JP2519775B2 - Refraction angle measuring device - Google Patents

Refraction angle measuring device

Info

Publication number
JP2519775B2
JP2519775B2 JP13258688A JP13258688A JP2519775B2 JP 2519775 B2 JP2519775 B2 JP 2519775B2 JP 13258688 A JP13258688 A JP 13258688A JP 13258688 A JP13258688 A JP 13258688A JP 2519775 B2 JP2519775 B2 JP 2519775B2
Authority
JP
Japan
Prior art keywords
transparent body
light
refraction angle
scanning
cylindrical transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13258688A
Other languages
Japanese (ja)
Other versions
JPH01304339A (en
Inventor
保次 服部
享 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13258688A priority Critical patent/JP2519775B2/en
Publication of JPH01304339A publication Critical patent/JPH01304339A/en
Application granted granted Critical
Publication of JP2519775B2 publication Critical patent/JP2519775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/37Testing of optical devices, constituted by fibre optics or optical waveguides in which light is projected perpendicularly to the axis of the fibre or waveguide for monitoring a section thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/412Index profiling of optical fibres

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は長手方向にほぼ均一な特性を有する円柱状透
明体の側面より長手方向に沿う一断面をレーザ収束光に
より走査し、透過光の屈折角を測定することより当該円
柱状透明体の内部屈折率分布を求める屈折角測定装置に
て、レーザ集光位置の位置決め部を備えたものに関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention scans one cross section along the longitudinal direction from the side surface of a cylindrical transparent body having substantially uniform properties in the longitudinal direction by laser convergent light to The present invention relates to a refraction angle measuring device for determining an internal refractive index distribution of a cylindrical transparent body by measuring a refraction angle, the refraction angle measuring device having a positioning portion for a laser focusing position.

〈従来の技術とその課題〉 光ファイバ母材の内部屈折率分布を求めるには、屈折
率が変化している媒質中を光線が進む時この媒質中の各
点でnsinθ=一定(nは媒質の屈折率、θは光線の進行
方向を示す角度)が成立する様に光線が屈折されるの
で、この屈折角を被検体である光ファイバ母材の各々の
入射点(初期条件)に対し求め、これら屈折角を用いて
積分計算を行うことによっている。
<Prior art and its problems> In order to obtain the internal refractive index distribution of the optical fiber preform, when a light ray travels through a medium whose refractive index is changing, nsin θ = constant (n is the medium Since the light beam is refracted so that the refractive index of θ, θ is an angle indicating the traveling direction of the light beam), this refraction angle is obtained for each incident point (initial condition) of the optical fiber preform that is the subject. , By using these refraction angles to perform integral calculation.

かかる原理により屈折角を求める具体的装置として
は、第2図に示す構成が知られている。この第2図にお
いて、He-Neレーザ1による光は、集光レンズ2により
光ファイバ母材である被検体5の軸中心を含む長手方向
に沿う断面上に収束され、第3図に示すクラッド15とコ
ア14とからなる母材5のPl面上に収束するようになって
いる。光ファイバ母材5は屈折角の測定精度を向上させ
るためクラッド15と屈折率が略等しいマッチングオイル
4を充てんしたマッチングセル3内に保持機構13にて保
持される。光ファイバ母材5を通過した屈折光は、レン
ズ6及び7を介して二次元の撮像素子8に入射する。こ
の場合、レンズ6及び7は屈折角が二次元撮像素子8上
で位置情報(光軸中心からの変位情報)に変換されるよ
う選択され配置される。また、ビームによる走査は、コ
ントローラ10によりマッチングセル3を搭載したステー
ジ9を図面の表裏方向に往復移動させることにより行な
っている。
As a concrete device for obtaining the refraction angle based on such a principle, the configuration shown in FIG. 2 is known. In FIG. 2, the light from the He-Ne laser 1 is converged by the condenser lens 2 on a cross section along the longitudinal direction including the axial center of the subject 5 which is the optical fiber preform, and the cladding shown in FIG. It is designed to converge on the Pl surface of the base material 5 composed of 15 and the core 14. The optical fiber preform 5 is held by the holding mechanism 13 in the matching cell 3 filled with the matching oil 4 having substantially the same refractive index as that of the cladding 15 in order to improve the measurement accuracy of the refraction angle. The refracted light that has passed through the optical fiber preform 5 enters the two-dimensional image sensor 8 via the lenses 6 and 7. In this case, the lenses 6 and 7 are selected and arranged so that the refraction angle is converted into position information (displacement information from the optical axis center) on the two-dimensional image sensor 8. The scanning with the beam is performed by the controller 10 reciprocating the stage 9 having the matching cell 3 mounted thereon in the front-back direction of the drawing.

こうして、レーザビームの位置情報はカメラコントロ
ーラ12を介してCPU11にとり込まれる。
In this way, the position information of the laser beam is captured by the CPU 11 via the camera controller 12.

ところが、このような母材の測定装置にあっては、次
のような問題が生じている。すなわち、レーザ光源1の
光は、レンズ2を介して第3図に示す軸中心を通るPl面
上に集光されるようになっているが、母材5が大型化し
た場合等にはその母材5の保持点とレーザ光の走査位置
である測定点とが離間することになり、保持点すなわち
ステージ9の位置を基準としてPl面を決めている関係
上、母材5が真直でない場合には第3図の軸中心を含む
Pl面上にレーザ光源1による光が収束しないこととな
る。
However, such a measuring device for a base material has the following problems. That is, the light of the laser light source 1 is focused on the Pl plane passing through the axis center shown in FIG. 3 via the lens 2, but when the base material 5 becomes large, When the base material 5 is not straight because the holding point of the base material 5 and the measurement point that is the scanning position of the laser beam are separated, and the Pl surface is determined with the holding point, that is, the position of the stage 9 as a reference. Includes the axis center of FIG.
The light from the laser light source 1 does not converge on the Pl surface.

この場合、第3図に示すコア・クラッド境界点Pにお
いて走査ビーム光は拡がるため、例えばシングルモード
ファイバ用母材においては屈折光の方向が急激な屈折率
変化に起因して急変する特性を有するにもかかわらず、
屈折光の方向も拡がったものとなり、屈折光の強度分布
のうち最大強度位置にて屈折角の測定が行なわれるが、
この屈折角の測定分解能はこの収束面のずれにより低下
せざるを得ない。
In this case, since the scanning beam light spreads at the core / clad boundary point P shown in FIG. 3, for example, in the preform for a single mode fiber, the direction of refracted light has a characteristic of abruptly changing due to an abrupt refractive index change. in spite of,
The direction of refracted light is also expanded, and the refraction angle is measured at the maximum intensity position in the intensity distribution of refracted light.
The measurement resolution of this refraction angle must be lowered due to the deviation of the convergent surface.

そこで、本発明は、円柱状透明体の内部屈折率を求め
る装置にて、走査ビーム光の収束面を軸中心を含むPl面
と一致させるような位置決め部を備えた屈折角測定装置
を提供する。
Therefore, the present invention provides a refraction angle measuring device having a positioning part for aligning a converging surface of a scanning beam light with a Pl plane including an axis center in a device for obtaining an internal refractive index of a cylindrical transparent body. .

〈課題を解決するための手段と作用〉 上述の目的を達成する本発明は、長手方向に均一な特
性の円柱状透明体をこの長手方向に沿う一断面で収束す
る光線にて幅方向に走査し、この走査による透過光の屈
折角を測定することにより上記円柱状透明体の内部屈折
率分布を求める屈折角測定装置において、上記長手方向
及び上記走査光線入射方向のいずれにも直交する方向に
平行ビームを上記円柱状透明体をはさんで照射する照明
系と、この照明系により照明された円柱状透明体の屈折
光による輝度分布を検出する受像光学系と、この受像光
学系の受像素子により得られた輝度分布の対称性を用い
て上記円柱状透明体をその軸中心を通り上記走査光線入
射方向に直交する断面が上記走査光線の集光位置となる
ように上記円柱状透明体を移動させる移動系と、を有す
る位置決め部を備えたことを特徴とする。
<Means and Actions for Solving the Problems> The present invention that achieves the above-described object is to scan a columnar transparent body having uniform characteristics in the longitudinal direction in the width direction with a light beam that converges in one cross section along the longitudinal direction. Then, in the refraction angle measuring device for obtaining the internal refractive index distribution of the cylindrical transparent body by measuring the refraction angle of the transmitted light by this scanning, in the direction orthogonal to both the longitudinal direction and the scanning ray incident direction. An illumination system that irradiates a parallel beam across the cylindrical transparent body, an image receiving optical system that detects the brightness distribution of refracted light of the cylindrical transparent body illuminated by this illumination system, and an image receiving element of this image receiving optical system. Using the symmetry of the luminance distribution obtained by the child, the cylindrical transparent body is arranged such that the cross section passing through the axial center of the cylindrical transparent body and orthogonal to the scanning light incident direction is the converging position of the scanning light beam. Move And a positioning unit having a moving system.

かかる屈折角測定装置によれば測定に先立ち母材の位
置をモニターし、母材の中心を含むPl面が走査ビームの
集光点に一致するように母材を移動させることが可能と
なる為、レーザ収束光である小さなスポットで母材を走
査することが出来、屈折角測定における空間分解能を向
上させ、屈折角の高精度測定を可能とすることが出来
る。
According to such a refraction angle measuring device, it becomes possible to monitor the position of the base material before the measurement and move the base material so that the Pl surface including the center of the base material coincides with the converging point of the scanning beam. The base material can be scanned with a small spot that is laser convergent light, the spatial resolution in refraction angle measurement can be improved, and the refraction angle can be measured with high accuracy.

〈実施例〉 ここで、第1図を参照して本発明の実施例を説明す
る。第1図において、第2図に示す部分は一部省略す
る。第1図において、16は定電流源、17はこの定電流源
16にて駆動される比較時点光源性の強い光源例えばレー
ザダイオード、LED等、18は光源17による光を平行光線
とするレンズ、19はレンズ18による平行光をマッチング
セル3内の光ファイバ母材5やマッチングオイル4を透
過後二次元撮像素子20(一次元ラインセンサでもよい)
に結像させるための結像レンズ、21は撮像素子20にて得
られた光強度分布をモニタするためのモニタTV、22はモ
ニタTV21の影像信号を処理する画像処理装置、23は画像
処理結果に基づき光ファイバ母材5の保持ステージ13を
移動させるコントローラである。
<Example> An example of the present invention will now be described with reference to FIG. In FIG. 1, part of FIG. 2 is omitted. In FIG. 1, 16 is a constant current source and 17 is this constant current source.
A light source having a comparatively high light source property driven by 16 such as a laser diode, an LED, etc., 18 is a lens for collimating the light from the light source 17, and 19 is an optical fiber preform for the collimated light from the lens 18 in the matching cell 3. 2D image sensor 20 after passing through 5 and matching oil 4 (may be a 1D line sensor)
An image forming lens for forming an image on the monitor 21, a monitor TV for monitoring the light intensity distribution obtained by the image sensor 20, 22 an image processing device for processing the image signal of the monitor TV 21, and 23 an image processing result. It is a controller that moves the holding stage 13 of the optical fiber preform 5 based on the above.

かかる装置にて、光源17からの平行光は、走査光線と
直交して母材5を照明して、母材5の屈折率分布にて屈
折される。この屈折光は例えば第3図Pl′における強度
分布は結像レンズ19を介して撮像素子20に結像される。
この結像画像はモニタTV21にてコア・クラッド境界部の
屈折に対応して暗線(ロ)(ハ)が顕著に観測される。
また、同時にマッチングオイル4の屈折率がクラッド部
15の屈折率と一致しない場合クラッド外縁部の暗線
(イ)(ニ)も観測される。
In such a device, the parallel light from the light source 17 illuminates the base material 5 orthogonally to the scanning light beam and is refracted by the refractive index distribution of the base material 5. The intensity distribution of this refracted light in Pl 'in FIG. 3 is imaged on the image sensor 20 via the imaging lens 19.
In this formed image, dark lines (b) and (c) are conspicuously observed on the monitor TV21 in correspondence with the refraction at the core-clad boundary.
At the same time, the refractive index of the matching oil 4 is the cladding part.
If the refractive index does not match that of 15, dark lines (a) and (d) at the outer edge of the cladding are also observed.

こうして暗線(ロ)(ハ)が明瞭に観測されるシング
ルモードファイバ母材においては、その軸中心が予め求
められている走査光の収束面に一致するように光ファイ
バ母材を母材5から5′に移動させればよい。また、暗
線(ロ),(ハ)の境界線が明瞭でないグレーディッド
型母材においては(イ),(ニ)が観測可能な様にマッ
チングオイル4の屈折率、即ち液温をコントロールし、
しかる後同様な位置合せを行えば良い。
In this way, in the single-mode fiber preform in which the dark lines (b) and (c) are clearly observed, the optical fiber preform is separated from the preform 5 so that the axis center of the single-mode fiber preform coincides with the predetermined converging surface of the scanning light. Move to 5 '. Further, in the graded base material in which the boundary line between the dark lines (b) and (c) is not clear, the refractive index of the matching oil 4, that is, the liquid temperature is controlled so that (a) and (d) can be observed,
After that, similar alignment may be performed.

〈具体例〉 光源17として波長0.73μm、出力10mWのLEDを用い
た。直径100mmの平凸レンズ18で光束を平行化し母材を
照明した。母材としては直径50mmのシングルモードファ
イバ用母材を用いた。結像レンズ19を介して2048素子の
一次元ラインセンサ20で輝度分布を求め、(ロ),
(ハ)の中点が予めレーザ光の集光位置として求められ
た一次元ラインセンサの画素に一致するようにステージ
13を移動させた。ステージ13は1μmステップのパルス
モータで駆動し、1μm読取りのリニアスケールで位置
再現性を求めたところN=20での最大ばらつきは20μm
となった。
<Specific Example> As the light source 17, an LED having a wavelength of 0.73 μm and an output of 10 mW was used. A plano-convex lens 18 having a diameter of 100 mm collimated the luminous flux and illuminated the base material. As the base material, a base material for a single mode fiber with a diameter of 50 mm was used. The brightness distribution is obtained by the one-dimensional line sensor 20 of 2048 elements via the imaging lens 19, and (b),
(C) Stage so that the midpoint coincides with the pixel of the one-dimensional line sensor that was previously determined as the focus position of the laser light
13 moved. The stage 13 is driven by a pulse motor with a step of 1 μm, and position reproducibility is obtained with a linear scale of 1 μm reading. The maximum variation at N = 20 is 20 μm.
Became.

この結果、走査ビームの集光点からの拡り角を1°と
した場合上記制御を行った場合のデフォーカスによる拡
りは次の値となる。
As a result, when the divergence angle of the scanning beam from the condensing point is 1 °, the divergence due to defocus when the above control is performed has the following values.

20μm×π×1/180=0.35μm ところが一方長さ0.5m、直径50mm程度の母材において
は、チャッキングによる曲がりも含めると通常2mm程度
の曲がりがある為、この場合のディフォーカスによるビ
ームの拡りは次の値となる。
20 μm × π × 1/180 = 0.35 μm However, in the case of a base material with a length of 0.5 m and a diameter of 50 mm, there is usually a bending of about 2 mm including the bending due to chucking. The spread becomes the following value.

2,000μm×π×(1/180)=35μm したがって、空間分解能は格段に向上する。2,000μm x π x (1/180) = 35μm Therefore, the spatial resolution is significantly improved.

〈発明の効果〉 以上述べた様に本発明による屈折角測定装置を用いた
場合には母材の中心を通るPl面はレーザ走査光の集光点
に位置せしめられる為、走査時の空間分解能を向上させ
ることが出来る。
<Effects of the Invention> As described above, when the refraction angle measuring apparatus according to the present invention is used, the Pl plane passing through the center of the base material is located at the condensing point of the laser scanning light. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係る屈折角測定装置、第2図
は従来の屈折角測定装置、第3図は母材の断面を示す図
である。 図中、 5,5′は光ファイバ母材、16は定電流源、17は光源、18,
19はレンズ、20は撮像素子、21はモニタTV、22は画像処
理装置、23はコントローラである。
FIG. 1 is a refraction angle measuring apparatus according to an embodiment of the present invention, FIG. 2 is a conventional refraction angle measuring apparatus, and FIG. 3 is a view showing a cross section of a base material. In the figure, 5 and 5'are optical fiber preforms, 16 is a constant current source, 17 is a light source, 18,
Reference numeral 19 is a lens, 20 is an image sensor, 21 is a monitor TV, 22 is an image processing device, and 23 is a controller.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】長手方向に均一な特性の円柱状透明体をこ
の長手方向に沿う一断面で収束する光線にて幅方向に走
査し、この走査による透過光の屈折角を測定することに
より上記円柱状透明体の内部屈折率分布を求める屈折角
測定装置において、上記長手方向及び上記走査光線入射
方向のいずれにも直交する方向に平行ビームを上記円柱
状透明体をはさんで照射する照明系と、この照明系によ
り照明された円柱状透明体の屈折光による輝度分布を検
出する受像光学系と、この受像光学系の受像素子により
得られた輝度分布の対称性を用いて上記円柱状透明体を
その軸中心を通り上記走査光線入射方向に直交する断面
が上記走査光線の集光位置となるように上記円柱状透明
体を移動させる移動系と、を有する位置決め部を備えた
屈折角測定装置。
1. A cylindrical transparent body having uniform characteristics in the longitudinal direction is scanned in the width direction with a light beam that converges in one cross section along the longitudinal direction, and the refraction angle of the transmitted light by this scanning is measured. An illumination system for irradiating a parallel beam across the cylindrical transparent body in a direction orthogonal to both the longitudinal direction and the scanning ray incident direction in a refraction angle measuring apparatus for obtaining the internal refractive index distribution of the cylindrical transparent body. And an image receiving optical system that detects the luminance distribution of refracted light of a cylindrical transparent body illuminated by this illumination system, and the above-mentioned cylindrical shape using the symmetry of the luminance distribution obtained by the image receiving element of this image receiving optical system. A refraction angle provided with a positioning part having a moving system that moves the cylindrical transparent body so that a cross section of the transparent body passing through the axis center thereof and orthogonal to the scanning light incident direction becomes the converging position of the scanning light ray. measuring device.
JP13258688A 1988-06-01 1988-06-01 Refraction angle measuring device Expired - Fee Related JP2519775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13258688A JP2519775B2 (en) 1988-06-01 1988-06-01 Refraction angle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13258688A JP2519775B2 (en) 1988-06-01 1988-06-01 Refraction angle measuring device

Publications (2)

Publication Number Publication Date
JPH01304339A JPH01304339A (en) 1989-12-07
JP2519775B2 true JP2519775B2 (en) 1996-07-31

Family

ID=15084803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13258688A Expired - Fee Related JP2519775B2 (en) 1988-06-01 1988-06-01 Refraction angle measuring device

Country Status (1)

Country Link
JP (1) JP2519775B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725487B2 (en) * 1991-07-31 1998-03-11 日本電気株式会社 Inspection method of optical fiber end face
JP3735063B2 (en) * 2001-12-13 2006-01-11 古河電気工業株式会社 Optical fiber preform refractive index measurement method
CN107110778B (en) * 2014-10-31 2020-01-07 康宁股份有限公司 High-precision measurement of the refractive index distribution of a cylindrical glass body
CN105092219B (en) * 2015-09-21 2018-08-03 上海卫星工程研究所 Whole star Stray Light Test unit attenuator

Also Published As

Publication number Publication date
JPH01304339A (en) 1989-12-07

Similar Documents

Publication Publication Date Title
JP2008541101A (en) Object surface measuring apparatus and surface measuring method
JP4778520B2 (en) Method for determining eccentricity of core of optical waveguide and method and apparatus for coupling optical waveguide
JPH0648229B2 (en) Refractive index measuring device
JP2519775B2 (en) Refraction angle measuring device
JP7145030B2 (en) Measuring method and measuring device
JPH0364816B2 (en)
JP3726028B2 (en) 3D shape measuring device
JP3078133B2 (en) Method for inspecting alignment state of optical waveguide and optical waveguide
JP3162364B2 (en) Optical sensor device
JP3200927B2 (en) Method and apparatus for measuring coating state
JP2001165625A (en) Height measuring device, focus detector, focus detecting unit and optical device having focusing function
JP2523156B2 (en) Refraction angle measuring method and refractive index distribution measuring device
JPH08261734A (en) Shape measuring apparatus
JP2577008B2 (en) Refraction angle measuring device
JPH0812130B2 (en) Method and apparatus for measuring refractive index distribution
JP2009042128A (en) Height measuring device
JPS58169007A (en) Optical position measuring device
JPH0560654A (en) Method and device for measuring refractive index distribution
JP2533118B2 (en) Optical fiber outer diameter measuring method
JPH0339709Y2 (en)
KR19990051522A (en) 3D measuring device using cylindrical lens and laser scanner
JPH0560653A (en) Method and device for measuring refractive index distribution
JPH05346532A (en) Automatic focusing device of microscope and dark-field microscope
JPH0231103A (en) Apparatus for detecting three-dimensional shape of pattern
JPH01233309A (en) Linearity meter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees