an image pickup tube that receives the light emitted from the preform l and sends out an electric signal of the image thereof, IO is a frame memory that stores data of the electric signal sent out from the image pickup tube 9, and 11 is a central processing unit. The central processing unit 11 performs linear approximation of the data stored in the frame memory 10, calculates the exit angle φ, and outputs it to the display unit 12. Next, the operation when measuring the refractive index distribution of the preform 1 using the refractive index distribution measuring device configured as described above will be explained. Light sent from the light source 5 through the lens 6 enters the preform l from a direction perpendicular to the central axis. At the same time, light having a different wavelength from that of the light source 5 is emitted from the light source 7 and enters the preform 1 in a direction perpendicular to the central axis thereof through the lens 8 . The lights of different wavelengths sent from the light source 5 and the light source 7 are respectively refracted by the preform l and emitted. These two emitted lights are observed by an image pickup tube 9, and image data of the image is sent to a frame memory 10 and stored therein. This data is sent to the central processing unit 11, which calculates the output angle φ from the coordinate values of the image of the output light and sends it to the display unit 12. Then, while moving the moving table 4 on which the preform 1 is mounted in the X-axis direction, which is perpendicular to the optical axes of the lenses 6 and 8, the position of the light incident on the preform 1 is changed to change the output angle φ. seek. As described above, for example, the relationship between the incident position 'Jlr and the output angle φ of the preform l with the maximum refractive index n+ (normal) of the core and the refractive index nz (n) of the cladding as shown in Fig. 3 can be changed to different wavelengths. Measure with light. By determining the refractive index distribution n (r) using the measured output angle φ, it is possible to simultaneously measure the refractive index distribution n (r) due to light of 5 different wavelengths.Refractive index actually measured using light with a wavelength of 1152.3 nm To calculate the relative refractive index difference Δ" (n+-n2) , iz%. FIG. 4 is a schematic diagram of another embodiment of the refractive index distribution measuring device to which the present invention is applied. A half mirror 13 is provided which is tilted at 45 degrees with respect to the optical axis of
The reflected light is reflected by a mirror 14 having a reflective surface parallel to the reflective surface of 3, and the reflected light is reflected by a half mirror 7-13 and enters the preform l via the lens 6. By analyzing the image of the image pickup tube 9 and separating the image of the light from the light source 5 and the image of the light from the light source 7, it is possible to measure the refractive index distribution at different wavelengths at the same location.

【発明の効果】【Effect of the invention】

以上詳細に説明したように、本発明によれば、あらかじ
め入射光学系に設けられた複数の光源からレンズを介し
て同軸円柱ガラスに波長の異なる複数の光線を入射する
ことにより、同軸円柱ガラスから出射する波長の異なる
複数の光線の出射角を同時に測定するようにした。した
がって、異なる波長の光に対する屈折率分布を同時に測
定することができ、種々の波長で使用される光フアイバ
ー用のプリフォーム等の品質評価を1回の測定で、短時
間にできる。 同軸円柱ガラスからの出射角を測定するにあたり、また
同軸円柱ガラスからの出射光を光学系を介することな(
、直接、撮像管により受光して出射角をそれぞれ測定す
ることができるので、光学系の軸合わせの手間が軽減さ
れ、簡便な装置となる。
As explained in detail above, according to the present invention, a plurality of light rays having different wavelengths are incident on the coaxial cylindrical glass through the lens from a plurality of light sources provided in the incident optical system in advance, so that the coaxial cylindrical glass is The output angles of multiple emitted light beams with different wavelengths can be measured simultaneously. Therefore, the refractive index distribution for light of different wavelengths can be measured simultaneously, and the quality of preforms for optical fibers used at various wavelengths can be evaluated in a short time by one measurement. When measuring the output angle from coaxial cylindrical glass, the output light from coaxial cylindrical glass should not be passed through an optical system (
Since the light can be directly received by the image pickup tube and the output angle can be measured, the effort of aligning the axis of the optical system is reduced, resulting in a simple device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用す、る装置の実施例の概略構成平
面図、第2図はその側面図、第3図はプリフォームの屈
折率分布を示す特性図、第4図は別゛な実施例の構成を
示す側面図、第5図は従来の装置例を示す構成図である
Fig. 1 is a plan view of a schematic configuration of an embodiment of an apparatus to which the present invention is applied, Fig. 2 is a side view thereof, Fig. 3 is a characteristic diagram showing the refractive index distribution of the preform, and Fig. 4 is a separate diagram. FIG. 5 is a side view showing the configuration of an embodiment, and FIG. 5 is a configuration diagram showing an example of a conventional device.

Claims (1)

