JPH02309227A - Measuring method and apparatus of distribution of index of refraction - Google Patents

Measuring method and apparatus of distribution of index of refraction

Info

Publication number
JPH02309227A
JPH02309227A JP13099289A JP13099289A JPH02309227A JP H02309227 A JPH02309227 A JP H02309227A JP 13099289 A JP13099289 A JP 13099289A JP 13099289 A JP13099289 A JP 13099289A JP H02309227 A JPH02309227 A JP H02309227A
Authority
JP
Japan
Prior art keywords
refractive index
light
index distribution
incident
cylindrical glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13099289A
Other languages
Japanese (ja)
Other versions
JPH07117476B2 (en
Inventor
Tadakatsu Shimada
忠克 島田
Kazuo Kamiya
和雄 神屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1130992A priority Critical patent/JPH07117476B2/en
Publication of JPH02309227A publication Critical patent/JPH02309227A/en
Publication of JPH07117476B2 publication Critical patent/JPH07117476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the measuring time of the distribution of the index of refraction by projecting a plurality of light beams from a projecting optical system to be incident upon a coaxial columnar glass and measuring projecting angles of said incident light beams from said coaxial columnar glass. CONSTITUTION:The light beams from a light source 5 are incident upon the rotational center of a rotary mirror 7. When the rotary mirror 7 is rotated, the light beams passing through a lens 9 which has its focus on the rotating center of the rotary mirror 7 is allowed to enter a coaxial columnar glass 1 as a plurality of parallel light beams. In other words, a plurality of light beams are made incident upon the coaxial columnar glass 1 from the optical system and, each projecting angle of the incident light beams from the coaxial columnar glass 1 is measured. Therefore, the distribution of the index of refraction at a plurality of points can be measured at one time. Since a plurality of light beams are allowed to be incident in parallel to the direction of the central axis of the coaxial columnar glass 1, the distribution of the index of refraction at a plurality of points in the axial direction can be measured at one time. Accordingly, the distribution of the index of refraction can be measured with high accuracy in a short time.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば光フアイバ用プリフォームやロッドレ
ンズに使用される円柱ガラスの屈折率分布を測定する測
定方法及び測定装置に関するもので、特に異なる屈折率
を有するプリフォーム等の屈折率分布測定の簡易化、高
精度化に役立つものである。
The present invention relates to a measuring method and a measuring device for measuring the refractive index distribution of cylindrical glass used, for example, in optical fiber preforms and rod lenses, and in particular to measuring the refractive index distribution of preforms having different refractive indexes. This is useful for simplification and high precision.

【従来の技術】[Conventional technology]

光フアイバ用プリフォーム(母材)やロッドレンズに使
用される円柱ガラスは、半径方向の屈折率がほぼ2乗分
布、軸方向の屈折率は均一になっている。これを線引き
して光ファイバが形成される。線引き前のプリフォーム
の屈折率分布を正確に測定することが良好な製品を得る
ために必要である。 屈折率分布の測定法としては、例えば特開昭63−95
336号公報に光フアイバ用のプリフォームの中心軸と
垂直方向から光線を入射させ、その出射角を求めてプリ
フォームの屈折率分布を測定する方法が開示されている
。第4図には同公報に開示された屈折率分布測定装置を
示しである。図に示すように光源5とレンズ6からなる
入射光学系から、セル2内のマツチングオイル3中に設
置されたプリフォーム1に入射され、プリフォーム1を
通って出射された出射光はレンズ21を有する出射光学
系を通過してTVカメラ22の観察面に投影される。こ
の投影像をTVカメラ22で取り出し、投影像の座標X
と出射光学系の焦点路tlifとから出射角φを φ= jan−’ (x/f) で求めている。そしてパルスモータによりプリフォーム
を載置した移動テーブル4を移動しながら求めた出射角
φを用いプリフォーム1の屈折率分布n (r)を次式 %式%] で算出している。 あるいは出射光学系を通った出射光の像をスクリーン上
に形成し、スクリーン上の投影像をTVカメラ22で観
察して出射角φを求めている。
Cylindrical glass used for optical fiber preforms (base materials) and rod lenses has a refractive index in the radial direction that has a substantially square distribution, and a refractive index in the axial direction that is uniform. An optical fiber is formed by drawing this. Accurately measuring the refractive index distribution of the preform before drawing is necessary to obtain a good product. As a method for measuring refractive index distribution, for example, Japanese Patent Application Laid-Open No. 1983-1995
Japanese Patent Application No. 336 discloses a method in which a light beam is made incident in a direction perpendicular to the central axis of a preform for an optical fiber, and its exit angle is determined to measure the refractive index distribution of the preform. FIG. 4 shows a refractive index distribution measuring device disclosed in the publication. As shown in the figure, an incident optical system consisting of a light source 5 and a lens 6 enters the preform 1 installed in the matching oil 3 in the cell 2, and the output light that passes through the preform 1 is sent to the lens. The light passes through an output optical system having 21 and is projected onto the viewing surface of the TV camera 22. This projected image is taken out by the TV camera 22, and the coordinates of the projected image
The output angle φ is determined from the focal path tlif of the output optical system as follows: φ=jan-' (x/f). Then, the refractive index distribution n (r) of the preform 1 is calculated using the following equation % using the exit angle φ obtained while moving the movable table 4 on which the preform is placed by a pulse motor. Alternatively, an image of the output light that has passed through the output optical system is formed on a screen, and the projected image on the screen is observed with the TV camera 22 to determine the output angle φ.

【発明が解決しようとする課題】[Problem to be solved by the invention]

例えば光フアイバ用のプリフォームは、製造工程におけ
るわずかな条件の変動により、軸方向の屈折率分布が変
動するとともに、屈折率分布がプリフォームの中心軸に
対して非対称になる場合がある。このような軸方向の屈
折率分布変動を、上記した従来の屈折率分布測定装置で
測定するためにはプリフォームを軸方向に移動させなが
ら繰り返して屈折率分布を測定する必要があり、正確な
屈折率分布を得るのに時間を要するという問題があった
。またプリフォームの中心軸に対する非対称性を測定す
る場合は、プリフォームを90度回転させて測定を繰り
返す必要があり、やはり正確な屈折率分布を得るのに時
間を要した。 本発明は、これらの欠点を解消するためになされたもの
であり、屈折率分布を短時間で高精度に測定することが
できる屈折率分布の測定方法及び測定装置を得ることを
目的とするものである。
For example, in a preform for an optical fiber, the refractive index distribution in the axial direction changes due to slight variations in conditions during the manufacturing process, and the refractive index distribution may become asymmetrical with respect to the central axis of the preform. In order to measure such axial refractive index distribution fluctuations using the conventional refractive index distribution measuring device described above, it is necessary to repeatedly measure the refractive index distribution while moving the preform in the axial direction, which makes it difficult to accurately measure the refractive index distribution. There is a problem in that it takes time to obtain a refractive index distribution. Furthermore, when measuring the asymmetry of the preform with respect to its central axis, it was necessary to rotate the preform 90 degrees and repeat the measurement, which also required time to obtain an accurate refractive index distribution. The present invention has been made to eliminate these drawbacks, and aims to provide a refractive index distribution measuring method and measuring device that can measure refractive index distribution with high precision in a short time. It is.

【課題を解決するための手段】[Means to solve the problem]

上記課題を解決するための本発明を適用する屈折率分布
の測定方法は、軸方向には均一な屈折率、径方向には屈
折率分布が変化する円柱ガラスの中心軸と垂直方向から
光を入射させ、その出射角を測定して同軸円柱ガラスの
径方向に対する屈折率分布を求める屈折率分布測定方法
において、入射光学系から同軸円柱ガラスに複数の光線
を入射させ、入射した光線の同軸円柱ガラスからの出射
角をそれぞれ測定することを特徴としている。 この入射光学系から同軸円柱ガラスに入射する複数の光
線を、同軸円柱ガラスの中心軸方向に並べて平行に入射
することにより、軸方向の屈折率分布変動を同時に測定
することができる。 また入射光学系から同軸円柱ガラスに入射する複数の光
線を直交させて同軸円柱ガラスに入射することにより、
屈折率分布の非対称性を同時に測定することができる。 同軸円柱ガラスからの出射角を測定するにあたり、同軸
円柱ガラスからの出射光を光学系を介することなく、直
接、撮像管により受光して出射角をそれぞれ測定する。 同じく上記課題を解決するための本発明を適用する屈折
率分布の測定装置は、入射光学系を光源と、光源からの
光線を回転中心に入射して反射する回転ミラーと、回転
ミラーの回転中心に焦点を有するレンズとから構成する
ことにより、複数の光線を同軸円柱ガラスに入射させる
。 同じ(本発明を適用する屈折率分布の測定装置の別な構
成は、この入射光学系に回転ミラーで反射されレンズを
通った光線の一部を透過し、一部を反射するハーフミラ
−と、ハーフミラ−の反射面とそれぞれ平行に設けられ
ハーフミラ−の透過光と反射光とをそれぞれ反射するミ
ラーとを設けることにより、直交する光線を同軸円柱ガ
ラスに入射させることができる。 これらの屈折率分布の測定装置では、同軸円柱ガラスか
らの出射光の光路上に光学系を介することなく撮像管を
配置しである。
The refractive index distribution measurement method to which the present invention is applied in order to solve the above problems is to emit light from a direction perpendicular to the central axis of a cylindrical glass whose refractive index is uniform in the axial direction and whose refractive index distribution changes in the radial direction. In the refractive index distribution measurement method, in which the refractive index distribution in the radial direction of a coaxial cylindrical glass is determined by making the incident light beam incident on the coaxial cylindrical glass and measuring its exit angle, a plurality of light rays are made incident on the coaxial cylindrical glass from an input optical system, and the coaxial cylindrical shape of the incident rays is measured. The feature is that each angle of emission from the glass is measured. By arranging a plurality of light beams that enter the coaxial cylindrical glass from this incident optical system in parallel in the direction of the central axis of the coaxial cylindrical glass, it is possible to simultaneously measure the refractive index distribution fluctuation in the axial direction. In addition, by orthogonally making multiple light beams incident on the coaxial cylindrical glass from the incident optical system,
The asymmetry of the refractive index distribution can be measured simultaneously. To measure the emission angle from the coaxial cylindrical glass, the emitted light from the coaxial cylindrical glass is directly received by an image pickup tube without going through an optical system, and the emission angle is measured. Similarly, a refractive index distribution measuring device to which the present invention is applied to solve the above problem includes an incident optical system that includes a light source, a rotating mirror that makes the light beam from the light source enter the center of rotation and reflects it, and the center of rotation of the rotating mirror. A plurality of light rays are made incident on the coaxial cylindrical glass. Another configuration of the refractive index distribution measuring device to which the present invention is applied is that the incident optical system includes a half mirror that transmits a part of the light beam that is reflected by the rotating mirror and passes through the lens, and reflects a part of the light beam. By providing mirrors that are parallel to the reflecting surfaces of the half mirror and reflect the transmitted light and reflected light of the half mirror, it is possible to make orthogonal light rays enter the coaxial cylindrical glass.These refractive index distributions In this measurement device, an image pickup tube is placed on the optical path of the light emitted from the coaxial cylindrical glass without passing through an optical system.

【作用] 上記本発明の測定方法は、入射光学系から同軸円柱ガラ
スに複数の光線を入射し、入射した光線の同軸円柱ガラ
スからの出射角をそれぞれ測定することにより、複数箇
所の屈折率分布を同時に測定する。複数の光線を、同軸
円柱ガラスの中心軸方向に並べて、平行に入射すること
により、軸方向の複数箇所の屈折率分布を同時に測定す
ることができる。また、複数の光線を直交させて同軸円
柱ガラスに入射することにより、90度異なる方向の屈
折率を同時に測定することができる。 本発明の屈折率分布測定装置は、光源からの光線を回転
中心に入射して反射する回転ミラーを回転することによ
り、回転ミラーの回転中心に焦点を有するレンズを通る
光線を複数の平行光線として同軸円柱ガラスに入射させ
る。さらに、レンズを通った光線をハーフミラ−で分割
し、分割された光線をハーフミラ−の反射面とそれぞれ
平行に設けられたミラーで反射することにより、直交す
る光線を同軸円柱ガラスに同時に入射させることができ
る。 【実施例】 以下、本発明の実施例を図面により詳細に説明する。 第1図は本発明を適用する屈折率分布測定装置の実施例
の概略構成図である。同図において、1はプリフォーム
、2はプリフォーム1を装着したセルであり、セル2内
にはプリフォーム1の表面における急激な屈折率変化を
除(ためにマツチングオイル3が満たされている。4は
セル2が設置された移動テーブルであり、移動テーブル
4はパルスモータ(不図示)により駆動され、中心軸を
X軸方向と一致させたプリフォームlをX軸とy軸方向
に移動させる。 5は例えばHe−Neレーザ発振器からなる光源、6は
光源5からの光を集光するレンズである。7は移動テー
ブル8に搭載された回転ミラーであり、回転ミラー7は
移動テーブル8上で矢印六方向に回転しながら光源5か
らの光を回転中心に入射して反射する。9は回転ミラー
7の回転中心に焦点を有するレンズである。lOはレン
ズ9で平行にされプリフォームlを通った光を受光する
撮像管、11は撮像管10で得た電気信号のデータを蓄
えるフレームメモリ、工2は中央処理装置であり、中央
処理装置12はフレームメモリ11に蓄えられたデータ
の直線近似等を行ない出射角φを演算して表示部13に
出力する。 次に、上記のように構成された屈折率分布測定装置によ
りプリフォームlの屈折率分布を測定するときの動作を
説明する。 光源5からレンズ6を通って集光された光は回転ミラー
7の回転中心で反射してレンズ9に入射する。このレン
ズ9の焦点は回転ミラー7の回転中心にあるため、レン
ズ9に入射した光はレンズ9の光軸と平行に屈折され、
プリフォームlに対して中心軸と垂直方向に入射しプリ
フォームlにより屈折されて出射する。この出射光は撮
像管IOで観察され、その像の画像データがフレームメ
モリ11に送られ蓄えられる。このデータを中央処理装
置12に送り、中央処理装置12で出射光の像の座棟値
から出射角φを演算して表示部13に送る。そして、プ
リフォームlを搭載した移動テーブル4をレンズ9の光
軸に対して垂直方向であるy軸方向に移動しながら、プ
リフォームlに入射する光の位置をプリフォームlの半
径方向に変えて出射角φの変化を求める。 上記のようにして、例えば第2図に示すようにコアの最
大屈折率nl、クラッドの屈折率n2のプリフォームl
の入射位置rと出射角φの関係を測定し、測定した出射
角φにより屈折率分布n(r)を求める。 一方、回転ミラー7は移動テーブル8上で回転している
ため1回転ミラー7からレンズ9に送られる光はレンズ
9の光軸を中心に回転し、レンズ9の入射点を変える。 このためレンズ9から出射する光軸に平行な光線がX軸
方向に移動し、プリフォームlをX軸方向に走査する。 この結果プリフォーム1をX軸方向に移□動させずに、
同時にプリフォーム1の中心軸方向の複数箇所の出射角
φを測定することができる。 このようにして、プリフォーム1の中心軸方向に3本光
線を走査して、繰り返し出射角φを測定し、次式に示す
比屈折率差Δ Δ=(n+−nt)X100/nl を求め、比屈折率差Δの差0を求めた結果o = 0.
006 であることがわかった。 同じ測定範囲を測定する場合、従来の方法によると3回
の測定に33分要したのに対し、この実施例の場合はl
i1定時間を16分に短縮することができた。 上記実施例はプリフォームlの中心軸方向から平行な複
数の光線を入射する場合について説明したが、上記実施
例の入射光学系に複数のミラーを設けることにより、プ
リフォーム1の半径方向から直交する光線を同時に入射
させるて、プリフォームlの半径方向における屈折率分
布の対称性を1回の測定で得ることもできる。 第3図はプリフォームlの半径方向における屈折率分布
の対称性を測定する場合の概略構成を示す。同図におい
て、第1図と同一符号は上記実施例と同じものを示す。 14はレンズ9で屈折された光線の一部を透過し、一部
を反射するハーフミラ−であり、ハーフミラ−14はレ
ンズ9の光軸に対して反射面が45度傾いて設置されて
いる。 15.16はハーフミラ−14の反射面と反射面がそれ
ぞれ平行に設けられたミラーであり、ミラー15は八−
フミラー14の透過光を反射し、ミラー16はハーフミ
ラ−14の反射光を反射して、各々その反射光をプリフ
ォーム1に入射する。loaは撮像管10に対して垂直
方向に設けられた撮像管、llaはフレームメモリ、1
2aは中央処理装置、13aは表示部である。 上記のように構成された屈折率分布測定装置によりプリ
フォーム1の屈折率分布を測定するときは、レンズ9で
屈折された光軸に平行な光線はハーフミラ−14で直交
する光線に分割され、分割された光はそれぞれミラー1
5.16で反射して、互いに直交する光をプリフォーム
1の半径方向から入射する。この入射した光のプリフォ
ームlからの出射光を撮像管10.1oaで観察し、フ
レームメモリit、llaに蓄える。そしてフレームメ
モリ11、llaに蓄えられたデータを中央処理装置1
2.12aで処理して、プリフォームlの半径方向に対
して互いに90度累々る方向の屈折率分布を測定する。 このようにして、プリフォームlの半径方向に対して互
いに90度累々る方向の屈折率分布を実際に測定し、屈
折率分布のそれぞれの方向の偏心度C3、C3を求め、
偏心度F、1.52から次式で示す対称度εを計算した
。 C・(ε、”+ c *’) ”” この結果、対称度Cとして0.37125を得ることが
できた。 同じ測定を従来の方法で測定する場合と比べると、この
実施例の場合は測定時間を半分に短縮することができた
[Operation] The measurement method of the present invention described above is based on the refractive index distribution at multiple locations by inputting a plurality of light rays from an incident optical system to a coaxial cylindrical glass and measuring the exit angle of each of the incident rays from the coaxial cylindrical glass. are measured at the same time. By arranging a plurality of light beams in the direction of the central axis of the coaxial cylindrical glass and making them incident in parallel, it is possible to simultaneously measure the refractive index distribution at a plurality of locations in the axial direction. Furthermore, by making a plurality of light beams perpendicular to each other and incident on the coaxial cylindrical glass, it is possible to simultaneously measure the refractive index in directions different by 90 degrees. The refractive index distribution measuring device of the present invention rotates a rotating mirror that reflects a light beam from a light source by making it incident on the rotation center, and converts the light beam passing through a lens having a focal point at the rotation center of the rotating mirror into multiple parallel light beams. Inject it into a coaxial cylindrical glass. Furthermore, by splitting the rays passing through the lens with a half mirror and reflecting the split rays with mirrors installed parallel to the reflecting surfaces of the half mirror, the orthogonal rays can be simultaneously incident on the coaxial cylindrical glass. I can do it. Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram of an embodiment of a refractive index distribution measuring apparatus to which the present invention is applied. In the figure, 1 is a preform, 2 is a cell in which the preform 1 is mounted, and the cell 2 is filled with matching oil 3 to eliminate sudden changes in the refractive index on the surface of the preform 1. Reference numeral 4 denotes a moving table on which the cell 2 is installed, and the moving table 4 is driven by a pulse motor (not shown), and moves the preform l whose center axis coincides with the X-axis direction in the X-axis and Y-axis directions. 5 is a light source made of, for example, a He-Ne laser oscillator, 6 is a lens that condenses the light from the light source 5. 7 is a rotating mirror mounted on a moving table 8; The light from the light source 5 is incident on the rotation center and reflected on the rotating mirror 8 while rotating in the six directions of the arrows.The lens 9 has a focal point at the rotation center of the rotating mirror 7. A camera tube 11 receives the light that has passed through the camera tube 10, a frame memory 11 stores electrical signal data obtained by the camera tube 10, and a central processor 2 stores data in the frame memory 11. The output angle φ is calculated by performing linear approximation of the data and outputted to the display section 13.Next, the operation when measuring the refractive index distribution of the preform l with the refractive index distribution measuring device configured as described above. The light that is focused from the light source 5 through the lens 6 is reflected at the rotation center of the rotating mirror 7 and enters the lens 9. Since the focal point of this lens 9 is at the rotation center of the rotating mirror 7, The light incident on the lens 9 is refracted parallel to the optical axis of the lens 9,
The light enters the preform l in a direction perpendicular to the central axis, is refracted by the preform l, and exits. This emitted light is observed by the image pickup tube IO, and image data of the image is sent to the frame memory 11 and stored. This data is sent to the central processing unit 12, which calculates the output angle φ from the ridge value of the image of the output light and sends it to the display unit 13. Then, while moving the moving table 4 on which the preform l is mounted in the y-axis direction, which is perpendicular to the optical axis of the lens 9, the position of the light incident on the preform l is changed in the radial direction of the preform l. Find the change in the exit angle φ. As described above, for example, as shown in FIG.
The relationship between the incident position r and the output angle φ is measured, and the refractive index distribution n(r) is determined from the measured output angle φ. On the other hand, since the rotating mirror 7 is rotating on the moving table 8, the light sent from the rotating mirror 7 to the lens 9 rotates around the optical axis of the lens 9, changing the point of incidence on the lens 9. Therefore, the light beam parallel to the optical axis emitted from the lens 9 moves in the X-axis direction and scans the preform l in the X-axis direction. As a result, without moving preform 1 in the X-axis direction,
It is possible to simultaneously measure the exit angle φ at a plurality of locations in the direction of the central axis of the preform 1. In this way, the three light beams are scanned in the direction of the central axis of the preform 1, the output angle φ is repeatedly measured, and the relative refractive index difference Δ Δ=(n+−nt)X100/nl is determined by the following formula. , the result of finding the difference 0 in the relative refractive index difference Δ is o = 0.
It turned out to be 006. When measuring the same measurement range, it took 33 minutes for three measurements using the conventional method, but in the case of this example, it took 1.
The i1 fixed time could be shortened to 16 minutes. In the above embodiment, a case where a plurality of parallel light beams are incident from the direction of the central axis of the preform 1 has been explained. It is also possible to obtain the symmetry of the refractive index distribution in the radial direction of the preform l in one measurement by simultaneously making the light beams incident on the preform l. FIG. 3 shows a schematic configuration for measuring the symmetry of the refractive index distribution in the radial direction of the preform l. In this figure, the same reference numerals as in FIG. 1 indicate the same parts as in the above embodiment. A half mirror 14 transmits a part of the light beam refracted by the lens 9 and reflects a part thereof, and the half mirror 14 is installed with its reflecting surface inclined at 45 degrees with respect to the optical axis of the lens 9. Reference numerals 15 and 16 are mirrors in which the reflecting surfaces of the half mirror 14 are parallel to each other, and the mirror 15 is 8-
The half mirror 14 reflects the transmitted light, and the mirror 16 reflects the reflected light from the half mirror 14, and each of the reflected lights enters the preform 1. loa is an image pickup tube installed perpendicularly to the image pickup tube 10, lla is a frame memory, 1
2a is a central processing unit, and 13a is a display section. When measuring the refractive index distribution of the preform 1 with the refractive index distribution measuring device configured as described above, a light ray parallel to the optical axis refracted by the lens 9 is divided into orthogonal rays by the half mirror 14, Each split light is mirror 1
5.16, and the mutually orthogonal lights enter the preform 1 from the radial direction. The emitted light from the preform l of the incident light is observed with the image pickup tube 10.1 oa and stored in the frame memories it and lla. Then, the data stored in the frame memories 11 and lla are transferred to the central processing unit 1.
2.12a to measure the refractive index distribution in directions 90 degrees apart from each other with respect to the radial direction of the preform l. In this way, the refractive index distributions in directions 90 degrees apart relative to the radial direction of the preform l are actually measured, and the eccentricities C3 and C3 in each direction of the refractive index distribution are determined,
The symmetry degree ε expressed by the following equation was calculated from the eccentricity F, 1.52. C・(ε, "+ c *') "" As a result, we were able to obtain a degree of symmetry C of 0.37125. Compared to the case where the same measurement was performed using the conventional method, in the case of this example, We were able to cut the measurement time in half.

【発明の効果】【Effect of the invention】

以上詳細に説明したように、本発明の測定方法によれば
、入射光学系から同軸円柱ガラスに複数の光線を入射し
、入射した光線の同軸円柱ガラスからの出射角をそれぞ
れ測定することにより、複数箇所の屈折率分布を同時に
測定するようにしたから、屈折率分布の測定時間を大幅
に短縮することができる。また複数の光線を、同軸円柱
ガラスの中心軸方向に並べて平行に入射することにより
、軸方向の複数箇所の屈折率分布を同時に測定すること
ができるとともに、軸方向の屈折率分布を連続して測定
することができるから、軸方向の屈折率分布の微小変動
も検出することができる。 複数の光線を直交させて同軸円柱ガラスに入射すること
により、90度累々る方向の屈折率を同時に測定するこ
とができ、屈折率の非対称性も同時に測定することがで
きる。同軸円柱ガラスからの出射角を測定するにあたり
、同軸円柱ガラスからの出射光を光学系を介することな
く、直接、撮像管により受光して出射角をそれぞれ測定
することができる。 本発明の屈折率分布測定装置は光源からの光線を回転中
心に入射して反射する回転ミラーを回転することにより
、回転ミラーの回転中心に焦点を有するレンズを通る光
線を複数の平行光線として同軸円柱ガラスに入射させる
から、簡単に複数の平行光を同軸円柱ガラスに入射させ
ることができる。さらに、レンズを通った複数の平行光
線をハーフミラ−で分割し、分割された光線をハーフミ
ラ−の反射面とそれぞれ平行に設けられたミラーで反射
することにより、直交する光線を同軸円柱ガラスに同時
に入射させることができるから、簡単な構造で屈折率の
非対称性を測定することができる。また、同軸円柱ガラ
スからの出射光の光路上に光学系を介することなく撮像
管を配置しであるから、光学系の軸合わせの手間が軽減
され、簡便な装置となる。
As explained in detail above, according to the measurement method of the present invention, a plurality of light rays are incident on the coaxial cylindrical glass from the incident optical system, and the exit angle of each of the incident light rays from the coaxial cylindrical glass is measured. Since the refractive index distributions at multiple locations are measured simultaneously, the time required to measure the refractive index distributions can be significantly shortened. In addition, by arranging multiple light beams and making them incident in parallel in the direction of the central axis of the coaxial cylindrical glass, it is possible to simultaneously measure the refractive index distribution at multiple locations in the axial direction, and also to measure the refractive index distribution in the axial direction continuously. Since it can be measured, even minute fluctuations in the refractive index distribution in the axial direction can be detected. By making a plurality of light beams perpendicular to each other and incident on the coaxial cylindrical glass, the refractive index in 90-degree directions can be measured simultaneously, and the asymmetry of the refractive index can also be measured at the same time. In measuring the emission angle from the coaxial cylindrical glass, the emission angle can be measured by directly receiving the emitted light from the coaxial cylindrical glass with an image pickup tube without passing through an optical system. The refractive index distribution measuring device of the present invention rotates a rotating mirror that reflects light beams from a light source by entering them at the rotation center, and converts the light rays that pass through a lens having a focal point at the rotation center of the rotating mirror into multiple parallel rays coaxially. Since the light is made incident on the cylindrical glass, it is possible to easily make a plurality of parallel lights incident on the coaxial cylindrical glass. Furthermore, by splitting multiple parallel rays passing through the lens with a half mirror and reflecting the split rays with mirrors installed parallel to the reflective surface of the half mirror, orthogonal rays can be simultaneously directed to the coaxial cylindrical glass. Since it can be made incident, the asymmetry of the refractive index can be measured with a simple structure. Further, since the image pickup tube is placed on the optical path of the light emitted from the coaxial cylindrical glass without passing through the optical system, the effort of aligning the axis of the optical system is reduced, resulting in a simple device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する装置の実施例の概略構成図、
第2図はプリフォームの屈折率分布を示す特性図、第3
図は別な実施例の概略構成図、第4図は従来の装置例を
示す概略構成図である。 l・−・プリフォーム   2・・・セル4・・・移動
テーブル   5・・・光源6.9・・・レンズ   
 7・・・回転ミラー8・・・移動テーブル  lO・
・・撮像管11・・・フレームメモリ I 2−・・中
央処理装置13・・・表示部     14・・・ハー
フミラ−15,16・・・ミラー
FIG. 1 is a schematic configuration diagram of an embodiment of an apparatus to which the present invention is applied;
Figure 2 is a characteristic diagram showing the refractive index distribution of the preform, Figure 3 is a characteristic diagram showing the refractive index distribution of the preform.
The figure is a schematic configuration diagram of another embodiment, and FIG. 4 is a schematic configuration diagram showing an example of a conventional device. l...Preform 2...Cell 4...Moving table 5...Light source 6.9...Lens
7...Rotating mirror 8...Moving table lO・
... Image pickup tube 11 ... Frame memory I 2 - ... Central processing unit 13 ... Display section 14 ... Half mirror - 15, 16 ... Mirror

Claims (1)

【特許請求の範囲】 1、軸方向には均一な屈折率、径方向には屈折率が変化
する円柱ガラスの中心軸と垂直方向から光を入射させ、
その出射角を測定して同軸円柱ガラスの径方向に対する
屈折率分布を求める屈折率分布測定方法において、入射
光学系から同軸円柱ガラスに複数の光線を入射させ、入
射した光線の同軸円柱ガラスからの出射角をそれぞれ測
定することを特徴とする屈折率分布の測定方法。 2、複数の光線を同軸円柱ガラスの中心軸方向に並べて
平行に入射させる請求項第1項記載の屈折率分布の測定
方法。 3、複数の光線を直交させて同軸円柱ガラスに入射させ
る請求項第1項記載の屈折率分布の測定方法。 4、前記同軸円柱ガラスからの出射光を直接撮像管によ
り受光して出射角をそれぞれ測定することを特徴とする
請求項第1項、第2項または第3項記載の屈折率分布の
測定方法。 5、軸方向には均一な屈折率、径方向には屈折率が変化
する円柱ガラスの中心軸と垂直方向から光を入射させ、
その出射角を測定して同軸円柱ガラスの径方向に対する
屈折率分布を求める屈折率分布測定装置において、光源
と、該光源からの光線を回転中心に入射して反射する回
転ミラーと、該回転ミラーの回転中心に焦点を有するレ
ンズとからなる入射光学系を備えたことを特徴とする屈
折率分布測定装置。 6、入射光学系が、光源と、該光源からの光線を回転中
心に入射して反射する回転ミラーと、該回転ミラーの回
転中心に焦点を有するレンズと、該レンズを通る光線の
一部を透過し、一部を反射するハーフミラーと、該ハー
フミラーの反射面とそれぞれ平行に設けられハーフミラ
ーの透過光と反射光とを夫々反射するミラーとからなる
ことを特徴とする請求項第5項記載の屈折率分布の測定
装置。 7、前記同軸円柱ガラスからの出射光の光路上に撮像管
を配置したことを特徴とする請求項第5項または第6項
記載の屈折率分布の測定装置。
[Claims] 1. Light is incident from a direction perpendicular to the central axis of a cylindrical glass whose refractive index is uniform in the axial direction and changes in the radial direction,
In the refractive index distribution measurement method that measures the exit angle and determines the refractive index distribution in the radial direction of coaxial cylindrical glass, multiple light rays are incident on coaxial cylindrical glass from an input optical system, and the incident light rays are measured from coaxial cylindrical glass. A method for measuring refractive index distribution characterized by measuring each output angle. 2. The method for measuring refractive index distribution according to claim 1, wherein a plurality of light beams are arranged in parallel in the direction of the central axis of the coaxial cylindrical glass. 3. The method for measuring refractive index distribution according to claim 1, wherein the plurality of light beams are incident on the coaxial cylindrical glass at right angles. 4. The method for measuring refractive index distribution according to claim 1, 2, or 3, characterized in that the emitted light from the coaxial cylindrical glass is directly received by an image pickup tube and the emission angle is measured respectively. . 5. Light is incident from a direction perpendicular to the central axis of the cylindrical glass, which has a uniform refractive index in the axial direction and a varying refractive index in the radial direction,
A refractive index distribution measuring device that measures the emission angle and determines the refractive index distribution in the radial direction of a coaxial cylindrical glass, includes a light source, a rotating mirror that makes the light ray from the light source incident on the center of rotation and reflects it, and the rotating mirror. 1. A refractive index distribution measuring device comprising: an input optical system comprising a lens having a focal point at the center of rotation of the lens. 6. The input optical system includes a light source, a rotating mirror that makes the light ray from the light source enter the rotation center and reflects it, a lens that has a focal point at the rotation center of the rotation mirror, and a part of the light ray that passes through the lens. Claim 5, characterized in that it consists of a half mirror that transmits light and partially reflects the light, and mirrors that are provided parallel to the reflecting surfaces of the half mirror and reflect the transmitted light and the reflected light of the half mirror, respectively. The refractive index distribution measuring device described in 1. 7. The refractive index distribution measuring device according to claim 5 or 6, characterized in that an imaging tube is disposed on the optical path of the light emitted from the coaxial cylindrical glass.
JP1130992A 1989-05-24 1989-05-24 Refractive index distribution measuring method and measuring apparatus Expired - Fee Related JPH07117476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1130992A JPH07117476B2 (en) 1989-05-24 1989-05-24 Refractive index distribution measuring method and measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1130992A JPH07117476B2 (en) 1989-05-24 1989-05-24 Refractive index distribution measuring method and measuring apparatus

Publications (2)

Publication Number Publication Date
JPH02309227A true JPH02309227A (en) 1990-12-25
JPH07117476B2 JPH07117476B2 (en) 1995-12-18

Family

ID=15047398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1130992A Expired - Fee Related JPH07117476B2 (en) 1989-05-24 1989-05-24 Refractive index distribution measuring method and measuring apparatus

Country Status (1)

Country Link
JP (1) JPH07117476B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080962A (en) * 2009-10-09 2011-04-21 Denso Corp Apparatus and method for measuring runout
CN104215431A (en) * 2014-09-25 2014-12-17 中国工程物理研究院应用电子学研究所 Rapid tilting mirror performance testing device
JP2021156761A (en) * 2020-03-27 2021-10-07 Kddi株式会社 Measuring device of refractive-index distribution of optical fiber, and processor therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170436A (en) * 1984-09-14 1986-04-11 Univ Kyoto Method for measuring distribution of refractive index in cylinder
JPS6353402A (en) * 1986-08-25 1988-03-07 Furukawa Electric Co Ltd:The Measurement of eccentricity for light transmitting long-sized body
JPS6395336A (en) * 1986-10-10 1988-04-26 Fujikura Ltd Measurement of refractive index distribution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170436A (en) * 1984-09-14 1986-04-11 Univ Kyoto Method for measuring distribution of refractive index in cylinder
JPS6353402A (en) * 1986-08-25 1988-03-07 Furukawa Electric Co Ltd:The Measurement of eccentricity for light transmitting long-sized body
JPS6395336A (en) * 1986-10-10 1988-04-26 Fujikura Ltd Measurement of refractive index distribution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080962A (en) * 2009-10-09 2011-04-21 Denso Corp Apparatus and method for measuring runout
CN104215431A (en) * 2014-09-25 2014-12-17 中国工程物理研究院应用电子学研究所 Rapid tilting mirror performance testing device
JP2021156761A (en) * 2020-03-27 2021-10-07 Kddi株式会社 Measuring device of refractive-index distribution of optical fiber, and processor therefor

Also Published As

Publication number Publication date
JPH07117476B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
US3885875A (en) Noncontact surface profilometer
US3832066A (en) Apparatus and method for analyzing sphero-cylindrical optical systems
JP2008541101A (en) Object surface measuring apparatus and surface measuring method
US4248532A (en) Electro-optical distance-measuring system
US4818108A (en) Phase modulated ronchi testing of aspheric surfaces
CN108957781A (en) Optical lens adjustment and detection system and method
JPH03162606A (en) Method and device for imparting geometric characteristics to transparent pipe
US4762417A (en) Fringe scanning point diffraction interferometer by polarization
EP0110937B1 (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam
JPS6395336A (en) Measurement of refractive index distribution
JPH02309227A (en) Measuring method and apparatus of distribution of index of refraction
US3619067A (en) Method and apparatus for determining optical focal distance
CN107688022A (en) A kind of optical element surface defect detecting device
JP2001235317A (en) Apparatus for measuring radius of curvature of optical spherical surface
JPH06148448A (en) Inspecting method for aligning state of optical waveguide and optical waveguide
JP2002296018A (en) Three-dimensional shape measuring instrument
US3917409A (en) Optical apparatus for determining focus
JPH02309228A (en) Measuring method and apparatus of distribution of index of refraction
JP2580824Y2 (en) Focus adjustment device
CN111184502A (en) Method and apparatus for generating fast scanning optical phase delay line
JPH11314184A (en) Optical device machining apparatus
JP2950004B2 (en) Confocal laser microscope
CN212620587U (en) Long-distance angle focusing device suitable for optical and similar measurement systems
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JPH09269278A (en) Lens performance measuring method and measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees