JP3619851B2 - A method of improving the accuracy of a straight line meter using a laser beam. - Google Patents

A method of improving the accuracy of a straight line meter using a laser beam. Download PDF

Info

Publication number
JP3619851B2
JP3619851B2 JP19514996A JP19514996A JP3619851B2 JP 3619851 B2 JP3619851 B2 JP 3619851B2 JP 19514996 A JP19514996 A JP 19514996A JP 19514996 A JP19514996 A JP 19514996A JP 3619851 B2 JP3619851 B2 JP 3619851B2
Authority
JP
Japan
Prior art keywords
laser beam
straight line
position sensor
accuracy
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19514996A
Other languages
Japanese (ja)
Other versions
JPH109842A (en
Inventor
弘一 松本
容哲 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP19514996A priority Critical patent/JP3619851B2/en
Publication of JPH109842A publication Critical patent/JPH109842A/en
Application granted granted Critical
Publication of JP3619851B2 publication Critical patent/JP3619851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高層建築物の真直度や垂直度の測定、あるいは大型構造物を構成する場合に物体を直線状に配置したり、その平面度を調べる時などの用いられるレーザビームを利用した直線計の精度向上方法に関するものである。
【0002】
【従来の技術】
周知のように、レーザビームの直進性と半導体位置センサを利用した面内変位(レーザビームの伝搬方向に対して直角方向の変位)や真直度の測定は、どこでも手軽に数十m以上の直線基準を測定できることから広く実用化されている。
【0003】
最近の研究では光路長(レーザ装置を出射したレーザビームが位置検出器に入射するまでの距離)100mで分解能数nmという測定例も報告されている。
【0004】
しかし、この方法は直線基準であるべきレーザビームがゆらぐため、光路長の増加に伴って測定精度が悪くなる欠点を持っている。
【0005】
レーザビームがゆらぐ原因は、光路途中にある媒質(一般に空気)の屈折率変化が主たる原因であるが、その他の原因としては、レーザ装置の熱変形によって生じるレーザビームの出射方向の変化と、振動及び位置センサを建築物に取付けた場合、その揺れが原因として考えられる。
【0006】
レーザビームのゆらぎの主たる原因である空気ゆらぎ(空気の屈折率変化)によるレーザビームのゆらぎについては、従来2色法という方法が知られている。この2色法は、光源として基本波λ1と第2高調波λ2の2色レーザビームを交互に発射し、直線位置センサPSDとして4分割位置センサを用い、各波長によって図1に示すように、ゆらぎ度がP1とP2と異なることを検出し、パーソナル・コンピュータを用い次の式によって、理想的な直線位置Pを推定するというものである。
【0007】
【数1】

Figure 0003619851
【0008】
こゝでKの値は、一般に定数であると考えられるが、測定環境によって幾分異なるので、最初の20点のデータを用いた回帰分析の方法によって計算される。
【0009】
しかし、この2色法は、大気のゆらぎによるレーザビームのゆらぎ度を検出して直線位置Pの測定精度の向上を図ることができるが、上記の他の原因によるゆらぎを解消するには充分ではない。
【0010】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、上記の他の原因によるレーザビームのゆらぎの問題をも解消し、且つ真の直線位置がある方向を知ることができる一手法を提案し、高精度の直線計を提供することを課題とするものである。
【0011】
【課題を解決するための手段】
本発明は、基本波λ1と第2高調波λ2の2波長レーザを交互に出射する光源装置と、レーザビームを受光する位置センサとを備え、該位置センサの検出値をコンピュータによって演算処理して直線位置を求める直線計において、位置センサとしてデジタイザー又はCCDカメラを用い、且つ前記光源装置から出射するレーザビームを回転させるようにし、コンピュータは、各計測角毎に前記位置センサによって検出したレーザビーム受光位置の座標値からλ1の検出点サークルの中心位置01とλ2の検出点サークルの中心位置02を求め、これら両中心位置01,02から真の直線位置がある方向と直線位置を演算するようにしたものである。
【0012】
図2は本発明の原理説明図で、λ1,λ2の波長のレーザビームを交互に発射させると共に回転させ、デジタイザー又はCCDカメラから成る位置センサ2にレーザビームを投射し、各回転位置における座標を検出し、その検出値から各検出点サークルC1(λ1レーザビームによるもの)と検出点サークルC2(λ2レーザビームによるもの)のそれぞれの幾何学的中心位置01,02を演算(統計処理)によって求め、この中心位置01,02から、更に前述の式(P1を01,P2を02と読み替える)によって演算し、真の直線位置P及び真の直線位置Pがある方向を求めるものである。
【0013】
なお、説明の便宜上、図2では検出点サークルC1,C2を真円で表現したが、実際には少しゆがんだものとなることは勿論である。
【0014】
【作用】
本発明によると、光路途中にある媒質によるゆらぎのみならず、他の原因によるゆらぎによるλ1,λ2レーザビームのゆらぎ度を検出し、このゆらぎ度から統計的演算により真の直線位置がある方向と直線位置を高精度で検出することができる。
【0015】
【発明の実施の形態】
図3は本発明の一実施例のブロック図で、1光源装置、2はCCDカメラを用いた位置センサ、3は駆動装置、4は信号処理回路、5はパーソナル・コンピュータである。
【0016】
光源装置1はLD励起YAGの1.06μm(λ1)とこの波長を基本波とする2次高調波532nm(λ2)のレーザを交互に出射するもので、出射レーザは波長選択素子6、レンズ7、光ファイバ8、レンズ9及び出射レーザビーム回転用の光路変更光学装置10を介して位置センサ2に向けて出射される。
【0017】
出射レーザビーム回転用の光路変更光学装置10は、λ1,λ2のレーザビームを回転させるもので、実施例では適当な厚さのガラス板を適当な角度に設け、1分間に255ステップで1回転させるステッピングモータ11によってこのガラス板を軸中心に回転させるようにしたものであるが他の構造であってもよい。
【0018】
例えば、XスキャンヘッドとYスキャンヘッドを備えた公知のガルバノメータ・スキャナーを用い、それを駆動装置3によって駆動して出射レーザビームを回転させる構成を採ってもよい。
【0019】
信号処理回路4では、位置センサ2で検出した255点の各λ1レーザとλ2レーザの検出点の座標から、前記検出点サークルC1,C2のそれぞれの中心位置01,02を統計的処理により演算し、パーソナルコンピュータ4はその値から真の直線位置0の方向を求めると共に、2色法による計算式によりλ1とλ2の中心位置01,02から真の位置までの距離を求める。
【0020】
従来の2色直線計は1点での検出値により真の直線位置を算出するものであったが、本発明では多点の検出値に基づいて真の直線位置をさ算出するものであるから測定精度は一層高精度のものとなる。
【0021】
【発明の効果】
本発明によれば、従来の2色直線計では補正し得なかった他の原因による誤差をも除去することができ、高精度の直線計を提供することが出来る。
【図面の簡単な説明】
【図1】レーザビーム位置の大気によるゆらぎを補正する2色直線計の原理を示す説明図である。
【図2】本発明の原理を説明する説明図である。
【図3】本発明の実施例のブロック図である。
【符号の説明】
1 光源装置
2 位置センサ
3 駆動装置
4 信号処理回路
5 パーソナル・コンピュータ
6 波長選択素子
7,9 レンズ
8 光ファイバ
10 光路変更光学装置
11 ステッピングモータ[0001]
BACKGROUND OF THE INVENTION
The present invention is a straight line using a laser beam used for measuring straightness and verticality of a high-rise building, or arranging an object in a straight line when a large structure is formed, or examining the flatness of the object. The present invention relates to a method for improving the accuracy of the meter.
[0002]
[Prior art]
As is well known, the straightness of the laser beam and in-plane displacement (displacement perpendicular to the laser beam propagation direction) and straightness measurement using a semiconductor position sensor and straightness measurement can be easily performed anywhere. It is widely used because it can measure the standard.
[0003]
In recent research, a measurement example of an optical path length (distance until the laser beam emitted from the laser device enters the position detector) of 100 m and a resolution of several nm has been reported.
[0004]
However, this method has a drawback that the measurement accuracy deteriorates as the optical path length increases because the laser beam that should be a linear reference fluctuates.
[0005]
The cause of the fluctuation of the laser beam is mainly due to a change in the refractive index of a medium (generally air) in the middle of the optical path. Other causes include a change in the emission direction of the laser beam caused by thermal deformation of the laser device and vibration. When the position sensor is attached to the building, the vibration is considered as a cause.
[0006]
Conventionally, the two-color method is known for the fluctuation of the laser beam due to the air fluctuation (change in the refractive index of air) which is the main cause of the fluctuation of the laser beam. In this two-color method, two-color laser beams of a fundamental wave λ1 and a second harmonic λ2 are alternately emitted as a light source, a quadrant position sensor is used as a linear position sensor PSD, and as shown in FIG. It is detected that the degree of fluctuation is different from P1 and P2, and an ideal straight line position P is estimated by the following equation using a personal computer.
[0007]
[Expression 1]
Figure 0003619851
[0008]
Here, the value of K is generally considered to be a constant. However, since it varies somewhat depending on the measurement environment, it is calculated by the method of regression analysis using the data of the first 20 points.
[0009]
However, this two-color method can detect the degree of fluctuation of the laser beam due to atmospheric fluctuations and improve the measurement accuracy of the linear position P. However, this two-color method is not sufficient to eliminate fluctuations due to the above other causes. Absent.
[0010]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to solve the problem of fluctuation of the laser beam due to the above-mentioned other causes and propose a method capable of knowing the direction in which the true straight line is located, and to provide a highly accurate straight line. The challenge is to provide a total.
[0011]
[Means for Solving the Problems]
The present invention includes a light source device that alternately emits two-wavelength lasers of the fundamental wave λ1 and the second harmonic λ2, and a position sensor that receives the laser beam, and the detection value of the position sensor is processed by a computer. In a linear meter for determining a linear position, a digitizer or a CCD camera is used as a position sensor, and the laser beam emitted from the light source device is rotated. The computer receives the laser beam detected by the position sensor at each measurement angle. From the coordinate values of the positions, the center position 01 of the detection point circle of λ1 and the center position 02 of the detection point circle of λ2 are obtained, and a direction and a straight line position with a true straight line position are calculated from these center positions 01 and 02. It is a thing.
[0012]
FIG. 2 is a diagram for explaining the principle of the present invention. Laser beams having wavelengths of λ1 and λ2 are alternately emitted and rotated, and the laser beam is projected onto a position sensor 2 composed of a digitizer or a CCD camera. Then, the geometric center positions 01 and 02 of each detection point circle C1 (by the λ1 laser beam) and detection point circle C2 (by the λ2 laser beam) are obtained by calculation (statistical processing) from the detected value. From the center positions 01 and 02, the calculation is further performed by the above-described formula (P1 is read as 01 and P2 as 02), and the true straight line position P and the true straight line position P are obtained.
[0013]
For convenience of explanation, the detection point circles C1 and C2 are represented by perfect circles in FIG. 2, but it is a matter of course that the detection point circles C1 and C2 are actually slightly distorted.
[0014]
[Action]
According to the present invention, not only the fluctuation caused by the medium in the optical path but also the fluctuation degree of the λ1, λ2 laser beam due to the fluctuation caused by other causes is detected, and the true linear position is determined from the fluctuation degree by statistical calculation. The straight line position can be detected with high accuracy.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 3 is a block diagram of an embodiment of the present invention. One light source device, 2 is a position sensor using a CCD camera, 3 is a driving device, 4 is a signal processing circuit, and 5 is a personal computer.
[0016]
The light source device 1 alternately emits a laser of 1.06 μm (λ1) of LD excitation YAG and a second-order harmonic of 532 nm (λ2) having this wavelength as a fundamental wave. The emitted laser is a wavelength selection element 6 and a lens 7. The light is emitted toward the position sensor 2 through the optical fiber 8, the lens 9, and the optical path changing optical device 10 for rotating the emitted laser beam.
[0017]
The optical path changing optical device 10 for rotating the outgoing laser beam rotates the laser beam of λ1 and λ2, and in the embodiment, a glass plate having an appropriate thickness is provided at an appropriate angle and rotated once in 255 steps per minute. The glass plate is rotated about the axis by the stepping motor 11 to be used, but other structures may be used.
[0018]
For example, a known galvanometer scanner provided with an X scan head and a Y scan head may be used, and the output laser beam may be rotated by driving it with the driving device 3.
[0019]
In the signal processing circuit 4, the center positions 01 and 02 of the detection point circles C 1 and C 2 are calculated by statistical processing from the coordinates of the detection points of 255 λ1 lasers and λ2 lasers detected by the position sensor 2. The personal computer 4 obtains the direction of the true straight line position 0 from the value, and obtains the distance from the center positions 01 and 02 of the λ1 and λ2 to the true position by the calculation formula by the two-color method.
[0020]
The conventional two-color straight line meter calculates the true straight line position based on the detection value at one point. However, in the present invention, the true straight line position is calculated based on the detection values at multiple points. The measurement accuracy is higher.
[0021]
【The invention's effect】
According to the present invention, it is possible to eliminate errors caused by other causes that could not be corrected by the conventional two-color linear meter, and to provide a highly accurate linear meter.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the principle of a two-color linear meter that corrects fluctuations of the laser beam position due to the atmosphere.
FIG. 2 is an explanatory diagram illustrating the principle of the present invention.
FIG. 3 is a block diagram of an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light source device 2 Position sensor 3 Drive apparatus 4 Signal processing circuit 5 Personal computer 6 Wavelength selection element 7, 9 Lens 8 Optical fiber 10 Optical path changing optical apparatus 11 Stepping motor

Claims (2)

基本波λ1と第2高調波λ2の2波長レーザを交互に出射する光源装置と、レーザビームを受光する位置センサとを備え、該位置センサの検出値をコンピュータによって演算処理して直線位置を求める直線計において、位置センサとしてデジタイザー又はCCDカメラを用い且つ前記光源装置から出射するレーザビームを回転させるようにし、、コンピュータは、各計測角毎に前記位置センサによって検出したレーザビーム受光位置の座標値からλ1の検出点サークルの中心位置01と、λ2の検出点サークルの中心位置02を求め、これら両中心位置01,02から真の直線位置がある方向と直線位置を演算するようにしたことを特徴とするレーザビームを利用した直線計の精度向上方法。A light source device that alternately emits two-wavelength lasers of the fundamental wave λ1 and the second harmonic λ2 and a position sensor that receives the laser beam are provided, and a detection value of the position sensor is processed by a computer to obtain a linear position. In a linear meter, a digitizer or a CCD camera is used as a position sensor and the laser beam emitted from the light source device is rotated. The computer detects the coordinate value of the laser beam receiving position detected by the position sensor at each measurement angle. The center position 01 of the detection point circle of λ1 and the center position 02 of the detection point circle of λ2 are obtained, and the direction of the true straight line position and the straight line position are calculated from these center positions 01 and 02. A method for improving the accuracy of a straight line meter using a characteristic laser beam. 光源装置のレーザビーム出射口前に光路変更用光学装置を配置したことを特徴とする請求項1記載のレーザビームを利用した直線計の精度向上方法。2. The method for improving the accuracy of a linear meter using a laser beam according to claim 1, wherein an optical device for changing the optical path is disposed in front of the laser beam exit of the light source device.
JP19514996A 1996-06-21 1996-06-21 A method of improving the accuracy of a straight line meter using a laser beam. Expired - Lifetime JP3619851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19514996A JP3619851B2 (en) 1996-06-21 1996-06-21 A method of improving the accuracy of a straight line meter using a laser beam.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19514996A JP3619851B2 (en) 1996-06-21 1996-06-21 A method of improving the accuracy of a straight line meter using a laser beam.

Publications (2)

Publication Number Publication Date
JPH109842A JPH109842A (en) 1998-01-16
JP3619851B2 true JP3619851B2 (en) 2005-02-16

Family

ID=16336256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19514996A Expired - Lifetime JP3619851B2 (en) 1996-06-21 1996-06-21 A method of improving the accuracy of a straight line meter using a laser beam.

Country Status (1)

Country Link
JP (1) JP3619851B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19943502A1 (en) * 1999-09-10 2001-04-12 Busch Dieter & Co Prueftech Device for determining the axial position of hollow cylinders
JP4970211B2 (en) * 2007-10-18 2012-07-04 ヘキサゴン・メトロジー株式会社 3D shape measuring instrument
JP6103800B2 (en) * 2011-07-01 2017-03-29 富士機械製造株式会社 Component mounter
CN104792352A (en) * 2015-04-25 2015-07-22 无锡隆盛科技股份有限公司 Accelerator position sensor initial position calibration device

Also Published As

Publication number Publication date
JPH109842A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
US10048064B2 (en) Optical three dimensional scanners and methods of use thereof
EP3187822B1 (en) Surface shape measuring device
JP6071042B2 (en) Dimension measuring device
JPH07117371B2 (en) measuring device
JP3619851B2 (en) A method of improving the accuracy of a straight line meter using a laser beam.
JP3007620B1 (en) Non-contact type blade wear measurement device
JP4696249B2 (en) Shape measuring method and apparatus
JP3162364B2 (en) Optical sensor device
JPH10267624A (en) Measuring apparatus for three-dimensional shape
JP2003097924A (en) Shape measuring system and method using the same
JP4508821B2 (en) Method and apparatus for continuous measurement of conjugate position of optical scanning optical system of surface tilt correction method using polygon mirror
JP2888215B2 (en) Exposure apparatus and measurement method
JP3179324B2 (en) Method and apparatus for compensating for noise due to fluctuation of medium around measurement object
JPH06258040A (en) Laser displacement meter
JP5489455B2 (en) Optical distance measurement system
JPH0334563B2 (en)
JPH10170340A (en) Measuring apparatus for interference efficiency of interferometer for ft
JP2522191B2 (en) IC lead height measuring device
CN116086776A (en) Device and method for detecting divergence angle of collimated light beam
JP2962947B2 (en) Measuring method and measuring device
JP3040881B2 (en) Light beam diameter measuring device
JPH08219733A (en) Three-dimensional scanner
JPS60211304A (en) Measuring instrument for parallelism
JPH05118826A (en) Shape detecting apparatus
JPH02204713A (en) Dynamic measuring instrument for face unevenness in radii

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040902

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20040902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term