【特許請求の範囲】 1、軸方向には均一な屈折率、径方向には屈折率が変化
する円柱ガラスの中心軸と垂直方向から光を入射させ、
その出射角を測定して同軸円柱ガラスの径方向に対する
屈折率分布を求める屈折率分布測定方法において、入射
光学系に設けられた複数の光源から波長の異なる複数の
光線を同軸円柱ガラスに入射させ、入射した光線の同軸
円柱ガラスからの出射角をそれぞれ測定することを特徴
とする屈折率分布の測定方法。 2、前記同軸円柱ガラスからの出射光を直接撮像管によ
り受光して出射角をそれぞれ測定することを特徴とする
請求項第1項に記載の屈折率分布の測定方法。 3、軸方向には均一な屈折率、径方向には屈折率が変化
する円柱ガラスの中心軸と垂直方向から光を入射させ、
その出射角を測定して同軸円柱ガラスの径方向に対する
屈折率分布を求める屈折率分布測定装置において、異な
った波長の光を出射する光源と、該光源から出射する光
を集光し同軸円柱ガラスに入射させるレンズとを有する
入射光学系を備えたことを特徴とする屈折率分布測定装
置。 4、前記同軸円柱ガラスからの出射光の光路上に撮像管
を配置したことを特徴とする請求項第3項に記載の屈折
率分布の測定装置。
[Claims] 1. Light is incident from a direction perpendicular to the central axis of a cylindrical glass whose refractive index is uniform in the axial direction and changes in the radial direction,
In a refractive index distribution measurement method that measures the exit angle and determines the refractive index distribution in the radial direction of coaxial cylindrical glass, multiple light beams with different wavelengths are incident on coaxial cylindrical glass from multiple light sources provided in the input optical system. , a method for measuring refractive index distribution, characterized by measuring the exit angle of each incident light beam from a coaxial cylindrical glass. 2. The method for measuring a refractive index distribution according to claim 1, wherein the emitted light from the coaxial cylindrical glass is directly received by an image pickup tube and the emitted angle is measured. 3. Light is incident from a direction perpendicular to the central axis of the cylindrical glass, which has a uniform refractive index in the axial direction and a varying refractive index in the radial direction.
A refractive index distribution measuring device that measures the emission angle and determines the refractive index distribution in the radial direction of a coaxial cylindrical glass uses a light source that emits light of different wavelengths and a coaxial cylindrical glass that condenses the light emitted from the light source. 1. A refractive index distribution measuring device comprising: an input optical system having an input optical system. 4. The refractive index distribution measuring device according to claim 3, characterized in that an image pickup tube is disposed on the optical path of the light emitted from the coaxial cylindrical glass.
JP1130993A 1989-05-24 1989-05-24 Method and apparatus for measuring refractive index distribution Expired - Fee Related JPH0812130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1130993A JPH0812130B2 (en) 1989-05-24 1989-05-24 Method and apparatus for measuring refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1130993A JPH0812130B2 (en) 1989-05-24 1989-05-24 Method and apparatus for measuring refractive index distribution

Publications (2)

Publication Number Publication Date
JPH02309228A true JPH02309228A (en) 1990-12-25
JPH0812130B2 JPH0812130B2 (en) 1996-02-07

Family

ID=15047424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1130993A Expired - Fee Related JPH0812130B2 (en) 1989-05-24 1989-05-24 Method and apparatus for measuring refractive index distribution

Country Status (1)

Country Link
JP (1) JPH0812130B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301600A (en) * 1994-02-07 1995-11-14 Corning Inc Analysis of optical fiber core cane containing series of refractive index fringe and device for analyzing core cane having refractive index distribution
JP2019007802A (en) * 2017-06-22 2019-01-17 株式会社東芝 Optical inspection apparatus and method for optical inspection
EP3889581A1 (en) * 2020-03-30 2021-10-06 Heraeus Quarzglas GmbH & Co. KG Method for determining the refractive index profile of a cylindrical optical element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395336A (en) * 1986-10-10 1988-04-26 Fujikura Ltd Measurement of refractive index distribution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395336A (en) * 1986-10-10 1988-04-26 Fujikura Ltd Measurement of refractive index distribution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301600A (en) * 1994-02-07 1995-11-14 Corning Inc Analysis of optical fiber core cane containing series of refractive index fringe and device for analyzing core cane having refractive index distribution
JP2019007802A (en) * 2017-06-22 2019-01-17 株式会社東芝 Optical inspection apparatus and method for optical inspection
EP3889581A1 (en) * 2020-03-30 2021-10-06 Heraeus Quarzglas GmbH & Co. KG Method for determining the refractive index profile of a cylindrical optical element
WO2021197857A1 (en) * 2020-03-30 2021-10-07 Heraeus Quarzglas Gmbh & Co. Kg Method for determining the refractive-index profile of a cylindrical optical object

Also Published As

Publication number Publication date
JPH0812130B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
JPS6379003A (en) Light probe for measuring shape
JP7044272B2 (en) Lens refractive index measuring device and its measuring method
JPH08114421A (en) Non-contact type measuring device for measuring thickness ofmaterial body comprising transparent material
JP3078133B2 (en) Method for inspecting alignment state of optical waveguide and optical waveguide
JP2000241128A (en) Plane-to-plane space measuring apparatus
JPS6395336A (en) Measurement of refractive index distribution
JPH02309228A (en) Measuring method and apparatus of distribution of index of refraction
CN107688022A (en) A kind of optical element surface defect detecting device
US5078488A (en) Method and apparatus for determining refractive index distribution
JP2519775B2 (en) Refraction angle measuring device
CN115839826B (en) Detection device and detection method for optical fiber transmittance and numerical aperture
US20190094139A1 (en) Refractive index measuring device and refractive index measuring method
JPH02309227A (en) Measuring method and apparatus of distribution of index of refraction
JPH0373822A (en) Instrument for measuring distribution of refractive index
JP7289780B2 (en) Eccentricity measuring method and eccentricity measuring device
JPS62142206A (en) Measuring instrument for surface position of object
CN212620587U (en) Long-distance angle focusing device suitable for optical and similar measurement systems
JPH06148029A (en) Measuring method for gradient angle of optical fiber and light connector
JP4629835B2 (en) Abbe number measuring apparatus and Abbe number measuring method
JP2903263B2 (en) Measuring device for refractive index distribution
JP2661001B2 (en) Method and apparatus for measuring refractive index distribution
JPS6242327Y2 (en)
JPH11287612A (en) Interferometer
JPS60211304A (en) Measuring instrument for parallelism

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees