JP3203901B2 - Measurement position correction arithmetic processing device and radiation intensity measurement device - Google Patents

Measurement position correction arithmetic processing device and radiation intensity measurement device

Info

Publication number
JP3203901B2
JP3203901B2 JP23969793A JP23969793A JP3203901B2 JP 3203901 B2 JP3203901 B2 JP 3203901B2 JP 23969793 A JP23969793 A JP 23969793A JP 23969793 A JP23969793 A JP 23969793A JP 3203901 B2 JP3203901 B2 JP 3203901B2
Authority
JP
Japan
Prior art keywords
lens
light
aperture
center
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23969793A
Other languages
Japanese (ja)
Other versions
JPH0792020A (en
Inventor
誠 甲斐
英夫 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP23969793A priority Critical patent/JP3203901B2/en
Publication of JPH0792020A publication Critical patent/JPH0792020A/en
Application granted granted Critical
Publication of JP3203901B2 publication Critical patent/JP3203901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は放射強度測定装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation intensity measuring device.

【0002】[0002]

【従来の技術】従来、発光体の放射強度を測定するため
に、テレセントリック光学系といわれる測定光学系を構
成して行う方法がある。図11に従来の測定光学系を示
す。この光学系は図11に示すように、光軸外の物点4
(図11の場合、被測定光源16において光の出てくる
点)から出てくる主光線(アパーチャ6の開口中心を通
る光)が光軸と平行になり、レンズ5を透過後、像空間
の焦点を通るように配置された光学系である(つまり焦
点fの位置にアパーチャが設定されている)。この光学
系の特長は、物空間で主光線が平行となるために、物点
の光軸方向の移動に対して投影板7上の像高に変化がな
いことである。
2. Description of the Related Art Conventionally, there is a method of measuring a radiation intensity of a luminous body by constructing a measuring optical system called a telecentric optical system. FIG. 11 shows a conventional measurement optical system. This optical system has an object point 4 outside the optical axis as shown in FIG.
(In the case of FIG. 11, the principal ray (light passing through the center of the aperture of the aperture 6) coming out of the light source 16 to be measured) is parallel to the optical axis. (That is, the aperture is set at the position of the focal point f). The feature of this optical system is that the image height on the projection plate 7 does not change with the movement of the object point in the optical axis direction because the principal ray is parallel in the object space.

【0003】投影板7上に被測定光源16の像を結像さ
せ、投影板7に設けた十分に小さい穴を通して、投影板
7に近接させた受光器8に光を入射させ、入射した位置
における放射強度を測定する。焦点距離fとアパーチャ
6から投影板7までの距離の比で像の倍率が決定するの
で、光軸から受光器に光が入射した位置(測定位置)ま
での距離の、実際の光軸から物点4までの距離への換算
は容易な計算で求められる。また測定した位置での放射
強度(受光器8の出力)を換算後の位置での放射強度と
している。一般に像空間の焦点距離fと、アパーチャ6
から投影板7までの距離の比を1:1にしておくことに
より倍率換算をする必要がなくなるため、その場合受光
器8の位置が物点4の位置となる(ただし像は上下左右
逆であるため、正負号は逆になる)。
[0003] An image of the light source 16 to be measured is formed on the projection plate 7, and light is incident on a light receiver 8 which is close to the projection plate 7 through a sufficiently small hole provided in the projection plate 7. The radiation intensity at is measured. Since the magnification of the image is determined by the ratio of the focal length f and the distance from the aperture 6 to the projection plate 7, the actual distance from the optical axis to the position (measurement position) where light is incident on the light receiver from the actual optical axis to the object The conversion to the distance to point 4 can be obtained by an easy calculation. The radiation intensity at the measured position (output of the light receiver 8) is defined as the radiation intensity at the converted position. Generally, the focal length f of the image space and the aperture 6
When the ratio of the distance from the to the projection plate 7 is set to 1: 1, there is no need to perform magnification conversion. In this case, the position of the light receiver 8 is the position of the object point 4 (however, the image is upside down, left, right, and upside down). Therefore, the sign is reversed.)

【0004】[0004]

【発明が解決しようとする課題】前記従来例の技術を、
例えば放電灯の発光管内に存在する放電アークなどのよ
うに、前記測定光学系が存在する媒質とは異なった媒質
によって隔離された内部の発光体の放射強度を測定する
ために利用する場合、発光体のある物点から発した光は
異なる媒質の界面での屈折現像を経た後、像空間の焦点
に入射することになる。この様子を図12を使用して説
明する。
SUMMARY OF THE INVENTION
When used to measure the radiant intensity of an internal luminous body isolated by a medium different from the medium in which the measurement optical system is present, such as a discharge arc present in the arc tube of a discharge lamp, for example, Light emitted from an object point on the body undergoes refraction development at an interface between different media, and then enters a focal point in an image space. This will be described with reference to FIG.

【0005】図12は、発光体3の物点4から発せられ
た光が発光管2を透過した光線10の軌跡と、仮に発光
管2の存在を考慮しない場合の光線11の示す軌跡とで
は、光軸に対し垂直に距離δ1の差が生じる様子を表し
たものである。したがって受光器8の測定位置から実際
の発光体3の物点4の位置を導出するためには、前記距
離δ1を考慮して前記測定位置の値を補正する必要があ
る。
FIG. 12 shows the trajectory of a light beam 10 transmitted from the object point 4 of the luminous body 3 through the luminous tube 2 and the trajectory of the light beam 11 when the existence of the luminous tube 2 is not considered. , A state in which a difference of a distance δ1 occurs perpendicular to the optical axis. Therefore, in order to derive the actual position of the object point 4 of the light emitting body 3 from the measurement position of the light receiver 8, it is necessary to correct the value of the measurement position in consideration of the distance δ1.

【0006】またさらに前記の補正を講じても、生じる
誤差が無視できない場合には、新たな測定方法により測
定精度を向上させる必要がある。
[0006] Further, if the error generated cannot be ignored even after the above correction is performed, it is necessary to improve the measurement accuracy by a new measurement method.

【0007】本発明は、受光器の測定位置から実際の発
光体の物点の位置を求め、さらに測定精度向上のための
補正方法を有する測定位置補正演算処理装置および放射
強度測定装置を提供することを目的とする。
The present invention provides a measurement position correction arithmetic processing device and a radiation intensity measurement device which determine the actual position of an object point of a light emitter from the measurement position of a light receiver and further have a correction method for improving measurement accuracy. The purpose is to:

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明は以下に示す手段を用いる。
In order to achieve the above object, the present invention uses the following means.

【0009】まず第1に、放電灯の発光管内に存在する
発光体の放射強度を測定し、少なくともレンズとアパー
チャと受光器を備え、被測定光源と前記レンズの中心と
前記アパーチャの開口中心は同一光軸上に前記の順に配
置するとともに、前記アパーチャは前記レンズと前記受
光器との間に前記レンズから前記レンズの焦点距離fだ
け離れた位置に配置した放射強度測定装置に用いる測定
位置補正演算処理装置であって、前記光軸をx軸、前記
発光管中心を通り前記光軸に垂直な軸をy軸、前記被測
定光源の発光管の内半径をa、外半径をb、前記放射強
度測定装置が存在する媒質1の屈折率をn1、発光管の
屈折率をn2、発光管外壁面上に存在する見かけ上の発
光体の物点の位置のy座標をynとする場合、
[0009] First, it exists in the arc tube of the discharge lamp.
Measure the radiant intensity of the illuminant, and at least
A light source to be measured and the center of the lens.
The aperture centers of the apertures are arranged on the same optical axis in the order described above.
The aperture and the lens and the receiver
The focal length f of the lens from the lens to the optical device
Measurements for radiant intensity measuring devices placed at remote locations
A position correction arithmetic processing device, wherein the optical axis is an x-axis,
The axis passing through the center of the arc tube and perpendicular to the optical axis is the y-axis,
The inner radius of the arc tube of the constant light source is a, the outer radius is b, and the radiation intensity is
The refractive index of the medium 1 in which the degree measuring device is
The refractive index is n2, the apparent emission existing on the outer wall surface of the arc tube
When the y coordinate of the position of the object point of the light body is yn,

【0010】[0010]

【数3】 (Equation 3)

【0011】(数3)によって前記ynを、発光体の物
点の位置のy座標となるymに変換して出力することを
特徴とする測定位置補正演算処理装置である。
According to the equation (3), yn is a light emitting object
A measurement position correction arithmetic processing device that converts the value into ym, which is the y coordinate of the position of the point, and outputs the converted value.

【0012】また第2に、放電灯の発光管内に存在する
発光体の放射強度を測定する放射強度測定装置であっ
て、少なくともレンズと前記レンズの焦点位置に配置し
たアパーチャと受光器を備え、被測定光源と前記レンズ
の中心と前記アパーチャの開口中心は同一光軸上に前記
の順に配置するとともに、前記被測定光源と前記レンズ
との間の光軸上に媒質を配置し、前記媒質は、前記被測
定光源の被測定点から光軸までの距離と、前記被測定点
から前記受光器に向けて発せられた光線であって、前記
媒質透過後の光線から光軸までの距離とを等しくするも
のであることを特徴とする放射強度測定装置である。
Second, it is present in the arc tube of the discharge lamp.
A radiation intensity measurement device that measures the radiation intensity of a luminous body.
At least at the focal point of the lens and the lens.
Light source to be measured and the lens
The center of the aperture and the center of the aperture of the aperture are on the same optical axis.
And the light source to be measured and the lens
A medium on the optical axis between
The distance from the measured point of the constant light source to the optical axis, and the measured point
A light beam emitted toward the light receiver from
Make the distance from the light ray after passing through the medium equal to the optical axis.
It is a radiation intensity measuring device characterized by the following.

【0013】さらに第3に、放電灯の発光管内に存在す
る発光体の放射強度を測定し、少なくともレンズとアパ
ーチャと受光器を備え、被測定光源と前記レンズの中心
は同一光軸上に配置するとともに、前記レンズは前記ア
パーチャと前記被測定光源との間に配置し、かつ前記ア
パーチャは前記レンズと前記受光器との間に配置した放
射強度測定装置であって、 前記光軸をx軸、前記発光管
中心を通り前記光軸に垂直な軸をy軸、前記被測定光源
の発光管の内半径をa、外半径をb、前記放射強度測定
装置が存在する媒質1の屈折率をn1、発光管の屈折率
をn2、発光管外壁面上に存在する見かけ上の発光体の
物点の位置のy座標をyn、さらに前記発光管中心から
前記レンズ中心までの距離L1、前記レンズ中心から光
軸とアパーチャとの交点までの距離L2、前記レンズ中
心と受光器が配置される位置のx座標までの距離L3、
前記レンズの像空間側の焦点距離fとした場合、
[0013] Thirdly, there is an electric discharge lamp in the arc tube.
Measure the radiant intensity of the
A light source to be measured and the center of the lens.
Are arranged on the same optical axis, and the lens is
Placed between the aperture and the light source to be measured, and
A aperture is disposed between the lens and the receiver.
A radiation intensity measuring device, wherein the optical axis is the x-axis, and the arc tube is
An axis perpendicular to the optical axis passing through the center, the y axis, the light source to be measured
The inner radius of the arc tube is a, the outer radius is b, and the radiation intensity is measured.
The refractive index of the medium 1 where the device is present is n1, the refractive index of the arc tube
To n2, the apparent luminous body existing on the arc tube outer wall surface.
The y coordinate of the position of the object point is yn, and further from the center of the arc tube.
Distance L1 to the lens center, light from the lens center
Distance L2 to the intersection of the axis and the aperture, in the lens
Distance L3 from the center to the x coordinate of the position where the light receiver is arranged,
When the focal length f on the image space side of the lens is

【0014】[0014]

【数4】 (Equation 4)

【0015】(数4)によりh1、h2の演算処理を行
う演算手段を設け、その前記演算手段の出力である前記
h1の距離だけ前記アパーチャの開口中心を前記y軸に
平行に移動させる第1の駆動手段と、前記演算手段の出
力である前記h2の距離だけ前記受光器を前記y軸に平
行に移動させる第2の駆動手段とを設けたことを特徴と
する放射強度測定装置である。
The arithmetic processing of h1 and h2 is performed by (Equation 4).
Calculating means, and the output of the calculating means is
The center of the opening of the aperture is set to the y-axis by a distance of h1.
A first driving means for moving in parallel and an output of the arithmetic means;
The light receiver is flat on the y-axis by the distance of h2, which is the force.
A second driving means for moving to a row is provided.
This is a radiation intensity measuring device .

【0016】[0016]

【作用】この構成によって、受光器の測定位置から実際
の発光体の物点の位置を求める補正方法を有する放射強
度測定装置を提供することができる。
With this configuration, it is possible to provide a radiation intensity measuring apparatus having a correction method for obtaining the actual position of the object point of the luminous body from the measurement position of the light receiver.

【0017】[0017]

【実施例】本発明の放射強度測定装置の実施例につい
て、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a radiation intensity measuring apparatus according to the present invention will be described with reference to the drawings.

【0018】(実施例1)図1は本発明の第1の実施例
における放射強度測定装置である。
(Embodiment 1) FIG. 1 shows a radiation intensity measuring apparatus according to a first embodiment of the present invention.

【0019】図1において、1は本発明の放射強度測定
装置、2は発光管、3は発光体、4は物点、5はレン
ズ、6はアパーチャ、7は投影板、8は受光器、9は測
定位置補正演算処理手段である。
In FIG. 1, 1 is a radiation intensity measuring apparatus of the present invention, 2 is an arc tube, 3 is a light emitter, 4 is an object point, 5 is a lens, 6 is an aperture, 7 is a projection plate, 8 is a light receiver, Reference numeral 9 denotes a measurement position correction arithmetic processing unit.

【0020】拡大倍率1:1にし、かつ投影板4上に像
の焦点を合わせるために、被測定光源の発光管2の中心
を物空間側の焦点距離の2倍の位置に、投影板7を像空
間側の焦点距離の2倍の位置に配置している。このよう
な構成において発光体3のある物点4から発せられた光
が発光管2を透過した後の光線10の軌跡と、仮に発光
管2の存在を考慮しない場合の光線11が示す軌跡とで
は、光軸に対し垂直に距離δ1の差が生じるため、いま
光軸から受光器が測定した位置(本実施例の場合拡大倍
率が1:1であるため光線11の光軸から垂直に測った
距離、すなわち光が通過する測定した発光管外壁上の位
置は光軸から受光器が配置された位置と等しい)を補正
しなくてはならない。
In order to set the magnification to 1: 1 and focus the image on the projection plate 4, the center of the light emitting tube 2 of the light source to be measured is placed at a position twice as long as the focal length on the object space side. Is disposed at a position twice the focal length on the image space side. In such a configuration, the trajectory of the light beam 10 after the light emitted from the object point 4 of the luminous body 3 has passed through the luminous tube 2 and the trajectory indicated by the light beam 11 when the existence of the luminous tube 2 is not considered. In this case, since a difference of a distance δ1 occurs perpendicularly to the optical axis, the position measured by the light receiver from the optical axis (in the case of this embodiment, since the magnification is 1: 1, the position is measured perpendicularly from the optical axis of the light beam 11). Distance, i.e., the measured position on the outer wall of the arc tube through which the light passes, is equal to the position of the light receiver from the optical axis).

【0021】前記光軸をx軸、前記発光管中心を通り前
記光軸に垂直な軸をy軸、前記放射強度測定装置が存在
する媒質1が空気としてその屈折率をn1=1、発光管
の材料が石英としてその屈折率をn2=1.46とし、
前記被測定光源の発光管の内半径a=6mm、外半径b=
7mmの場合と、前記発光管の内半径a=14mm、外半径
b=15mmの場合において、放射強度を測定した発光管
外壁面上の位置のy座標ynを+15mm〜−15mmとす
る。
The optical axis is the x-axis, the axis passing through the center of the arc tube and perpendicular to the optical axis is the y-axis, the medium 1 in which the radiation intensity measuring device exists is air, and the refractive index is n1 = 1, and the arc tube is Is quartz and the refractive index is n2 = 1.46,
Inner radius a = 6 mm and outer radius b =
In the case of 7 mm and the case where the inner radius a of the arc tube is 14 mm and the outer radius b is 15 mm, the y coordinate yn of the position on the outer wall surface of the arc tube where the radiation intensity is measured is +15 mm to -15 mm.

【0022】さらに、前記a、前記b、前記n1、前記
n2および前記ynを入力することによって、
Further, by inputting the a, b, n1, n2 and yn,

【0023】[0023]

【数5】 (Equation 5)

【0024】なるynをymに変換して出力する測定位
置補正演算処理手段9を具備している。
A measurement position correction arithmetic processing means 9 for converting yn into ym and outputting the result is provided.

【0025】図2は本発明の放射強度測定装置におい
て、発光体3の物点4から出た光が光軸と平行に放射
し、発光管2の内壁点mで屈折し、さらに発光管2の外
壁点nで再度屈折し、再度光軸と平行に進行する様子を
表している。
FIG. 2 shows a radiation intensity measuring apparatus according to the present invention, in which light emitted from an object point 4 of a luminous body 3 radiates parallel to the optical axis, is refracted at an inner wall point m of the luminous bulb 2, and At the outer wall point n, and travels again in parallel with the optical axis.

【0026】光軸をx軸、発光管中心を通り前記光軸に
垂直な軸をy軸、発光管の内半径をa、外半径をb、前
記放射強度測定装置が存在する媒質1の屈折率をn1、
発光管2の材料の屈折率をn2、放射強度を測定した発
光管外壁上の位置のy座標ynを測定位置補正演算処理
手段に入力することにより、ymで示される補正後の距
離(すなわち前記物点4のy座標の位置)が出力される
手順を以下に示す。
The optical axis is the x axis, the axis passing through the center of the arc tube and perpendicular to the optical axis is the y axis, the inner radius of the arc tube is a, the outer radius is b, and the refraction of the medium 1 in which the radiation intensity measuring device exists. The rate is n1,
By inputting the refractive index of the material of the arc tube 2 to n2 and the y coordinate yn of the position on the outer wall of the arc tube at which the radiation intensity was measured to the measurement position correction arithmetic processing means, the corrected distance indicated by ym (that is, The procedure for outputting the y-coordinate of the object point 4) will be described below.

【0027】αは、Α is

【0028】[0028]

【数6】 (Equation 6)

【0029】となり、点nにおいて、屈折の法則によ
り、
At the point n, according to the law of refraction,

【0030】[0030]

【数7】 (Equation 7)

【0031】となる。したがって、 β=α−θ 点m(xm,ym)、点n(xn,yn)=(bcos
θ,yn)を通り、x軸に対して角度βの傾きをもった
直線mnの方程数は、 ym−yn=tanβ(xm−bcosα) となる。一方、内半径aの円の方程式は、 xm2+yn2=a2 で、上記の連立方程式を解くことにより点mの座標(x
m,ym)を求めると、
## EQU1 ## Therefore, β = α−θ point m (xm, ym), point n (xn, yn) = (bcos
θ, yn), the number of straight lines mn having an inclination of an angle β with respect to the x-axis is expressed as ym−yn = tanβ (xm−bcosα). On the other hand, the equation of a circle having an inner radius a is xm 2 + yn 2 = a 2 , and the coordinates (x
m, ym),

【0032】[0032]

【数8】 (Equation 8)

【0033】 ym=xmtanβ+(yn−bcosαtanβ) となる。Ym = xmtanβ + (yn-bcosαtanβ)

【0034】このような動作をする測定位置補正演算処
理手段9を放射強度測定装置に組み込むことにより、発
光体3の物点4の位置を出力として得ることができる。
The position of the object point 4 of the luminous body 3 can be obtained as an output by incorporating the measurement position correction arithmetic processing means 9 operating as described above into the radiation intensity measuring device.

【0035】この方法により得られた、補正値ymとy
nとの差δ1のynに対する割合を図3のグラフに示
す。一般に放電灯の放電アークは発光管内半径の約半分
程度の半径であるので、このことから考えると内半径6
mmの場合発光体の端近くで測定位置の約5%、内半径1
4mmの場合約3%の測定位置補正を実現することが可能
である。前記測定位置補正演算処理手段を従来の放射強
度測定装置に組み合わせることにより、従来の測定光学
系に何等手を施すことなく、短時間で測定位置の補正処
理を行うことができ、前記発光体における物点の位置を
知ることができる。
The correction values ym and y obtained by this method
The ratio of the difference δ1 with n to yn is shown in the graph of FIG. Generally, the discharge arc of a discharge lamp has a radius of about half of the inner radius of the arc tube.
In the case of mm, about 5% of the measurement position near the end of the luminous body, inner radius 1
In the case of 4 mm, it is possible to realize a measurement position correction of about 3%. By combining the measurement position correction arithmetic processing means with a conventional radiation intensity measurement device, without performing any operation on the conventional measurement optical system, it is possible to perform a measurement position correction process in a short time, and in the luminous body The position of the object point can be known.

【0036】さらに内半径が6mm以下の場合あるいは発
光管厚みが1mm以上の場合、δ1のynに対する割合は
さらに高くなるため前記放射強度測定装置はより有効と
なる。
When the inner radius is 6 mm or less or when the thickness of the arc tube is 1 mm or more, the ratio of δ1 to yn is further increased, so that the radiation intensity measuring device is more effective.

【0037】なお本実施例では、拡大倍率を1:1にし
て演算処理を簡便にするためにアパーチャ6と投影板7
との距離をレンズ5の中心とアパーチャ6までの距離と
等しくしたが、アパーチャ6と投影板7との距離を任意
に設定しても、拡大倍率を考慮して測定値を換算すれば
同様の測定位置補正演算処理は可能である。
In this embodiment, the aperture 6 and the projection plate 7 are used in order to set the enlargement magnification to 1: 1 and to simplify the arithmetic processing.
Is set equal to the distance between the center of the lens 5 and the aperture 6. However, even if the distance between the aperture 6 and the projection plate 7 is set arbitrarily, the same applies if the measured value is converted in consideration of the magnification. Measurement position correction calculation processing is possible.

【0038】なお本実施例では、受光器8の受光面に対
する光の入射角については特に考慮していないが、受光
面の応答度が光の入射角に依存し、かつ測定において問
題となる場合には、受光面が球面形状の受光器を使用す
るか、あるいは受光面が常に入射光に対し垂直となるよ
うに受光器8に回転駆動手段を付与してもよい。
In this embodiment, the incident angle of light on the light receiving surface of the light receiver 8 is not particularly considered. However, the response of the light receiving surface depends on the incident angle of light and poses a problem in measurement. In this case, a light-receiving device having a spherical light-receiving surface may be used, or a rotation driving means may be provided to the light-receiving device 8 so that the light-receiving surface is always perpendicular to the incident light.

【0039】(実施例2)図4は本発明の第2の実施例
における放射強度測定装置である。
(Embodiment 2) FIG. 4 shows a radiation intensity measuring apparatus according to a second embodiment of the present invention.

【0040】図4において、拡大倍率1:1にし、かつ
投影板4上に像の焦点を合わせるために、被測定光源の
発光管2の中心を物空間側の焦点距離の2倍の位置に、
投影板7を像空間側の焦点距離の2倍の位置に配置す
る。図4にこの測定光学系の様子を示す。このような構
成において、前記被測定光源の前記発光管の内半径をa
=6mm、外半径をb=7mm、発光管の材料を石英とす
る。
In FIG. 4, the center of the light emitting tube 2 of the light source to be measured is positioned at twice the focal length on the object space side in order to set the magnification to 1: 1 and focus the image on the projection plate 4. ,
The projection plate 7 is arranged at a position twice the focal length on the image space side. FIG. 4 shows the state of the measuring optical system. In such a configuration, the inner radius of the arc tube of the light source to be measured is a
= 6 mm, outer radius b = 7 mm, and the material of the arc tube is quartz.

【0041】材料に石英を用い、断面の一部が、曲率中
心oが同位置で内面が半径6mmで中心角180°、外面
が半径7mmで中心角180°の曲面形状をした媒質12
を、発光管2の中心とレンズ5の間の光軸上の任意の位
置に、曲率中心oが光軸上に存在し、かつ前記媒質12
が曲率中心oと発光管2との間に配置されるようにす
る。
A medium 12 which is made of quartz and has a section whose cross section is a curved surface having a center of curvature o at the same position, an inner surface having a radius of 6 mm and a central angle of 180 °, and an outer surface having a radius of 7 mm and a central angle of 180 °.
At an arbitrary position on the optical axis between the center of the arc tube 2 and the lens 5, a center of curvature o exists on the optical axis, and the medium 12
Is arranged between the center of curvature o and the arc tube 2.

【0042】このような構成において、発光体3の物点
4から放射された光は前記発光管透過の際に屈折し、さ
らに前記媒質12透過の際に再度屈折する。この場合、
光線逆進の法則にしたがい、物点4の光軸からの距離と
媒質12透過後の光軸からの距離は等しくなる。
In such a configuration, light emitted from the object point 4 of the luminous body 3 is refracted when passing through the arc tube, and is refracted again when passing through the medium 12. in this case,
According to the law of ray regression, the distance of the object point 4 from the optical axis is equal to the distance from the optical axis after passing through the medium 12.

【0043】この方法により、受光器8の光軸からの位
置は光が放射された発光体3の物点4の位置と等しくな
るので、放射強度を測定した際の測定位置を何等補正処
理を施すことなく発光体3の物点4と対応させることが
可能である。
According to this method, the position of the light receiver 8 from the optical axis becomes equal to the position of the object point 4 of the luminous body 3 from which the light is emitted. It is possible to correspond to the object point 4 of the luminous body 3 without applying.

【0044】なお本実施例では、拡大倍率を1:1にす
るためにアパーチャ6と投影板7との距離をレンズ5の
中心とアパーチャ6までの距離に等しくしたが、アパー
チャ6と投影板7との距離を任意に設定しても、拡大倍
率を考慮して測定値を換算すれば発光体3の物点4の位
置は容易に得ることができる。
In this embodiment, the distance between the aperture 6 and the projection plate 7 is equal to the distance between the center of the lens 5 and the aperture 6 in order to make the magnification ratio 1: 1. Even if the distance from the object 3 is set arbitrarily, the position of the object point 4 of the light emitting body 3 can be easily obtained by converting the measured value in consideration of the magnification.

【0045】なお本実施例では、受光器8の受光面に対
する光の入射角については特に考慮していないが、受光
面の応答度が光の入射角に依存し、かつ測定において問
題となる場合には、受光面が球面形状の受光器を使用す
るか、あるいは受光面が常に入射光に対し垂直となるよ
うに受光器8に回転駆動手段を付与してもよい。
In this embodiment, the incident angle of light with respect to the light receiving surface of the light receiver 8 is not particularly taken into consideration. However, in the case where the responsivity of the light receiving surface depends on the incident angle of light and poses a problem in measurement. In this case, a light-receiving device having a spherical light-receiving surface may be used, or a rotation driving means may be provided to the light-receiving device 8 so that the light-receiving surface is always perpendicular to the incident light.

【0046】(実施例3)図5は本発明の第3の実施例
における放射強度測定装置である。
(Embodiment 3) FIG. 5 shows a radiation intensity measuring apparatus according to a third embodiment of the present invention.

【0047】図5において、光軸をx軸、発光管中心を
通り前記光軸に垂直な軸をy軸、前記放射強度測定装置
が存在する媒質1が空気としてその屈折率をn1=1、
発光管の材料が石英としてその屈折率をn2=1.46
とし、発光管2の中心からレンズ5の中心までの距離L
1=400mm、レンズ5の中心から光軸とアパーチャ6
との交点までの距離L2=200mm、レンズ5の中心と
受光器8が配置される位置のx座標までの距離L3=4
00mm、像空間における焦点距離をf=200mmとす
る。この様子を図5に示す。
In FIG. 5, the optical axis is the x axis, the axis passing through the center of the arc tube and perpendicular to the optical axis is the y axis, the medium 1 in which the radiation intensity measuring device is present is air, and the refractive index is n1 = 1,
The material of the arc tube is quartz and its refractive index is n2 = 1.46.
And the distance L from the center of the arc tube 2 to the center of the lens 5
1 = 400 mm, optical axis and aperture 6 from center of lens 5
L2 = 200 mm to the intersection with the distance L3 = 4 from the center of the lens 5 to the x coordinate of the position where the light receiver 8 is arranged.
00 mm and the focal length in the image space is f = 200 mm. This is shown in FIG.

【0048】被測定光源の発光管2の内半径a=6mm、
外半径b=7mmの場合と、発光管2の内半径a=14m
m、外半径b=15mmの場合において、放射強度を測定
したい発光管外壁面上の位置のy座標ynを+15mm〜
−15mmとする。
The inner radius a of the arc tube 2 of the light source to be measured is a = 6 mm,
When outer radius b = 7 mm, inner radius a of arc tube 2 = 14 m
m, the outer radius b = 15 mm, the y-coordinate yn of the position on the outer wall surface of the arc tube whose radiation intensity is to be measured is +15 mm to
-15 mm.

【0049】本実施例の放射強度測定装置において、発
光管外壁の任意の点から光軸に平行に放射する光の軌跡
を発光体の物点まで逆にたどると、厳密には発光管内壁
に光軸に平行に放射されている光線ではない。この様子
を図6に示す。このようなことが生じる理由は、点mに
おける屈折の境界面と点nにおける屈折の境界面が厳密
には平行でないためである。これは逆に、発光体の物点
から発光管内壁に平行に放射した光は、屈折を経て発光
管外壁から放射する際には光軸に平行に放射されないこ
とを意味する。この様子を図7に示し、この放射光の光
軸からのずれηを考慮した放射強度測定光学系を図8に
示す。図8の光学系は、測定したい発光管外壁面上のn
点からηの角度で放射された光を追跡するために、アパ
ーチャ6の開口中心を光軸からh1の位置に、受光器8
をh2の位置に移動させて測定を行うものである。
In the radiation intensity measuring apparatus of this embodiment, if the trajectory of light emitted from an arbitrary point on the outer wall of the arc tube is traced in reverse to the object point of the illuminator, strictly speaking, It is not a ray emitted parallel to the optical axis. This is shown in FIG. This occurs because the refraction interface at point m and the refraction interface at point n are not exactly parallel. Conversely, it means that light radiated from the object point of the luminous body parallel to the inner wall of the arc tube does not radiate parallel to the optical axis when radiating from the outer wall of the arc tube through refraction. FIG. 7 shows this state, and FIG. 8 shows a radiation intensity measuring optical system in consideration of the deviation η of the emitted light from the optical axis. The optical system shown in FIG. 8 uses n on the outer wall surface of the arc tube to be measured.
In order to track light emitted at an angle of η from a point, the center of the aperture of the aperture 6 is positioned at h1 from the optical axis, and
Is moved to the position of h2 to perform measurement.

【0050】図7において、光軸をx軸、発光管中心を
通り前記光軸に垂直な軸をy軸、発光管の内半径をa、
外半径をb、前記放射強度測定装置が存在する媒質1の
屈折率をn1、発光管2の材料の屈折率をn2、放射強
度を測定したい発光管外壁面上の位置のy座標ynを演
算処理手段に入力することにより、h1およびh2が出
力される手順を以下に示す。
In FIG. 7, the optical axis is the x axis, the axis passing through the center of the arc tube and perpendicular to the optical axis is the y axis, the inner radius of the arc tube is a,
The outer radius is b, the refractive index of the medium 1 in which the radiation intensity measuring device is present is n1, the refractive index of the material of the arc tube 2 is n2, and the y coordinate yn of the position on the outer wall surface of the arc tube whose radiation intensity is to be measured is calculated. The procedure in which h1 and h2 are output by input to the processing means will be described below.

【0051】αは、Α is

【0052】[0052]

【数9】 (Equation 9)

【0053】となり、点nにおいて、屈折の法則によ
り、
At the point n, according to the law of refraction,

【0054】[0054]

【数10】 (Equation 10)

【0055】となる。したがって、 β=α−θ とすると、点m(xm,ym)、点n(xn,yn)=
(bcosθ,yn)を通り、x軸に対して角度βの傾
きをもった直線mnの方程式は、 ym−yn=tanβ(xm−bcosα) となる。一方、内半径aの円の方程式は xm2+ym2=a2 となり、上記の連立方程式を解くことにより、点mの座
標(xm,ym)を求めると、
Is as follows. Therefore, if β = α−θ, the point m (xm, ym) and the point n (xn, yn) =
The equation of a straight line mn passing through (bcos θ, yn) and having an inclination of an angle β with respect to the x-axis is expressed as ym-yn = tanβ (xm-bcosα). On the other hand, the equation of the circle having the inner radius a is xm 2 + ym 2 = a 2. By solving the above simultaneous equations, the coordinates (xm, ym) of the point m are obtained.

【0056】[0056]

【数11】 [Equation 11]

【0057】 ym=xmtanβ+(yn−bcosαtanβ) となる。Ym = xmtanβ + (yn-bcosαtanβ)

【0058】この得られた点mの座標(xm,ym)よ
り、
From the coordinates (xm, ym) of the obtained point m,

【0059】[0059]

【数12】 (Equation 12)

【0060】点nから放射される光が光軸に平行に進行
するためには、点mと点nにおける境界面が平行である
場合に限られ、点nにおいて入射角がθ+(γ−α)で
あれば、屈折角がα+(γ−α)=γとなり、平行が実
現する。媒質の界面における屈折比は媒質の屈折率にの
み依存するものであるから、この場合、
The light emitted from the point n travels in parallel to the optical axis only when the boundary surface between the point m and the point n is parallel, and the incident angle at the point n is θ + (γ−α ), The refraction angle becomes α + (γ−α) = γ, and parallelism is realized. Since the refractive ratio at the interface of the medium depends only on the refractive index of the medium,

【0061】[0061]

【数13】 (Equation 13)

【0062】が成立する。このκはn点において(数1
3)の屈折比を満たす屈折角であるから、発光管外壁か
ら放射される光の光軸とのずれ角ηは、 η=α−κ となる。
Is established. This κ is calculated at n points (Equation 1)
Since the refraction angle satisfies the refraction ratio of 3), the deviation angle η between the light emitted from the outer wall of the arc tube and the optical axis is η = α−κ.

【0063】これらをふまえて構成された図8の放射強
度測定光学系において、発光管2の中心からレンズ5の
中心までの距離L1、レンズ5の中心から光軸とアパー
チャ6との交点までの距離L2、レンズ5の中心と受光
器8が配置される位置のx座標までの距離L3、像空間
における焦点距離をfとし、n点から角度ηで放射され
る光が、仮想的に光軸上から発せられると考えた場合の
点からレンズ5の中心までの距離をS1、レンズ5の中
心から像空間で光が光軸と交わる点までの距離をS2、
レンズ5の中心における光の位置をh、アパーチャ6の
開口中心の光軸からの位置をh1、受光器8が配置され
る光軸からの位置をh2とすると、この光学系のレンズ
の結像式は、
In the radiation intensity measuring optical system shown in FIG. 8 constructed on the basis of these, a distance L 1 from the center of the arc tube 2 to the center of the lens 5, and a distance L 1 from the center of the lens 5 to the intersection of the optical axis and the aperture 6. The distance L2, the distance L3 from the center of the lens 5 to the x-coordinate of the position where the light receiver 8 is arranged, the focal length in the image space as f, and light emitted at an angle η from point n is virtually the optical axis. The distance from the point considered to be emitted from above to the center of the lens 5 is S1, the distance from the center of the lens 5 to the point where light intersects the optical axis in the image space is S2,
Assuming that the position of the light at the center of the lens 5 is h, the position of the aperture center of the aperture 6 from the optical axis is h1, and the position of the light receiver 8 from the optical axis is h2, an image of the lens of this optical system is formed. ceremony,

【0064】[0064]

【数14】 [Equation 14]

【0065】となり、したがって、求めるh1およびh
2は、
## EQU10 ## Therefore, the sought h1 and h1
2 is

【0066】[0066]

【数15】 (Equation 15)

【0067】[0067]

【数16】 (Equation 16)

【0068】となる。このような動作をする演算処理手
段13の出力であるh1の値をアパーチャ6に接続され
たアパーチャ6の駆動手段14に入力することで前記h
1の距離だけアパーチャ6の開口中心をy軸に平行に移
動させ、演算処理手段13の出力であるh2の値を受光
器8に接続された受光器8の駆動手段15に入力するこ
とで前記h2の距離だけ受光器8をy軸に平行に移動さ
せた後、受光器8で放射強度を測定する。
Is obtained. By inputting the value of h1, which is the output of the arithmetic processing means 13 performing such an operation, to the driving means 14 of the aperture 6 connected to the aperture 6, the above h is obtained.
The center of the aperture of the aperture 6 is moved parallel to the y-axis by a distance of 1 and the value of h2, which is the output of the arithmetic processing means 13, is input to the driving means 15 of the light receiver 8 connected to the light receiver 8. After moving the light receiver 8 parallel to the y-axis by the distance h2, the light intensity is measured by the light receiver 8.

【0069】この方法により得られた、放射強度を測定
したい発光管外壁面上の位置のy座標ynとアパーチャ
6の移動距離h1および受光器8の移動距離h2との関
係を、発光管2の内半径が6mmの場合を図9に、発光管
2の内半径が14mmの場合を図10に示す。この方法に
より発光体3の任意の物点から放射される光を精度良く
追跡することが可能となり、前記物点の位置と受光器8
の位置との対応を完全に取ることが可能となった。
The relationship between the y-coordinate yn of the position on the outer wall surface of the arc tube where the radiation intensity is to be measured, the movement distance h1 of the aperture 6 and the movement distance h2 of the light receiver 8 obtained by this method is shown. FIG. 9 shows a case where the inner radius is 6 mm, and FIG. 10 shows a case where the inner radius of the arc tube 2 is 14 mm. According to this method, it is possible to accurately track light emitted from an arbitrary object point of the light-emitting body 3, and the position of the object point and the light receiver 8
It became possible to completely correspond to the position.

【0070】なお本実施例では演算処理手段13の出力
h1およびh2を2種類の駆動手段14と15に入力し
たが、2入力h1およびh2を受けて、アパーチャ6お
よび受光器8を一つの支持具の両端に固定し、前記支持
具に支点を設けてこれを駆動する機械的な連動駆動手段
を構成してもよい。
In this embodiment, the outputs h1 and h2 of the arithmetic processing means 13 are input to the two types of driving means 14 and 15, but the two inputs h1 and h2 are received, and the aperture 6 and the light receiver 8 are supported by one. The support may be fixed to both ends of the tool, and a supporting point may be provided on the support to form a mechanical interlocking driving means for driving the support.

【0071】なお本実施例では演、算処理手段13の出
力h1およびh2を2種類の駆動手段14と15に入力
したが、2入力h1およびh2を受けて、アパーチャ6
および受光器8を一つの支持具の両端に固定し、前記支
持具に支点を設けてこれを駆動する機械的な連動駆動手
段を構成してもよい。
In this embodiment, the outputs h1 and h2 of the processing and arithmetic processing means 13 are input to the two kinds of driving means 14 and 15, but the two inputs h1 and h2 are received and the aperture 6
Alternatively, the light receiver 8 may be fixed to both ends of a single support, and a fulcrum may be provided on the support to form a mechanical interlocking driving means for driving the support.

【0072】なお本実施例では、受光器8の受光面に対
する光の入射角については特に考慮していないが、受光
面の応答度が光の入射角に依存し、かつ測定おいて問題
となる場合には、受光面が球面形状の受光器を使用する
か、あるいは受光面が常に入射光に対し垂直となるよう
に受光器8に回転駆動手段を付与してもよい。
In this embodiment, the incident angle of light on the light receiving surface of the light receiver 8 is not particularly considered. However, the responsivity of the light receiving surface depends on the incident angle of light and causes a problem in measurement. In this case, a light-receiving device having a spherical light-receiving surface may be used, or a rotation driving means may be provided to the light-receiving device 8 so that the light-receiving surface is always perpendicular to the incident light.

【0073】[0073]

【発明の効果】以上説明したように本発明では、放射強
度測定装置において従来技術では行われていなかった受
光管による放射光の屈折を考慮すると、 (1)測定位置を入力し物点の位置を出力する演算処理
手段を装置に具備することにより測定位置補正処理を短
時間で行うことができる。
As described above, in the present invention, in consideration of the refraction of the radiated light by the light receiving tube, which has not been performed in the prior art in the radiation intensity measuring apparatus, (1) the measurement position is input and the position of the object point is input. Is provided in the apparatus, the measurement position correction processing can be performed in a short time.

【0074】(2)測定光学系に新たな媒質を配置する
ことにより測定位置補正処理を必要としない装置構成が
実現できる。
(2) By arranging a new medium in the measuring optical system, it is possible to realize an apparatus configuration that does not require the measurement position correction processing.

【0075】(3)測定したい位置を入力し物点の位置
と、アパーチャの移動距離と、受光器の移動距離を出力
する演算処理手段と、前記移動距離を入力し、アパーチ
ャと受光器を移動させる2つの駆動手段を具備すること
により、発光体の物点の位置と受光器の位置を完全に対
応させることができ、放射強度測定の精度向上が実現で
きる。
(3) Arithmetic processing means for inputting the position to be measured and outputting the position of the object point, the moving distance of the aperture, and the moving distance of the light receiver, and inputting the moving distance and moving the aperture and the light receiver By providing the two driving means, the position of the object point of the light emitter and the position of the light receiver can be completely matched, and the accuracy of radiation intensity measurement can be improved.

【0076】また受光器を投影板上で2次元に移動させ
て測定を行えば、発光体の放射強度分布の測定も可能で
ある。さらには分光光学系を具備した受光器を用いるこ
とにより分光放射強度の測定および分光放射強度分布の
測定も可能となる。したがって以上説明した装置を放電
灯の放電アークの放射強度分布測定に利用することは、
発光管内における放電アークの物性解析に大いに有効で
ある。
If the measurement is performed by moving the light receiver two-dimensionally on the projection plate, the radiation intensity distribution of the light emitter can be measured. Further, by using a light receiver provided with a spectral optical system, it becomes possible to measure the spectral radiation intensity and the spectral radiation intensity distribution. Therefore, using the above-described apparatus for measuring the radiation intensity distribution of the discharge arc of a discharge lamp,
It is very effective for analyzing the physical properties of the discharge arc in the arc tube.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における放射強度測定装
置の構成図
FIG. 1 is a configuration diagram of a radiation intensity measuring apparatus according to a first embodiment of the present invention.

【図2】第1の実施例に係わる測定位置補正距離導出の
ための説明図
FIG. 2 is an explanatory diagram for deriving a measurement position correction distance according to the first embodiment;

【図3】本発明の第1の実施例における測定位置補正特
性図
FIG. 3 is a measurement position correction characteristic diagram according to the first embodiment of the present invention.

【図4】本発明の第2の実施例における放射強度測定装
置の構成図
FIG. 4 is a configuration diagram of a radiation intensity measuring apparatus according to a second embodiment of the present invention.

【図5】本発明の第3の実施例における放射強度測定装
置の構成図
FIG. 5 is a configuration diagram of a radiation intensity measuring apparatus according to a third embodiment of the present invention.

【図6】第3の実施例に係わるアパーチャおよび受光器
の駆動距離導出のための説明図
FIG. 6 is an explanatory diagram for deriving a drive distance of an aperture and a light receiver according to a third embodiment.

【図7】第3の実施例に係わるアパーチャおよび受光器
の駆動距離導出のための説明図
FIG. 7 is an explanatory diagram for deriving a drive distance of an aperture and a light receiver according to a third embodiment.

【図8】第3の実施例に係わるアパーチャおよび受光器
の駆動距離導出のための説明図
FIG. 8 is an explanatory diagram for deriving a drive distance of an aperture and a light receiver according to a third embodiment.

【図9】本発明の第3の実施例におけるアパーチャおよ
び受光器の駆動距離特性図
FIG. 9 is a driving distance characteristic diagram of an aperture and a photodetector according to a third embodiment of the present invention.

【図10】本発明の第3の実施例におけるアパーチャお
よび受光器の駆動距離特性図
FIG. 10 is a driving distance characteristic diagram of an aperture and a photodetector according to a third embodiment of the present invention.

【図11】従来の放射強度測定の光学系構成図FIG. 11 is a configuration diagram of a conventional optical system for measuring radiation intensity.

【図12】従来の放射強度測定の光学系構成図FIG. 12 is a configuration diagram of a conventional optical system for measuring radiation intensity.

【符号の説明】[Explanation of symbols]

1 媒質 2 発光管 3 発光体 4 物点 5 レンズ 6 アパーチャ 7 投影板 8 受光器 9 測定位置補正演算処理手段 12 媒質 13 演算手段 14,15 駆動手段 16 被測定光源 REFERENCE SIGNS LIST 1 medium 2 arc tube 3 illuminant 4 object point 5 lens 6 aperture 7 projection plate 8 light receiver 9 measurement position correction arithmetic processing means 12 medium 13 arithmetic means 14, 15 drive means 16 light source to be measured

フロントページの続き (56)参考文献 特開 昭61−130832(JP,A) 特開 平2−302879(JP,A) 実開 昭64−3265(JP,U) 実公 平4−32852(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) G01J 1/00 - 1/60 G01N 21/00 - 21/01 G01N 21/17 - 21/61 Continuation of front page (56) References JP-A-61-130832 (JP, A) JP-A-2-302879 (JP, A) JP-A 64-3265 (JP, U) JP-A-4-32852 (JP) , Y2) (58) Fields investigated (Int. Cl. 7 , DB name) G01J 1/00-1/60 G01N 21/00-21/01 G01N 21/17-21/61

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】放電灯の発光管内に存在する発光体の放射
強度を測定し、少なくともレンズとアパーチャと受光器
を備え、被測定光源と前記レンズの中心と前記アパーチ
ャの開口中心は同一光軸上に前記の順に配置するととも
に、前記アパーチャは前記レンズと前記受光器との間に
前記レンズから前記レンズの焦点距離fだけ離れた位置
に配置した放射強度測定装置に用いる測定位置補正演算
処理装置であって、前記光軸をx軸、前記発光管中心を
通り前記光軸に垂直な軸をy軸、前記被測定光源の発光
管の内半径をa、外半径をb、前記放射強度測定装置が
存在する媒質1の屈折率をn1、発光管の屈折率をn
2、発光管外壁面上に存在する見かけ上の発光体の物点
の位置のy座標をynとする場合、 【数1】 (数1)によって前記ynを、発光体の物点の位置のy
座標となるymに変換して出力することを特徴とする測
定位置補正演算処理装置。
1. A luminous intensity of a luminous body existing in an arc tube of a discharge lamp is measured, and at least a lens, an aperture, and a light receiver are provided, and a light source to be measured, a center of the lens, and an opening center of the aperture have the same optical axis. A measurement position correction arithmetic processing unit used for a radiation intensity measurement device disposed above the above-mentioned order and the aperture is disposed between the lens and the light receiver at a position away from the lens by a focal length f of the lens. Wherein the optical axis is the x axis, the axis passing through the center of the arc tube and perpendicular to the optical axis is the y axis, the inner radius of the arc tube of the light source to be measured is a, the outer radius is b, and the radiation intensity measurement is performed. The refractive index of the medium 1 in which the device is present is n1, and the refractive index of the arc tube is n.
2. When the y-coordinate of the position of the object point of the apparent luminous body present on the outer wall surface of the arc tube is yn, According to (Equation 1), the yn is set to y at the position of the object point of the luminous body.
A measurement position correction arithmetic processing unit, which converts the value into ym, which is a coordinate, and outputs the converted value.
【請求項2】放電灯の発光管内に存在する発光体の放射
強度を測定する放射強度測定装置であって、少なくとも
レンズと前記レンズの焦点位置に配置したアパーチャと
受光器を備え、被測定光源と前記レンズの中心と前記ア
パーチャの開口中心は同一光軸上に前記の順に配置する
とともに、前記被測定光源と前記レンズとの間の光軸上
に媒質を配置し、前記媒質は、前記被測定光源の被測定
点から光軸までの距離と、前記被測定点から前記受光器
に向けて発せられた光線であって、前記媒質透過後の光
線から光軸までの距離とを等しくするものであることを
特徴とする放射強度測定装置。
2. A radiation intensity measuring device for measuring the radiation intensity of a luminous body present in an arc tube of a discharge lamp, comprising: at least a lens; an aperture disposed at a focal position of the lens; And the center of the lens and the center of the aperture of the aperture are arranged on the same optical axis in the order described above, and a medium is arranged on the optical axis between the light source to be measured and the lens. A light beam emitted from the measured point to the optical receiver from the measured point to the optical axis, wherein the distance from the measured light source to the optical receiver is equal to the distance from the light beam transmitted through the medium to the optical axis. A radiation intensity measuring device, characterized in that:
【請求項3】放電灯の発光管内に存在する発光体の放射
強度を測定し、少なくともレンズとアパーチャと受光器
を備え、被測定光源と前記レンズの中心は同一光軸上に
配置するとともに、前記レンズは前記アパーチャと前記
被測定光源との間に配置し、かつ前記アパーチャは前記
レンズと前記受光器との間に配置した放射強度測定装置
であって、 前記光軸をx軸、前記発光管中心を通り前記光軸に垂直
な軸をy軸、前記被測定光源の発光管の内半径をa、外
半径をb、前記放射強度測定装置が存在する媒質1の屈
折率をn1、発光管の屈折率をn2、発光管外壁面上に
存在する見かけ上の発光体の物点の位置のy座標をy
n、さらに前記発光管中心から前記レンズ中心までの距
離L1、前記レンズ中心から光軸とアパーチャとの交点
までの距離L2、前記レンズ中心と受光器が配置される
位置のx座標までの距離L3、前記レンズの像空間側の
焦点距離fとした場合、 【数2】 (数2)によりh1、h2の演算処理を行う演算手段を
設け、その前記演算手段の出力である前記h1の距離だ
け前記アパーチャの開口中心を前記y軸に平行に移動さ
せる第1の駆動手段と、前記演算手段の出力である前記
h2の距離だけ前記受光器を前記y軸に平行に移動させ
る第2の駆動手段とを設けたことを特徴とする放射強度
測定装置。
3. A luminous intensity of a luminous body present in a luminous tube of a discharge lamp is measured, and at least a lens, an aperture, and a light receiver are provided, and a light source to be measured and a center of the lens are arranged on the same optical axis. The lens is a radiation intensity measuring device disposed between the aperture and the light source to be measured, and the aperture is disposed between the lens and the light receiver, wherein the optical axis is the x-axis, the light emission is The axis passing through the center of the tube and perpendicular to the optical axis is the y-axis, the inner radius of the light emitting tube of the light source to be measured is a, the outer radius is b, the refractive index of the medium 1 in which the radiation intensity measuring device is present is n1, and the light emission is The refractive index of the tube is n2, and the y coordinate of the position of the object point of the apparent luminous body existing on the outer wall surface of the luminous tube is y
n, a distance L1 from the center of the arc tube to the center of the lens, a distance L2 from the center of the lens to an intersection between the optical axis and the aperture, and a distance L3 from the center of the lens to the x coordinate of a position where the light receiver is arranged. , Where the focal length f of the lens on the image space side is: A first driving means for providing an operation means for performing the operation processing of h1 and h2 according to (Equation 2), and moving the center of the aperture opening parallel to the y-axis by the distance of h1 which is the output of the operation means; And a second driving means for moving the light receiver parallel to the y-axis by a distance of h2 which is an output of the calculating means.
JP23969793A 1993-09-27 1993-09-27 Measurement position correction arithmetic processing device and radiation intensity measurement device Expired - Lifetime JP3203901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23969793A JP3203901B2 (en) 1993-09-27 1993-09-27 Measurement position correction arithmetic processing device and radiation intensity measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23969793A JP3203901B2 (en) 1993-09-27 1993-09-27 Measurement position correction arithmetic processing device and radiation intensity measurement device

Publications (2)

Publication Number Publication Date
JPH0792020A JPH0792020A (en) 1995-04-07
JP3203901B2 true JP3203901B2 (en) 2001-09-04

Family

ID=17048580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23969793A Expired - Lifetime JP3203901B2 (en) 1993-09-27 1993-09-27 Measurement position correction arithmetic processing device and radiation intensity measurement device

Country Status (1)

Country Link
JP (1) JP3203901B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017258A (en) * 1986-06-20 1991-05-21 Shell Oil Company Pipe rehabilitation using epoxy resin composition

Also Published As

Publication number Publication date
JPH0792020A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
US6226080B1 (en) Method for detecting defect of transparent body, method for producing transparent body
JP2767235B2 (en) Ring beam divergence angle control optical device
JP6818702B2 (en) Optical inspection equipment and optical inspection method
US5623553A (en) High contrast fingerprint image detector
JP3421299B2 (en) Apparatus and method for measuring viewing angle dependence and location dependence of luminance
CN103837091A (en) Glass warping degree testing device and method
JP3203901B2 (en) Measurement position correction arithmetic processing device and radiation intensity measurement device
JPH08114421A (en) Non-contact type measuring device for measuring thickness ofmaterial body comprising transparent material
JPH0650743A (en) Electronic optical sensor for measuring straight-line value
JPS58216903A (en) Thickness measuring device
CN1936497A (en) Outline measurement projector with picture treatment system
JPH075032A (en) Estimation apparatus for semiconductor laser
JP3619851B2 (en) A method of improving the accuracy of a straight line meter using a laser beam.
RU2379628C2 (en) Method for measurement of diametre of objects of cylindrical shape with directional reflecting surface
JP2004028792A (en) Non-contact sectional shape measurement method and measurement device
JP2737271B2 (en) Surface three-dimensional shape measuring method and device
JP3470269B1 (en) Transmittance measurement method
JP3557951B2 (en) Rotational deviation measuring device and rotational deviation measuring method
JPH11257925A (en) Sensor device
JP4608399B2 (en) Inspection device for illumination optical element
JP2624501B2 (en) Method of measuring characteristics of refractive index distribution type cylindrical lens and apparatus used therefor
JP4072241B2 (en) Ray refractor
JP2021051089A (en) Device, method, and program for optical inspection
JP2004259490A (en) Method and device for measuring phosphor forming position of cathode-ray tube panel and manufacturing method of cathode-ray tube
JP2000088533A (en) Dimension measuring apparatus for long pipe

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 12

EXPY Cancellation because of completion of term