JPS6353402A - Measurement of eccentricity for light transmitting long-sized body - Google Patents

Measurement of eccentricity for light transmitting long-sized body

Info

Publication number
JPS6353402A
JPS6353402A JP19872186A JP19872186A JPS6353402A JP S6353402 A JPS6353402 A JP S6353402A JP 19872186 A JP19872186 A JP 19872186A JP 19872186 A JP19872186 A JP 19872186A JP S6353402 A JPS6353402 A JP S6353402A
Authority
JP
Japan
Prior art keywords
axis
eccentricity
measured
light
elongated body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19872186A
Other languages
Japanese (ja)
Inventor
Yoshio Yamamoto
佳男 山本
Fumihiko Abe
文彦 安倍
Motohiro Yamane
基宏 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP19872186A priority Critical patent/JPS6353402A/en
Publication of JPS6353402A publication Critical patent/JPS6353402A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve accurate measurement, by projecting X- and Y-axis side scatting patterns of a light transmitting object to be measured different in the refractive index between the axis center and the circumference thereof on a screen to compute a natural logarithm value pertaining to the scattering patterns. CONSTITUTION:A long-sized body 30 to be measured comprising an optical fiber 31 and a transparent cover layer 32 is irradiated with X- and Y-axis light beams to project scattering patterns on screens 55 and 56 by light transmitted through the fiber 31 and the layer 32 and distances from the center to both ends of the scattering patterns are represented by XL, XR, YL and YR and distance-ratio natural logarithm ln(XR/XL) and ln(YR/YL). Here, information of the scattering patterns captured by optical systems 57 and 58 and an outer diameter value of the layer 32 captured by a measuring section 61 are inputted into a processing system 59. The system 59 into which a known refractive index pertaining to the layer 32 is inputted through a setter 60 performs a computation based on formulas I and II to determine a relative eccentricity between the fiber 31 and the layer 32.

Description

【発明の詳細な説明】 γ産業上の利用分野」 本発明は、被覆光ファイバ、透明な中空バイブなどの長
尺体において、その軸心部、外周部相互の偏心率を測定
するための方法に関する。
[Detailed Description of the Invention] [Gamma Industrial Application Field] The present invention is a method for measuring the mutual eccentricity between the axial center and the outer circumference of a long body such as a coated optical fiber or a transparent hollow vibrator. Regarding.

f従来の技術」 透明な被1Q層により覆われた光ファイバ、透明体から
なる長い中空バイブは、いずれも透光性を有する長尺体
であるといえる。
f.Prior Art” An optical fiber covered with a transparent 1Q layer and a long hollow vibe made of a transparent body can both be said to be elongated bodies that have light-transmitting properties.

上記被覆光ファイバの場合、光ファイバが長尺体のへ(
1心部を構成し、被覆層が長尺体の外周部を構成してい
る。
In the case of the above-mentioned coated optical fiber, the optical fiber is attached to a long body (
The elongated body constitutes one core, and the covering layer constitutes the outer peripheral portion of the elongated body.

上記中空バイブの場合、その中空部が長尺体の軸心部と
なり、パイプ自身が長尺体の外周部を構成している。
In the case of the above-mentioned hollow vibe, the hollow part becomes the axial center of the elongated body, and the pipe itself constitutes the outer peripheral part of the elongated body.

通常、これら長尺体においては、軸心部と外周部と屈折
率が互いに異なる。
Usually, in these elongated bodies, the axial center portion and the outer peripheral portion have different refractive indexes.

ちなみに、被覆光ファイバを!A造するとき、滴状樹脂
などの被覆材が収容された被覆用ダイス内に光ファイバ
を引き通してその外周を被覆し、当該被覆層を硬化させ
る方法がとられ、細径の透明プラスチックパイプ、透明
ガラスバイブを製造するとき、プラスチック押出成形手
段、ガラスバイブの加熱延伸手段などが採用される。
By the way, coated optical fiber! When manufacturing A, a method is used in which the optical fiber is passed through a coating die containing a coating material such as droplet resin, the outer periphery of the optical fiber is coated, and the coating layer is hardened. When producing transparent glass vibrators, plastic extrusion molding means, glass vibrator heating stretching means, etc. are adopted.

上記において光ファイバの外周に被覆層を形成するとき
、光フアイバ軸心とダイス軸心との偏心により被覆層の
偏肉が生じるため、被覆直後における長尺体と被覆層と
の偏心率を求め、これに基づいて被覆用ダイス位置を調
整するフィードバック制御が行なわれており、透明パイ
プの製造に際しても、軸心部(中空部)と外周部との偏
心率測定により、バイブ偏肉が生じた否かの検査が行な
われている。
When forming the coating layer on the outer periphery of the optical fiber in the above, uneven thickness of the coating layer occurs due to eccentricity between the optical fiber axis and the die axis, so the eccentricity between the elongated body and the coating layer immediately after coating is determined. Based on this, feedback control is performed to adjust the position of the coating die, and even when manufacturing transparent pipes, the eccentricity between the shaft center (hollow part) and the outer circumference was measured, and it was found that uneven thickness of the vibrator occurred. A test is being conducted to see if this is the case.

第4図は、被覆手段に偏心率測定手段を組みこみこみ、
これにより被覆光ファイバを製造する例を示したもので
、以下、その被覆手段、偏心率測定手段について説Ig
Iする。
FIG. 4 shows that an eccentricity measuring means is incorporated into the covering means,
This shows an example of manufacturing a coated optical fiber using this method, and the coating means and eccentricity measuring means will be explained below.
I do.

第4図において、光ファイz<16の軸心線をO軸とし
、その○軸と直交する二輪をそれぞれX軸。
In Fig. 4, the axis of the optical fiber z<16 is the O-axis, and the two wheels perpendicular to the O-axis are the X-axes.

Y輛とした場合、0軸上に位こする被覆用ダイス2は、
パルスモータ等の駆動源3.4企装備したX軸方向移動
用、Y軸方向移動用の調整台5、s上に配置面されてい
るので、これら調整台5.6を介してX軸方向、Y軸方
向へ微動調整することができる。
In the case of a Y machine, the coating die 2 placed on the 0 axis is
The adjustment tables 5 and s for X-axis movement and Y-axis movement are equipped with a drive source 3.4 such as a pulse motor, so that the X-axis direction can be adjusted via these adjustment tables 5.6. , fine adjustment can be made in the Y-axis direction.

上記xi、Y軸方向の偏心率測定手段として、レーザ光
源を有する投光器7、ハーフミラ−からなる分光器8、
反射鏡9.10、スクリーン12.13などが装備され
ている。
xi, as means for measuring the eccentricity in the Y-axis direction, a projector 7 having a laser light source, a spectrometer 8 comprising a half mirror;
It is equipped with reflectors 9.10, screens 12.13, etc.

これらは投光器7から出射した光ビームが、分光器8、
反射鏡9.10を介してスクリーン12.13上に到達
するよう相対配器され、反射鏡9からスクリーン12に
わたるY軸方向の光線、および反射鏡10かもスクリー
ン13にわたるX軸方向の光線が、上記O袖と直交する
ようになっている。
In these cases, the light beam emitted from the projector 7 is transmitted to the spectrometer 8,
The rays in the Y-axis direction from the reflector 9 to the screen 12 and the rays in the X-axis direction from the reflector 10 to the screen 13 are arranged relative to each other so as to reach the screen 12.13 via the reflector 9.10. It is perpendicular to the O-sleeve.

上記スクリーン12.13に対応して、例えばCCDカ
メラからなる光学系14.15が配置され、これら光学
系14.15による情報が、例えばマイクロコンピュー
タからなる演算処理系′、6へ入力されるようになって
いる。
An optical system 14.15 consisting of, for example, a CCD camera is disposed corresponding to the screen 12.13, and information from these optical systems 14.15 is inputted to an arithmetic processing system', 6 consisting of, for example, a microcomputer. It has become.

第4図において、O軸に沿い、上下に走行する光ファイ
バlaが被覆用ダイス2を通過したとき、光ファイz<
iHの外周に被覆層1bが形成され、その被覆後の被覆
光ファイバlcにX軸方向、Y軸方向の光ビームが照射
されたとき、各スクリーン】2、I3上には、被覆光フ
ァイバICの散乱パターンが投影される。
In FIG. 4, when the optical fiber la running vertically along the O axis passes through the coating die 2, the optical fiber z<
When the coating layer 1b is formed on the outer periphery of the iH and the coated optical fiber lc is irradiated with light beams in the X-axis direction and the Y-axis direction, the coated optical fiber IC is formed on each screen ]2 and I3. A scattering pattern of is projected.

なお、ここでいう散乱パターンは、被覆層1bと光ファ
イバ1aとの両方を透過した光によるものである。
Note that the scattering pattern referred to here is due to light that has passed through both the coating layer 1b and the optical fiber 1a.

各スクリーン12、!3上の散乱パターンにつき、これ
らの中心XO,yoからその両端までの距離をXR,X
L、 Y、、 Y、とした場合、被覆偏肉がないときの
各距離比XR/XL 、 YR/YLはそれぞれ1/1
で均衡するが、被覆偏肉が生じたとき、その均衡状態が
くずれる。
12 screens each! For the scattering patterns on 3, the distances from their centers XO, yo to both ends are XR,
When L, Y, Y, the distance ratios XR/XL and YR/YL when there is no coating thickness unevenness are 1/1, respectively.
However, when uneven coating thickness occurs, this equilibrium state is disrupted.

したがって、光学系14.15を介して各スクリーン1
2、I3上の散乱パターンをとらえ、これら散乱パター
ン情報を演算処理系18へ入力して上記距離比が均衡す
るか否かを演算すれば、被覆偏肉の有無が判明する。
Therefore, each screen 1 via the optical system 14.15
2. By capturing the scattering pattern on I3, inputting the scattering pattern information to the arithmetic processing system 18, and calculating whether or not the above-mentioned distance ratio is balanced, the presence or absence of uneven coating thickness can be determined.

その不均衡により被覆偏肉が判明したときは、これを是
正すべく、演算処理系16から調整台5.6の駆動系統
へ所定の制御信号を送り、被覆用ダイス2の位刀を:A
整する。
When uneven coating thickness is found due to the imbalance, in order to correct this, a predetermined control signal is sent from the processing system 16 to the drive system of the adjustment table 5.6, and the position of the coating die 2 is changed to: A
Arrange.

もちろん、透明パイプの場合も、第4図の偏心率測定手
段により、軸心部と外周部との偏心率が測定できる。
Of course, even in the case of a transparent pipe, the eccentricity between the shaft center portion and the outer peripheral portion can be measured by the eccentricity measuring means shown in FIG.

「発明が解決しようとする問題点」 上述した手段により、光ファイバすなわち軸心部と被覆
層すなわち外周部との偏心率を測定するとき、偏心量を
パラメータとする旦n (XR/XL) 。
"Problems to be Solved by the Invention" When measuring the eccentricity between the optical fiber, that is, the axial center part, and the coating layer, that is, the outer peripheral part, using the above-mentioned means, the amount of eccentricity is used as a parameter (XR/XL).

文H(YR/YL)と偏心角との関係をデータベースと
して所有すれば、測定値との対応がとれる。
If we have the relationship between the sentence H (YR/YL) and the eccentric angle as a database, we can make a correspondence with the measured values.

しかし、被覆光ファイバの場合、その被覆層の外径、屈
折率が一様でないのは自明であり、したがって、あらゆ
る外径、屈折率に対応できる膨大なデータによりデータ
ベースとして作成することは現実的でない。
However, in the case of coated optical fibers, it is obvious that the outer diameter and refractive index of the coating layer are not uniform, so it is not realistic to create a database with a huge amount of data that can accommodate all outer diameters and refractive indices. Not.

これは、透明バイブの偏心率を測定する場合も同様であ
る。
The same applies when measuring the eccentricity of a transparent vibrator.

本発明は上記の問題点に鑑み、透光性を有する長尺体に
おいて、その軸心部と外周部との偏心率測定が、簡易な
演算手段にて正確に測定できる方法を提供しようとする
ものである。
In view of the above-mentioned problems, the present invention aims to provide a method for accurately measuring the eccentricity between the axial center and the outer circumference of a translucent elongated body using simple calculation means. It is something.

T問題点を解決するための手段」 本発明は所期の目的を達成するため、軸心部とその軸心
部を覆う外局部とが透光性を有し、これら軸心部、外周
部の屈折率が相互に相違している長尺体を被測定物とし
、その被測定物の軸心を通る線分を0軸、該0軸とほぼ
直角に交差する二つの線分をX軸、Y軸とした場合、こ
れらX軸上、Y軸上に、被測定物を挟んで互いに対向す
る光照射系の光照射部とスクリーンとをそれぞれ配置し
ておき、上記X軸上、Y軸」−の各光照射部から被測定
物に向けて光ビームを照射して、その被測定物の外局部
と軸心部とを透過した光の散乱パターンをX軸上、YI
lIllI上の各スクリーンにそれぞれ投影し、X軸上
のスクリーンに投影された散乱パターンの中心から両端
までの各距離をX[、XR1その距離比XR/XLの自
然対数値を又n(XR/XL)とし、Y軸上のスクリー
ンに投影された散乱パターンの中心から両端までの各距
離をYl、、 YRlその距准比の自然対数値を文n(
Yq/Yt、)とじた場合、上記各散乱パターンをそれ
ぞれ光学手段でとらえてこれら散乱パターンの情報を演
算処理系に人力し、かつ、当該演算処理系を介して上記
i n(Xx/Xt )、文n(YR/Yt)を演算処
理することにより、上記軸心部、外周部相互の偏心率を
測定する方法において、 l n(XR/XL )=A−sinθ−−−−−−(
1)i n(YR/YL )−−A ・cos O−・
・−(2)なる式(ただし、Aは上記三角関数の振幅で
あり、外周部の外径、屈折率、偏心量により定まる状態
量、0は被測定物の偏心角であり、被Jlll定物の外
形中心を通る基準線と、被測定物の外形中・らおよび軸
心部中心を通る線分とのなす角度。)にノ、(づき、各
散乱パターンの情報を丑記演算処理系により演算処理し
て、」二記偏心率奢求めることを特徴とする。
Means for Solving Problem T" In order to achieve the intended purpose of the present invention, the shaft center part and the outer part covering the shaft center part have translucency, and the shaft center part and the outer peripheral part The object to be measured is a long body whose refractive indexes are different from each other, and the line segment passing through the axis of the object is the 0 axis, and the two line segments that intersect the 0 axis at almost right angles are the X axis. , and the Y axis, the light irradiation part and the screen of the light irradiation system facing each other with the object to be measured are placed on the X axis and the Y axis, respectively, and the A light beam is irradiated from each light irradiation part to the measured object, and the scattering pattern of the light transmitted through the outer part and the axial center of the measured object is expressed on the X axis and YI.
Each distance from the center to both ends of the scattering pattern projected on the screen on the X axis is defined as X[, XL), and each distance from the center to both ends of the scattering pattern projected on the screen on the Y axis is Yl, , YRl, and the natural logarithm of the distance subratio is n(
Yq/Yt,), each of the above scattering patterns is captured by an optical means, the information of these scattering patterns is manually inputted to a calculation processing system, and the above in(Xx/Xt) is obtained through the calculation processing system. , n(XR/XL)=A-sinθ−−−−−−−(
1) in(YR/YL)--A ・cos O--
- Equation (2) (where A is the amplitude of the above trigonometric function, the state quantity determined by the outer diameter of the outer circumference, the refractive index, and the amount of eccentricity, 0 is the eccentricity angle of the object to be measured, and the Jllll constant of the object to be measured is The angle formed by the reference line passing through the center of the object's outer shape and the line segment passing through the center of the object's outer shape and the center of the axis. It is characterized by calculating the eccentricity ratio by performing arithmetic processing.

「実 施 例」 以下、−4,:発明方法の具体的実施例につき1図面を
参照して説明する。
"Example" Below, -4.: A specific example of the invention method will be described with reference to one drawing.

第1図は、被1!Ill定物たる長尺体3Gが被覆光フ
ァイバからなる場合の偏し+側定例である。
Figure 1 shows the number 1! This is an example of the + side deviation when the elongated body 3G, which is a constant object, is made of a coated optical fiber.

周知の通り、この場合の長尺体30は、その軸心部31
が石英製あるいはプラスチック製の透’Jlな光ファイ
バなり、その外周部32も透明なプラスチンク製の被覆
層からなる。
As is well known, the elongated body 30 in this case has its axial center 31
is a transparent optical fiber made of quartz or plastic, and its outer peripheral portion 32 is also made of a transparent coating layer made of plastic.

第1図において、上記軸心部(光ファイバ)31の軸心
線をO軸とし、そのO軸とほぼ直交する、例えば85°
〜95°の角度で交差する二軸をそれぞれX軸、Y輛と
した場合、0軸上に位置する被覆用ダイス40は、パル
スモータなどの駆動源41.42を装備したX軸方向移
動用、Y軸方向移動用の調整台43.44上に配置され
ているので、これら調整台43.44を介してX軸方向
、Y軸方向へ微動調整することができる。
In FIG. 1, the axial center line of the axial center portion (optical fiber) 31 is defined as the O axis, and is approximately perpendicular to the O axis, for example, at an angle of 85°.
If two axes that intersect at an angle of ~95° are defined as the X axis and the Y axis, the coating die 40 located on the 0 axis is a die for moving in the X axis direction equipped with a drive source 41, 42 such as a pulse motor. , and on adjustment tables 43 and 44 for movement in the Y-axis direction, fine movement adjustment can be made in the X-axis direction and the Y-axis direction via these adjustment tables 43 and 44.

X軸方向とY軸方向とを兼ねる光照射系50は、レーザ
光源を有する投光器51.ハーフミラ−からなる分光器
52、反射f!53.54とを装備している。
A light irradiation system 50 that serves both the X-axis direction and the Y-axis direction includes a light projector 51. Spectrometer 52 consisting of a half mirror, reflection f! It is equipped with 53.54.

X軸方向、Y軸方向の偏心率測定手段は、かかる光照射
系50とスクリーン55.56とを介して構成される。
The eccentricity measuring means in the X-axis direction and the Y-axis direction is configured via the light irradiation system 50 and the screens 55 and 56.

すなわち、前記調整台43.44の下位において、スク
リーン55.56が第1図のご゛とくX軸上、Y軸上に
配置されるとき、投光器51がら出射された光ビームL
が分光器52を介してLX、 LYに分光され、これら
分光された光ビームLX、LYが反射鏡53.54を介
してスクリーン55.56上に到達するよう、光照射系
50の各部が配置される。
That is, when the screens 55 and 56 are arranged below the adjustment table 43 and 44 on the X axis and the Y axis as shown in FIG. 1, the light beam L emitted from the projector 51
Each part of the light irradiation system 50 is arranged so that the light beams LX and LY are separated into LX and LY via the spectroscope 52, and these separated light beams LX and LY reach the screen 55.56 via the reflecting mirror 53.54. be done.

この場合、反射鏡53からスクリーン55にわたるX軸
方向の光ビームLX、および反射鏡54がらスクリーン
5BにわたるX軸方向の光ビームLYが、上記○軸とそ
れぞれほぼ直交し、反射鏡53.54が光照射系50に
おけるX!k11方向、Y軸方向の光照射部となる。
In this case, the light beam LX in the X-axis direction extending from the reflector 53 to the screen 55 and the light beam LY in the X-axis direction extending from the reflector 54 to the screen 5B are substantially perpendicular to the ○ axis, X in the light irradiation system 50! It becomes a light irradiation part in the k11 direction and the Y-axis direction.

X軸方向、Y軸方向の光照射系を互いに独立されるとき
は、投光器51をX軸上、Y軸上の所定位置にそれぞれ
配置すればよい。
When the light irradiation systems in the X-axis direction and the Y-axis direction are made independent from each other, the projectors 51 may be placed at predetermined positions on the X-axis and the Y-axis, respectively.

上記スクリーン55.56に対応して、例えばCCDカ
メラからなる光学系57.58が配置され、これら光学
系57.58による情報が、例えばマイクロコンピュー
タからなる演算処理系59へ入力されるようになってい
る。
Optical systems 57 and 58 consisting of, for example, a CCD camera are arranged corresponding to the screens 55 and 56, and information from these optical systems 57 and 58 is inputted to an arithmetic processing system 59 consisting of, for example, a microcomputer. ing.

演算処理系59には、長尺体30に関する屈折率を入力
するための屈折率設定器60が接続されているとともに
、前記調整台43.44の直下に配置された長尺体用の
外径Jlll定器61が接続されている。
A refractive index setting device 60 for inputting the refractive index regarding the elongated body 30 is connected to the arithmetic processing system 59, and a refractive index setting device 60 for inputting the refractive index regarding the elongated body 30 is connected, as well as an outer diameter setting device for the elongated body disposed directly below the adjustment table 43, 44. A Jllll meter 61 is connected.

第1図において、O輔に沿い、上下に走行する長尺体用
の軸心部(光ファイバ)31が被覆用ダイス40を通過
したとき、その軸心部31の外周に外周部(被覆層)3
2が形成され、これら軸心部31、外周部32からなる
長尺体30にX軸方向、Y軸方向の光ビームLX、 L
vが照射されたとき、各スクリーン55.561−には
、外周部32と軸心部31との両方を透過した光による
長尺体30の散乱パターンが投影される。
In FIG. 1, when an axial center portion (optical fiber) 31 for a long body that runs up and down along an O-suke passes through a coating die 40, an outer peripheral portion (a coating layer) is attached to the outer circumference of the axial center portion 31. )3
2 is formed, and light beams LX, L in the X-axis direction and the Y-axis direction are applied to the elongated body 30 consisting of the axial center portion 31 and the outer peripheral portion 32.
When the elongated body 30 is irradiated with the elongated body 30, a scattering pattern of the elongated body 30 due to the light transmitted through both the outer peripheral portion 32 and the axial center portion 31 is projected onto each screen 55,561-.

演算処理系58には、外周部32に関する既知の屈折率
がj’j’+折L:’ +没定器60を介して入力され
ており、こしとともに、光学系57.58を介してとら
えた上記各1我乱パターンの情報、外径5111定器6
1を介してとらえた外周部32の外径がそれぞれ入力さ
れる。
The known refractive index regarding the outer circumferential portion 32 is inputted to the arithmetic processing system 58 via the refractive index j'j' + refraction L:' Information on each of the above 1 Garan patterns, outer diameter 5111 regulator 6
The outer diameter of the outer circumferential portion 32 taken through 1 is respectively input.

かくて、所定の情報が入力された演算処理系59は、前
記(1) (2)式(三角関数の一次単項式)に基づく
演算処理により、軸心部31と外周部32との相対的な
偏心率を求め、上記偏心が認められる場合は、巴該演算
処理系59から調整台43.44の駆動系統へ所定の制
御信号が送られ、被覆用ダイス4oの位置が7A整され
る。
Thus, the arithmetic processing system 59 to which the predetermined information has been input calculates the relative relationship between the shaft center portion 31 and the outer peripheral portion 32 through arithmetic processing based on equations (1) and (2) (first-order monomials of trigonometric functions). The eccentricity is determined, and if the eccentricity is found, a predetermined control signal is sent from the arithmetic processing system 59 to the drive system of the adjustment table 43, 44, and the position of the coating die 4o is adjusted by 7A.

つぎに、上記二軸方向から長尺体3oに向けて光ビーム
を照射した際に生じる散乱光について説明する。
Next, scattered light generated when a light beam is irradiated toward the elongated body 3o from the biaxial directions will be described.

一般に、ト述した散乱光は、っぎの三種からなり、これ
ら三種の散乱光が各スクリーン55.561−に混在し
ている。
Generally, the above-mentioned scattered light consists of the following three types, and these three types of scattered light are mixed on each screen 55,561-.

■ 光ビームLX、 LYが軸心部(光ファイバ)31
と外周部(被覆層)32との両方を透過する場合(β;
、β;<1のとき)。
■ Light beams LX and LY are at the axial center (optical fiber) 31
and the outer peripheral part (coating layer) 32 (β;
, β; when <1).

(S)  光ビームL×、LYが軸心部31で反射する
場合(β1 く1.β;〉1のとき)。
(S) When the light beams L× and LY are reflected at the axial center portion 31 (when β1 1.β; >1).

■ 光ビームLX、 LYが外周部32のみを透必する
場合(β;>iのとき)。
■ When the light beams LX and LY pass through only the outer peripheral portion 32 (when β;>i).

本発明で取り扱う散乱光は、上記■の場合であり、第2
図を参照してこれを説四すると、次式のようになる。
The scattered light handled in the present invention is the case of (2) above, and the second
If we explain this with reference to the figure, we get the following equation.

θ0=sin−’x θ+=sin−’z(1/nl −5in oo)β1
=1/r−sinθ+−e/r−sin(θ0−θI◆
φ)θ2=sim刊βI βz=n+/n2−sirr 02 θ3=sin−’β2 θ4=04 θ5=02 θ6= s’+n−’ (r−s:nθ2+e−sin
 (θ0−θI+2(θβ03)+φ)〕θy=sin
−1(nI−slnθ6)ψ−(θ0−θ+)+2(θ
?−03)+(θじθ6)一般に、上記散乱光■は、全
体量からみてごく微量であるので無視でき、また、光フ
ァイバ(軸心部31)の屈折率をnl、被覆層(外周部
32)の屈折率をn?とした場合、被覆光ファイバの大
半以上はnI>β2であり、かかる屈折率関係では、散
乱光■がスクリーン外に広く分布するのに対し、散乱光
消)はスクリーン上の中心付近に東中するから、■■の
散乱光は目視で容易に判別できる。
θ0=sin-'x θ+=sin-'z(1/nl-5in oo)β1
=1/r-sin θ+-e/r-sin(θ0-θI◆
φ) θ2=sim publication βI βz=n+/n2-sirr 02 θ3=sin-'β2 θ4=04 θ5=02 θ6=s'+n-' (rs:nθ2+e-sin
(θ0−θI+2(θβ03)+φ)]θy=sin
-1(nI-slnθ6)ψ-(θ0-θ+)+2(θ
? -03) + (θjiθ6) In general, the above-mentioned scattered light ■ is a very small amount in terms of the total amount, so it can be ignored. 32) The refractive index of n? In this case, most of the coated optical fibers have nI > β2, and with this refractive index relationship, the scattered light () is widely distributed outside the screen, while the scattered light (quenched) is distributed around the center of the screen. Therefore, the scattered light of ■■ can be easily determined visually.

第3図(イ)6口)は、被覆光ファイ、<においてff
17記距離比Xg/Xt 、 Yq/Yt (7)対%
ffi ト1. テ、偏心方向(横軸)と対数値(縦軸
)との関係を示したものである。
Figure 3 (a) 6 ports) is a coated optical fiber,
17 Distance ratio Xg/Xt, Yq/Yt (7) vs. %
ffi t1. This shows the relationship between the eccentric direction (horizontal axis) and the logarithm value (vertical axis).

この際のバラメークは偏心量(偏心率E)である。The variation at this time is the amount of eccentricity (eccentricity E).

その他、被覆光ファイバの中心からスクリーンまでの距
離は50mmであり、光ファイバの外径Df、被覆層の
外径DC1光ファイバの屈折率Nf、被覆層の屈折率N
c、偏心率Eなど、これらの状態部については図中に示
した。
In addition, the distance from the center of the coated optical fiber to the screen is 50 mm, the outer diameter Df of the optical fiber, the outer diameter DC1 of the coating layer, the refractive index Nf of the optical fiber, and the refractive index N of the coating layer.
These state parts, such as c and eccentricity E, are shown in the figure.

第3図(イ)6口)から理解できるように、前記fln
 (XR/Xi) 、 in (YR/Yl)は1偏心
角の三角関数とM度よく近似している。
As can be understood from Figure 3 (a) 6 mouths), the fln
(XR/Xi), in (YR/Yl) closely approximates the trigonometric function of one eccentric angle by M degrees.

したがって2下記の式(前出の一次単項式)を用いた簡
単な関数演算にて偏心量、偏心角を知ることができる。
Therefore, the amount of eccentricity and the angle of eccentricity can be determined by simple functional calculation using the following formula (the linear monomial described above).

in (XR/XL)=A−sinO=−(1)I  
n  (YR/YL)−一 A  −cos  O= 
・・ = (2)式中、Aは上記三角関数の振幅であり
、外周部の外径、屈折率、偏心量により定まる状態量。
in (XR/XL)=A-sinO=-(1)I
n (YR/YL)-1 A-cos O=
... = In the formula (2), A is the amplitude of the above trigonometric function, and is a state quantity determined by the outer diameter of the outer circumference, the refractive index, and the amount of eccentricity.

0は前記第2図を参照して明らかななように、被測定物
(長尺体3〇−被覆光ファイバ)の外形中心を通る任意
の線分すなわち基準線文1と、被測定物の外形中心およ
び軸心部中心を通る線分文2とのなす角度。
As is clear with reference to FIG. Angle formed with line segment 2 passing through the center of the outer shape and the center of the shaft center.

具体的には以下の通り。Specifically, it is as follows.

(1)(2)式より下記の式を導く。The following equation is derived from equations (1) and (2).

θ=jan−1(−4n(XR/刈)/文n  (YR
/YL)  1・・・・・・・・(3) 0の値を(1)(2)式のいずれかに代入してAを求め
る。
θ=jan-1(-4n(XR/Kari)/bunn(YR
/YL) 1... (3) Substitute the value of 0 into either equation (1) or (2) to find A.

A=f(外周部の外径、屈折率、偏心量)であり、この
うち、外径が既知(外径測定器6zを介して測定)、屈
折率が既知(屈折率設定器60にて設定)であるから、
Aの値に基づき、偏心量が算出できる。
A=f (outer diameter of the outer periphery, refractive index, amount of eccentricity), of which the outer diameter is known (measured via the outer diameter measuring device 6z) and the refractive index is known (measured by the refractive index setting device 60). settings), so
Based on the value of A, the amount of eccentricity can be calculated.

上述のごとく、(1)(2)式奎用いてflif nす
ることにより、被覆層の外径、屈折率に関する仕様の異
なる種々の被覆光ファイバにつき、その光ファイバと被
覆層との偏心率が求められ、同様に透明な中空パイプに
ついても、その軸心部(中空部)と外周部(バイズ周壁
部)との偏心率が求められ、かくて、被測定物の膨大な
データを採取することが解消される。
As mentioned above, by performing flif n using equations (1) and (2), the eccentricity between the optical fiber and the coating layer can be calculated for various coated optical fibers with different specifications regarding the outer diameter and refractive index of the coating layer. Similarly, for a transparent hollow pipe, the eccentricity between its axial center (hollow part) and outer circumferential part (viz circumferential wall) can be found, and in this way, a huge amount of data on the object to be measured can be collected. is resolved.

なお、木発!刃方法においてX軸方向、Y軸方向から被
測定物に向けて光ビームを照射するとき、散乱パターン
の輝度レベルが最大となるように、被測定物に対する光
ビームの照射位置を:A整するのがよく、こうした場合
は、被測定物と光ビームのスポットライトとが完全にマ
ツチングし、所定の偏心率が正確に求まるようになる。
By the way, Kihatsu! When irradiating a light beam toward the object to be measured from the X-axis direction and the Y-axis direction in the blade method, the irradiation position of the light beam on the object to be measured is adjusted to: A so that the brightness level of the scattering pattern is maximized. In such a case, the object to be measured and the spotlight of the light beam are perfectly matched, and the predetermined eccentricity can be determined accurately.

この際の具体的手段としては、散乱パターンの輝度を1
6(接モニタし、その輝度レベルが最大となるように、
被allf定物に対する光ビームの照射位こを調整する
方法、散乱パターンの/ヘンと幅を計514し、そのバ
ンド幅が左右同じとなるように、被測定物に対する光ビ
ームの照射位置を調整する方法等があげられる。
In this case, the brightness of the scattering pattern is reduced to 1.
6 (closely monitor the monitor so that its brightness level is maximum,
A method for adjusting the irradiation position of the light beam on the object to be measured.The total width of the scattering pattern is calculated514, and the irradiation position of the light beam on the object to be measured is adjusted so that the band width is the same on the left and right sides. For example, how to do this.

1発1y1の効果」 以上説明した通り、本発明方法によるときは、軸心部と
その軸心部を覆う外周部とが透光性を有し、これら軸心
部、外周部の屈折率が相互に相違している長尺体を被測
定物とし、その被測定物のX軸側散乱パターン、Y軸側
散乱パターンをそれぞれ所定のスクリーン上に投影し、
これら散乱パターンに関するi n(XR/XL)、I
 n(YR/Yt )を演算処理して、上記軸心部、外
周部の偏心率を測定するとき、所定の(1) (2)式
に基づく演算処理により、その偏心率を求めるから、簡
易な演算手段にて当該偏心率が正確に測定できる。
1 shot 1y1 effect" As explained above, when using the method of the present invention, the axial center part and the outer peripheral part covering the axial center part have translucency, and the refractive index of the axial center part and the outer peripheral part is Using mutually different elongated bodies as objects to be measured, projecting the X-axis side scattering pattern and the Y-axis side scattering pattern of the objects to be measured on respective predetermined screens,
i n (XR/XL), I for these scattering patterns
When measuring the eccentricity of the shaft center and outer circumference by calculating n(YR/Yt), the eccentricity is calculated by calculation based on the predetermined formulas (1) and (2), so it is easy to use. The eccentricity can be accurately measured using a suitable calculation means.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は未発1】方法の一実施例の略示した説明図、第
2図は光ビームが被測定物の軸心部と外周部とを透過し
た際に生じる散乱光の説明図、第3図(イ)(ロ)は散
乱パターンの距離比と偏心角との関係を対数値で示した
説明図、第4図は従来法の説明図である。 30・・・・・・長尺体(被測定物) 31・・・・・・長尺体の軸心部 32・・・・・・長尺体の外周部 50・・・・・・光照射系 51・・・・・・投光器 52・・・・・・分光:器 53・・・・・・反射鏡(X軸) 54・・・・・・反射鏡(Y軸) 55・・・・・・スクリーン(Xi) 5B・・・・・・スクリーン(Y軸) 57・・・・・・光学系(X軸) 58・・・・・・光学系(Y軸) 59・・・・・・演算処理系 代理人 弁理士  斎 藤 義 雄 第2図 第3図 (イ)
FIG. 1 is a schematic explanatory diagram of an embodiment of the method; FIG. 2 is an explanatory diagram of scattered light generated when a light beam passes through the axial center and outer circumference of the object to be measured; FIGS. 3A and 3B are explanatory diagrams showing the relationship between the distance ratio of the scattering pattern and the eccentric angle in logarithmic values, and FIG. 4 is an explanatory diagram of the conventional method. 30...Elongate body (object to be measured) 31...Axis center portion of the elongate body 32...Outer peripheral portion 50 of the elongate body...Light Irradiation system 51... Emitter 52... Spectrometer 53... Reflector (X axis) 54... Reflector (Y axis) 55... ... Screen (Xi) 5B ... Screen (Y axis) 57 ... Optical system (X axis) 58 ... Optical system (Y axis) 59 ... ...Computational system agent Patent attorney Yoshio Saito Figure 2 Figure 3 (a)

Claims (1)

【特許請求の範囲】 1 軸心部とその軸心部を覆う外周部とが透光性を有し
、これら軸心部、外周部の屈折率が相互に相違している
長尺体を被測定物とし、その被測定物の軸心を通る線分
をO軸、該O軸とほぼ直角に交差する二つの線分をX軸
、Y軸とした場合、これらX軸上、Y軸上に、被測定物
を挟んで互いに対向する光照射系の光照射部とスクリー
ンとをそれぞれ配置しておき、上記X軸上、Y軸上の各
光照射部から被測定物に向けて光ビームを照射して、そ
の被測定物の外周部と軸心部とを透過した光の散乱パタ
ーンをX軸上、Y軸上の各スクリーンにそれぞれ投影し
、X軸上のスクリーンに投影された散乱パターンの中心
から両端までの各距離をX_L、X_R、その距離比X
_R/X_Lの自然対数値をln(X_R/X_L)と
し、Y軸上のスクリーンに投影された散乱パターンの中
心から両端までの各距離をY_L、Y_R、その距離比
の自然対数値をln(Y_R/Y_L)とした場合、上
記各散乱パターンをそれぞれ光学手段でとらえてこれら
散乱パターンの情報を演算処理系に入力し、かつ、当該
演算処理系を介して上記ln(X_R/X_L)、ln
(Y_R/Y_L)を演算処理することにより、上記軸
心部、外周部相互の偏心率を測定する方法において、 ln(X_R/X_L)=A・sinθ‥‥‥(1)l
n(Y_R/Y_L)=−A・cosθ‥‥‥(2)な
る式(ただし、Aは上記三角関数の振幅であり、外周部
の外径、屈折率、偏心量により定まる状態量、θは被測
定物の偏心角であり、被測定物の外形中心を通る基準線
と、被測定物の外形中心および軸心部中心を通る線分と
のなす角度。)に基づき、各散乱パターンの情報を上記
演算処理系により演算処理して、上記偏心率を求めるこ
とを特徴とする透光性を有する長尺体の偏心率測定方法
。 2 透光性を有する長尺体が、光ファイバとその外周に
形成された透明な被覆層とからなる特許請求の範囲第1
項記載の透光性を有する長尺体の偏心率測定方法。 3 透光性を有する長尺体が、透明な中空パイプからな
る特許請求の範囲第1項記載の透光性を有する長尺体の
偏心率測定方法。 4 互いに独立した光照射系の各光照射端部をX軸上、
Y軸上に配置し、該各光照射端部から被測定物に向けて
それぞれ光ビームを照射する特許請求の範囲第1項記載
の透光性を有する長尺体の偏心率測定方法。 5 光照射系が一の投光手段、一の分光手段、二の反射
手段を備え、投光手段から出射された光ビームを分光手
段により分光するとともに、その分光された光を各反射
手段によりX軸方向、Y軸方向に反射し、該各反射光を
被測定物に向けてそれぞれ照射する特許請求の範囲第1
項記載の透光性を有する長尺体の偏心率測定方法。
[Claims] 1. A long body covered with an axial center portion and an outer periphery covering the axial center portion having translucency, and in which the axial center portion and the outer periphery have mutually different refractive indexes. If the object to be measured is a line segment passing through the axis of the object to be measured as the O axis, and two line segments that intersect the O axis at a nearly right angle are the X axis and Y axis, then on these X and Y axes The light irradiation section and the screen of the light irradiation system are placed facing each other with the object to be measured in between, and the light beams are directed from the light irradiation sections on the X-axis and the Y-axis toward the object to be measured. The scattering pattern of the light transmitted through the outer periphery and axial center of the object to be measured is projected on each screen on the X-axis and Y-axis, and the scattering pattern projected on the screen on the X-axis is Each distance from the center of the pattern to both ends is X_L, X_R, and the distance ratio X
The natural logarithm of _R/X_L is ln(X_R/X_L), the distances from the center to both ends of the scattering pattern projected on the screen on the Y axis are Y_L, Y_R, and the natural logarithm of the distance ratio is ln( Y_R/Y_L), each of the above-mentioned scattering patterns is captured by an optical means, information on these scattering patterns is input to a processing system, and the above-mentioned ln(X_R/X_L), ln
In the method of measuring the mutual eccentricity between the shaft center and the outer circumference by calculating (Y_R/Y_L), ln(X_R/X_L)=A・sinθ (1) l
n(Y_R/Y_L)=-A・cosθ (2) (where A is the amplitude of the above trigonometric function, the state quantity determined by the outer diameter, refractive index, and eccentricity of the outer circumference, and θ is Information on each scattering pattern is calculated based on the eccentricity angle of the object to be measured, which is the angle formed by the reference line passing through the center of the object's outline and the line segment passing through the center of the object's outline and the center of the axis. A method for measuring the eccentricity of a translucent elongated body, characterized in that the eccentricity is determined by calculating the eccentricity using the arithmetic processing system. 2. Claim 1, in which the elongated body having translucency is composed of an optical fiber and a transparent coating layer formed on the outer periphery of the optical fiber.
A method for measuring the eccentricity of an elongated body having translucency as described in 2. 3. The method for measuring the eccentricity of a translucent elongated body according to claim 1, wherein the translucent elongated body is a transparent hollow pipe. 4 Each light irradiation end of the mutually independent light irradiation system is placed on the X axis,
2. The method for measuring the eccentricity of a translucent elongated body according to claim 1, wherein the light beam is arranged on the Y-axis and a light beam is irradiated from each of the light irradiation ends toward the object to be measured. 5. The light irradiation system is equipped with one light projecting means, one spectroscopic means, and two reflecting means, and the light beam emitted from the light projecting means is split into spectra by the spectroscopic means, and the separated light is split by the respective reflecting means. Claim 1 in which the reflected light is reflected in the X-axis direction and the Y-axis direction, and each reflected light is irradiated toward the object to be measured.
A method for measuring the eccentricity of an elongated body having translucency as described in 2.
JP19872186A 1986-08-25 1986-08-25 Measurement of eccentricity for light transmitting long-sized body Pending JPS6353402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19872186A JPS6353402A (en) 1986-08-25 1986-08-25 Measurement of eccentricity for light transmitting long-sized body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19872186A JPS6353402A (en) 1986-08-25 1986-08-25 Measurement of eccentricity for light transmitting long-sized body

Publications (1)

Publication Number Publication Date
JPS6353402A true JPS6353402A (en) 1988-03-07

Family

ID=16395894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19872186A Pending JPS6353402A (en) 1986-08-25 1986-08-25 Measurement of eccentricity for light transmitting long-sized body

Country Status (1)

Country Link
JP (1) JPS6353402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309227A (en) * 1989-05-24 1990-12-25 Shin Etsu Chem Co Ltd Measuring method and apparatus of distribution of index of refraction
JP2008116410A (en) * 2006-11-07 2008-05-22 Yokohama National Univ Method of measuring diameter, refractive index, distance between center axes and angle between incident light axis and interval of cylindrical object, and apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309227A (en) * 1989-05-24 1990-12-25 Shin Etsu Chem Co Ltd Measuring method and apparatus of distribution of index of refraction
JP2008116410A (en) * 2006-11-07 2008-05-22 Yokohama National Univ Method of measuring diameter, refractive index, distance between center axes and angle between incident light axis and interval of cylindrical object, and apparatus using the same

Similar Documents

Publication Publication Date Title
EP0150945A3 (en) Method and apparatus for measuring properties of thin materials
JPH01131407A (en) Apparatus and method for measuring angle of reflecting cone
JP2001021449A (en) Method and system for automatically non-contact measuring optical characteristics of optical object
US3826576A (en) Laser measuring or monitoring system
JPS59190607A (en) Contactless measuring device for measuring shape of body
JPS6353402A (en) Measurement of eccentricity for light transmitting long-sized body
JPS6353403A (en) Measurement of eccentricity for light transmitting long-sized body
JPS6255502A (en) Method of measuring shape of matter by three-dimensional measuring machine
JPH08285545A (en) Detection of change in diameter of optical fiber and manufacture of optical fiber
CN208207508U (en) On-line measuring device for Optical Coatings for Photolithography
JPS60142204A (en) Dimension measuring method of object
US3784308A (en) Method and apparatus for measuring the index of refraction
CA2442073A1 (en) A device for a transparent pipe intended for optical counting and measuring
JPH01311245A (en) Method-of measuring refractive index distribution of optical fiber base material
JPH02309228A (en) Measuring method and apparatus of distribution of index of refraction
JPS59137805A (en) Optical distance meter for profiling work
US11256027B2 (en) Optical fiber glass eccentricity measurement device and measurement method
JPS62250325A (en) Apparatus for measuring light distribution
JPH049570Y2 (en)
JP3203901B2 (en) Measurement position correction arithmetic processing device and radiation intensity measurement device
JPH0431733A (en) Method and apparatus for simultaneously measuring base curve and center thickness of contact lens
JPH01176908A (en) Measuring instrument for transparent columnar body
JPS62144003A (en) Method for measuring coating eccentricity of long body having light perviousness
JP2002250604A (en) Measuring device for three-dimensional size
JP3289865B2 (en) Method and apparatus for measuring component installation state using bidirectional light beam