JPH01233309A - Linearity meter - Google Patents

Linearity meter

Info

Publication number
JPH01233309A
JPH01233309A JP5996188A JP5996188A JPH01233309A JP H01233309 A JPH01233309 A JP H01233309A JP 5996188 A JP5996188 A JP 5996188A JP 5996188 A JP5996188 A JP 5996188A JP H01233309 A JPH01233309 A JP H01233309A
Authority
JP
Japan
Prior art keywords
light
prism
light intensity
optical axis
intensity pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5996188A
Other languages
Japanese (ja)
Inventor
Shigeo Takahashi
高橋 重男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP5996188A priority Critical patent/JPH01233309A/en
Publication of JPH01233309A publication Critical patent/JPH01233309A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the degree of linearity of a surface to be measured, by detecting a light intensity pattern which is formed on a light-detecting element by a light transmitted through a detecting prism set on a truck moving on the surface to be measured and a light reflected and transmitted again through the prism. CONSTITUTION:A laser light from a laser 1 is condensed to be passed through a pinhole 4 by a condenser lens 8, made further into a parallel light by a collimator lens 9 and emitted from one end of a measuring area. A detecting prism 11 is set on a truck 6 moving on a surface B to be measured in an optical path of the laser light. When the truck 6 is made to move on the surface B, a light intensity pattern is formed in a recessed or projecting shape according to the case when the optical axis of the detecting prism 11 is on the upper side of the optical axis OA or to the case when the former is on the lower side of the latter. The light intensity pattern is varied in accordance with the amount of displacement of the detecting prism 11. Based on the relationship between the amount of displacement and the light intensity pattern, the amount of displacement is determined from the pattern detected by a linear array sensor 13 and the degree of linearity of the surface B to be measured is measured therefrom.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は測定頭成長の制限を受けず、測定表面を検出す
る光学系が簡単なレーザー光を用いた直線計に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a straight line meter that is not limited by the growth of the measurement head and uses a laser beam with a simple optical system for detecting the measurement surface.

〈従来の技術〉 第5図は共焦点レンズ系を用いた直線計の構成図である
9図中、1は光源としてのレーザーである。ここからの
レーザー光はミラー2を経てレンズ3によりピンホール
4に集光される。5は前記レーザー光の光路中で測定表
面B上を移動する台車6上に載せられた光学系、7はス
クリーンである。光学系5は第6図で示すような構成と
なっている。焦点距離fが同一の凸レンズ5a、5b間
の中央に凹レンズ5cが入った3枚i造の光学系が用い
られる0本光学系の特徴は、ピンホール4とスクリーン
7との間の距離Sが固定で、この間で光学系5を移動さ
せた場合、スクリーン7上の映像の倍率は1で変らない
、光学系5が上にδχ杉動した場合、スクリーン7上の
像は2δχ下に移動する。この移動量に基づき測定表面
Bの直線度を求める。しかし、この装置は測定長Sが固
定されてしまうこと、光学系5のm造が大型になってし
まうこと等の欠点がある。
<Prior Art> FIG. 5 is a block diagram of a linear meter using a confocal lens system. In FIG. 9, numeral 1 indicates a laser as a light source. The laser light from here passes through a mirror 2 and is focused onto a pinhole 4 by a lens 3. 5 is an optical system mounted on a cart 6 that moves on the measurement surface B in the optical path of the laser beam, and 7 is a screen. The optical system 5 has a configuration as shown in FIG. The characteristic of the zero-lens optical system that uses a three-lens optical system in which a concave lens 5c is inserted in the center between convex lenses 5a and 5b with the same focal length f is that the distance S between the pinhole 4 and the screen 7 is If the optical system 5 is fixed and moved during this period, the magnification of the image on the screen 7 will remain 1. If the optical system 5 moves upward by δχ, the image on the screen 7 will move downward by 2δχ. . The linearity of the measurement surface B is determined based on this amount of movement. However, this device has drawbacks such as the measurement length S being fixed and the structure of the optical system 5 becoming large.

一方、測定表面上を4分割された検出面を持つ光検出素
子を移動させ、この検出面にレーザー光を当て測定を行
う直線計がある。この装置では、測定表面上を移動する
光検出素子の中心にレーザー光を当てる必要があり、こ
のためのアラインメント作業が難しく誤差が生じ易い。
On the other hand, there is a linear meter in which a photodetecting element having a detection surface divided into four parts is moved over the measurement surface and a laser beam is applied to the detection surface to perform measurement. In this device, it is necessary to irradiate a laser beam onto the center of a photodetector element moving on a measurement surface, and alignment work for this purpose is difficult and errors are likely to occur.

〈発明が解決しようとする課題〉 本発明の解決しようとする技術的課題は、前記台車に載
せる光学系の構造が単純で、測定長の制限がなく、測定
誤差が発生しにくい直線計を実現することにある。
<Problem to be Solved by the Invention> The technical problem to be solved by the present invention is to realize a linear meter that has a simple structure of the optical system mounted on the trolley, has no measurement length limit, and is less prone to measurement errors. It's about doing.

く課題を解決するための手段〉 本発明の構成は、レーザー光を円形断面を持つコリメイ
ト光にし測定領域の一端から射出する光源と、この光源
からの光路中で測定表面上を移動する台車に載置され、
前記レーザー光に対し光吸収特性を持つ材質によって形
成され、少なくとも二つの厚さの異なる部分を有し、基
準位置においてこれら二つの部分の境界領域を光軸が通
るように設置された検出プリズムと、前記測定領域の他
端に配置され、前記検出プリズムを透過した光を前記光
軸に関し対称な光路を通って戻すように反射する反射手
段と、この反射手段で反射され前記検出プリズムを再度
透過した光を検出する光検出素子とを具備し、この光検
出素子上に形成された光強度のパターンから前記測定表
面の直線度を求めるようにしたことにある。
Means for Solving the Problems The present invention has a light source that converts laser light into collimated light having a circular cross section and emits it from one end of the measurement area, and a trolley that moves over the measurement surface in the optical path from the light source. It is placed,
a detection prism made of a material that has a light absorption property for the laser beam, has at least two parts with different thicknesses, and is installed such that the optical axis passes through a boundary area between these two parts at the reference position; , a reflecting means disposed at the other end of the measurement area and reflecting the light that has passed through the detection prism so as to return through a symmetrical optical path with respect to the optical axis; and a reflecting means that is reflected by the reflecting means and passes through the detection prism again. and a photodetecting element for detecting the light, and the linearity of the measuring surface is determined from the light intensity pattern formed on the photodetecting element.

く作用〉 前記の技術手段は次のように作用する。即ち、前記検出
プリズムが例えば上半分が薄く、下半分が厚いプリズム
の場合、前記光軸がこれら厚さの異なる二つの部分の境
界領域を通っている場合、前記光検出素子で検出される
光強度は一定である。
Function> The above technical means works as follows. That is, in the case where the detection prism is, for example, a prism with a thin upper half and a thick lower half, and the optical axis passes through a boundary region between these two parts having different thicknesses, the light detected by the photodetecting element The intensity is constant.

前記境界領域が前記光軸より下側になった場合、前記光
検出素子には中央の光強度が高い凸形の光強度パタτン
が形成される。一方、前記境界領域が前記光軸より上側
になった場合、前記光検出素子には中央の光強度が低い
凹形の光強度パターンが形成される。この光強度パター
ンは前記検出プリズムの偏位量に応じて変化する。光強
度パターンと偏位量との関係予め求められるから、これ
に基づき測定された光強度パターンから丙位量が求まる
When the boundary region is below the optical axis, a convex light intensity pattern τ with high light intensity at the center is formed in the photodetector element. On the other hand, when the boundary region is above the optical axis, a concave light intensity pattern is formed in the photodetecting element, with the light intensity being low at the center. This light intensity pattern changes depending on the amount of deviation of the detection prism. Since the relationship between the light intensity pattern and the amount of deviation is determined in advance, the amount of deviation can be found from the light intensity pattern measured based on this.

〈実施例〉 以下図面に従い本発明の詳細な説明する。第1図は本発
明実施例装置の構成図、第2図は要部斜視図、第3図は
本発明実施例装置の動作説明図、第4図は光強度パター
ンを表わす、これらの図において、第5図における要素
と同じものには同一符号を付しこれらについての説明は
省略する。レーザー1からのレーザー光は集光レンズ8
によってピンホール4に集光され、更にコリメータレン
ズ9によって平行光とされ測定領域の一端から射出され
る。
<Example> The present invention will be described in detail below with reference to the drawings. Fig. 1 is a configuration diagram of the device according to the embodiment of the present invention, Fig. 2 is a perspective view of the main parts, Fig. 3 is an explanatory diagram of the operation of the device according to the embodiment of the present invention, and Fig. 4 shows the light intensity pattern. , the same elements as those in FIG. 5 are designated by the same reference numerals, and explanations thereof will be omitted. The laser beam from laser 1 passes through condensing lens 8
The light is condensed into the pinhole 4 by the collimator lens 9, and then converted into parallel light by the collimator lens 9 and emitted from one end of the measurement area.

10はハーフミラ−で、レーザー光を透過させ測定領域
に射出する一方、測定領域からの戻り光を光軸OAと直
角方向の検出器側に反射する。
Reference numeral 10 denotes a half mirror, which transmits the laser beam and emits it to the measurement area, while reflecting the return light from the measurement area to the detector side in the direction perpendicular to the optical axis OA.

11は光吸収特性を持った検出プリズムで、前記レーザ
ー光の光路中で測定表面Bを移動する台車6上に1lf
fされている。検出プリズム11は第2図で示すような
形状を有し、上半分11aが薄く(厚さd)、下半分1
1bが厚く(厚さ2d)形成されている。基準位置では
これら二つの部分11a、llbの境界領域Hを光軸O
Aが通るように設定されている。
Reference numeral 11 denotes a detection prism having light absorption characteristics, and a 1lf detection prism is mounted on the cart 6 that moves on the measurement surface B in the optical path of the laser beam.
It has been f. The detection prism 11 has a shape as shown in FIG.
1b is formed thick (thickness 2d). At the reference position, the boundary area H between these two parts 11a and llb is aligned with the optical axis O.
It is set so that A passes through.

12は測定領域の他端に固定された反射手段で、検出プ
リズム11を透過した光を光軸OAに関し対称な光路を
通って戻すように反射する0本実施例の場合、この反射
手段にコーナーキューブ反射プリズムが使用されている
。13はリニアアレイセンサを使った光検出素子、14
は集光レンズである。光検出素子13はコーナーキュー
ブ反射プリズム12で反射され、検出プリズム11を再
度透過し、ハーフミラ−10で光軸OAと直角方向に反
射された光を検出する。
Reference numeral 12 denotes a reflecting means fixed at the other end of the measurement area, which reflects the light transmitted through the detection prism 11 so as to return through a symmetrical optical path with respect to the optical axis OA. A cube reflecting prism is used. 13 is a photodetection element using a linear array sensor, 14
is a condensing lens. The light detection element 13 detects the light that is reflected by the corner cube reflecting prism 12, passes through the detection prism 11 again, and is reflected by the half mirror 10 in a direction perpendicular to the optical axis OA.

次にこのような装置の動作を第3図及び第4図を参照し
ながら説明する。第3図(a)は検出プリズム11が基
準位置にある場合で、この場合には光軸OAが検出プリ
ズム11の厚さの異なる二つの部分11a、llbの境
界領域Hを通るように設置されている。この状態ではり
ニアアレイセンサ13に入射される光は、検出プリズム
11において厚さ3dの光路を透過し全ての光が均一な
光吸収を受けるため、第4図に示すような光強度が一定
なパターンが得られる。
Next, the operation of such a device will be explained with reference to FIGS. 3 and 4. FIG. 3(a) shows a case where the detection prism 11 is at the reference position, and in this case, the optical axis OA is installed so as to pass through the boundary area H between the two parts 11a and llb of the detection prism 11 having different thicknesses. ing. In this state, the light incident on the linear array sensor 13 passes through an optical path with a thickness of 3d in the detection prism 11, and all the light is absorbed uniformly, so the light intensity is constant as shown in FIG. A pattern can be obtained.

台車6を測定表面B上で移動させた結果、検出プリズム
11が第3図(b)に示すように光軸OAより上側にな
った場合、リニアアレイセンサ13に入射される光には
検出プリズム11で厚さ3dの光路を透過するものと、
光軸OAに近い部分で4dの光路を透過するものとが含
まれ、光強度パターンは第4図(b)に示すような凹形
となる。尚、光強度の低い部分は検出グリズム11が光
軸OAより上側に偏位するにつれて広がる。
As a result of moving the trolley 6 on the measurement surface B, if the detection prism 11 is located above the optical axis OA as shown in FIG. 11, which transmits an optical path with a thickness of 3d,
The light intensity pattern includes a portion close to the optical axis OA that transmits an optical path of 4d, and the light intensity pattern becomes a concave shape as shown in FIG. 4(b). Note that the portion where the light intensity is low widens as the detection grism 11 deviates upward from the optical axis OA.

これに対し、検出プリズム11が第3図(c)に示すよ
うに光軸OAより下側になった場合、リニアレイセンサ
13に入射される光には検出プリズム11で厚さ3dの
光路を透過したものと、光軸OAの近い部分で2dの光
路を透過したものとが含まれ、光強度パターンは第4図
(c)に示すような凸形となる。光強度の高い部分は検
出プリズム11が光軸OAより下側に偏位するにつれて
広がる。
On the other hand, when the detection prism 11 is located below the optical axis OA as shown in FIG. The light intensity pattern includes the transmitted light and the light transmitted through the 2d optical path near the optical axis OA, and the light intensity pattern has a convex shape as shown in FIG. 4(c). The portion with high light intensity spreads as the detection prism 11 deviates downward from the optical axis OA.

光強度パターンは検出プリズム11の偏位量に応じて変
り、偏位量と光強度パターンとの関係(具体的には、パ
ターン中央部の光強度の高い部分、或は光強度の低い部
分と、この領域の検出に関与しなりニアアレイセンサの
素子数との関係)を求めておけば、この関係に基づきリ
ニアアレイセンサ13で検出されたパターンから偏位量
を求める。このように検出プリズム11の偏位量がコリ
メートされたレーザー光の円形断面の範囲内にある限り
測定表面Bの直線度が測定できる。
The light intensity pattern changes depending on the amount of deviation of the detection prism 11, and the relationship between the amount of deviation and the light intensity pattern (specifically, the part with high light intensity in the center of the pattern, or the part with low light intensity in the center of the pattern) , which are involved in the detection of this area, and the relationship with the number of elements of the near array sensor), then the amount of deviation is determined from the pattern detected by the linear array sensor 13 based on this relationship. In this way, as long as the amount of deviation of the detection prism 11 is within the range of the circular cross section of the collimated laser beam, the straightness of the measurement surface B can be measured.

〈発明の効果〉 本発明によれば、前記台車に載せる光学系は検出プリズ
ムだけなのでこの部分の構造を簡単にできる。また光源
と反射手段は共に固定されているなめ測定誤差か生じに
くく、アライメント作業も簡単である。更にまた前記台
車が移動する測定領域の長さが任意に選べる等の利点が
ある。
<Effects of the Invention> According to the present invention, the detection prism is the only optical system mounted on the trolley, so the structure of this part can be simplified. Furthermore, since the light source and the reflecting means are both fixed, measurement errors are less likely to occur, and alignment work is simple. Furthermore, there is an advantage that the length of the measurement area over which the cart moves can be arbitrarily selected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例装置の構成図、第2図は要部斜視
図、第3図は本発明実施例装置の動作説明図、第4図は
光強度パターン図、第5図は従来装置の構成図、第6図
は第5図の装置における光学系の構成図である。 1・・・レーザー、6・・・台車、9・・・コリメータ
レンズ、10・・・ハーフミラ−111・・・検出プリ
ズム、12・・・反射手段、13・・・光検出素子、B
・・・測定表面、OA・・・光軸、H・・・検出プリズ
ム11における厚さの異なる二つの部分の境界領域 第 1 図 1:レーサー、 6゛台革、   デ;コツX−タLシ
ス′IQ:ハ−yR5+、    H:j*m7゛’)
ス”1.、n:1i−IN+1’?13:九才史上京十
  B;シQすL表面 oA二尤軸第2図 ■ 第3図 第4図 (d)   ロニ] (b)   m
Fig. 1 is a configuration diagram of an apparatus according to an embodiment of the present invention, Fig. 2 is a perspective view of main parts, Fig. 3 is an explanatory diagram of the operation of the apparatus according to an embodiment of the present invention, Fig. 4 is a light intensity pattern diagram, and Fig. 5 is a conventional FIG. 6 is a diagram showing the configuration of the optical system in the device shown in FIG. 5. DESCRIPTION OF SYMBOLS 1... Laser, 6... Cart, 9... Collimator lens, 10... Half mirror 111... Detection prism, 12... Reflection means, 13... Photodetection element, B
...Measurement surface, OA...Optical axis, H...Boundary area between two parts of the detection prism 11 with different thicknesses 1st Figure 1: Racer, 6゛ base leather, D; Tips X-ta L cis'IQ: H-yR5+, H:j*m7゛')
1., n: 1i-IN+1'?13: 9-year-old history Kyoto B;

Claims (1)

【特許請求の範囲】[Claims] レーザー光を円形断面を持つコリメイト光にし測定領域
の一端から射出する光源と、この光源からの光路中で測
定表面上を移動する台車に載置され、前記レーザー光に
対し光吸収特性を持つ材質によつて形成され、少なくと
も二つの厚さの異なる部分を有し、基準位置においてこ
れら二つの部分の境界領域を光軸が通るように設置され
た検出プリズムと、前記測定領域の他端に配置され、前
記検出プリズムを透過した光を前記光軸に関し対称な光
路を通って戻すように反射する反射手段と、この反射手
段で反射され前記検出プリズムを再度透過した光を検出
する光検出素子とを具備し、この光検出素子上に形成さ
れた光強度のパターンから前記測定表面の直線度を求め
るようにしたことを特徴とする直線計。
A light source that converts laser light into collimated light with a circular cross section and emits it from one end of the measurement area, and a material that is placed on a trolley that moves over the measurement surface in the optical path from the light source and that has light absorption properties for the laser light. a detection prism formed by, having at least two parts with different thicknesses and installed so that its optical axis passes through the boundary area of these two parts at the reference position; and a detection prism placed at the other end of the measurement area. a reflecting means that reflects the light that has passed through the detection prism so as to return through a symmetrical optical path with respect to the optical axis; and a photodetection element that detects the light that has been reflected by the reflection means and has passed through the detection prism again. 1. A straightness meter, characterized in that the straightness of the measurement surface is determined from the light intensity pattern formed on the photodetection element.
JP5996188A 1988-03-14 1988-03-14 Linearity meter Pending JPH01233309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5996188A JPH01233309A (en) 1988-03-14 1988-03-14 Linearity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5996188A JPH01233309A (en) 1988-03-14 1988-03-14 Linearity meter

Publications (1)

Publication Number Publication Date
JPH01233309A true JPH01233309A (en) 1989-09-19

Family

ID=13128267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5996188A Pending JPH01233309A (en) 1988-03-14 1988-03-14 Linearity meter

Country Status (1)

Country Link
JP (1) JPH01233309A (en)

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
JPS63195513A (en) Optical noncontact position measuring instrument
JPH0743251B2 (en) Optical displacement meter
EP0208276A1 (en) Optical measuring device
JPH08114421A (en) Non-contact type measuring device for measuring thickness ofmaterial body comprising transparent material
US5011287A (en) Interferometer object position measuring system and device
JPS5979104A (en) Optical device
JPH01233309A (en) Linearity meter
JPS63241407A (en) Method and device for measuring depth of fine recessed part
JP2519775B2 (en) Refraction angle measuring device
JPH08261734A (en) Shape measuring apparatus
JPH04151502A (en) Photosensor device
JPS61112905A (en) Optical measuring apparatus
JPH0339709Y2 (en)
JPH044167Y2 (en)
JPH06137827A (en) Optical level difference measuring apparatus
JPH0231103A (en) Apparatus for detecting three-dimensional shape of pattern
JPH06109435A (en) Surface displacement meter
JP2533118B2 (en) Optical fiber outer diameter measuring method
JPS60211304A (en) Measuring instrument for parallelism
JPH1123953A (en) Microscope equipped with focus detector and displacement measuring device
JP2643270B2 (en) Interval measuring device
JPH06347230A (en) Method and apparatus for measuring shape
JPH06249648A (en) Displacement gauge
JPS6217607A (en) Optical clinometer