JPH06347230A - Method and apparatus for measuring shape - Google Patents

Method and apparatus for measuring shape

Info

Publication number
JPH06347230A
JPH06347230A JP14103593A JP14103593A JPH06347230A JP H06347230 A JPH06347230 A JP H06347230A JP 14103593 A JP14103593 A JP 14103593A JP 14103593 A JP14103593 A JP 14103593A JP H06347230 A JPH06347230 A JP H06347230A
Authority
JP
Japan
Prior art keywords
measured
light
reflected light
abberation
condensed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14103593A
Other languages
Japanese (ja)
Inventor
Satoru Takahashi
悟 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Akita Electronics Systems Co Ltd
Original Assignee
Hitachi Ltd
Akita Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Akita Electronics Co Ltd filed Critical Hitachi Ltd
Priority to JP14103593A priority Critical patent/JPH06347230A/en
Publication of JPH06347230A publication Critical patent/JPH06347230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To decrease the incident angle of reflected light on a condenser lens and to make it possible to measure a shape highly accurately by providing abberation decreasing means, which decrease the abberation generated after the passing of the reflected light from a material to be measured through the condenser lens. CONSTITUTION:After the one-dimensional scanning of a projected light beam 4a, reflected lights 5a and 5b from the surface of a material to be measured 5 are condensed on either closer lens of at least two condenser lenses 6a and 6b, which are abberation decreasing means provided at both right and left sides with respect to the beam scanning direction of a rotary mirror 4. At this time, the image of the reflected light 5a (5b), which is condensed on the condenser lens 6a (6b) is focused on a position detecting element 7a (7b). The reflected lights 5a and 5b from the material to be measured 5 are condensed with at least two condenser lenses 6a and 6b, which are the abberation decreasing means. Therefore, the incident angles of the reflected lights 5a and 5b with respect to the condenser lenses 6a and 6b become smaller than in the case wherein the light is condensed only wit one condenser lens. The abberation of the light after the condensation is decreased, and the highly accurate shape measurement can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物体の形状を測定する
装置において、前記物体の表面にレーザビームを走査さ
せ、その反射光を検出する非接触式の形状測定技術に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact type shape measuring technique for scanning the surface of an object with a laser beam and detecting the reflected light in an apparatus for measuring the shape of the object.

【0002】[0002]

【従来の技術】従来、物体の形状を測定する非接触式の
方法として、光を利用した光切断法が幅広く用いられて
いる。
2. Description of the Related Art Conventionally, as a non-contact method for measuring the shape of an object, a light cutting method utilizing light has been widely used.

【0003】この光切断法は、レンズを通したスリット
光を45度の角度で被測定物に投影し、その反射光を顕
微鏡やカメラ等により観測するものである。
This light cutting method is a method in which slit light passing through a lens is projected onto an object to be measured at an angle of 45 degrees, and the reflected light is observed by a microscope, a camera or the like.

【0004】なお、前記光切断法を利用して物体の三次
元形状を求める場合には、前記スリット光を副走査する
ことにより、前記物体の表面の形状を測定することが可
能となる。
When obtaining the three-dimensional shape of an object using the light section method, the shape of the surface of the object can be measured by sub-scanning the slit light.

【0005】また、光を用いた光切断法とは別に、レー
ザビームによるレーザ走査式の形状測定装置も使用され
ている。
In addition to the light cutting method using light, a laser scanning type shape measuring device using a laser beam is also used.

【0006】これは、レーザビームを一次元的に走査
し、その反射光を位置検出素子上に結像させ、一次元的
な表面変位を求め、さらに副走査することによって、被
測定物の三次元的な表面形状を求めるものである。
This is because the laser beam is one-dimensionally scanned, the reflected light is imaged on the position detecting element, the one-dimensional surface displacement is obtained, and further sub-scanning is performed, whereby the third order of the object to be measured is obtained. The original surface shape is obtained.

【0007】[0007]

【発明が解決しようとする課題】ところが、前記した従
来技術である光切断法およびレーザ走査式の形状測定装
置は、簡便な形状測定方法ではあるが、照射光やレーザ
ビームが、設置された集光レンズと反対側に走査されて
いる時に、その反射光の集光レンズに対する入射角度が
大きくなるため、位置検出素子上に映し出される像の非
点収差やコマ収差などの収差が大きくなり、測定誤差を
生じやすいという問題がある。
However, the above-mentioned conventional optical cutting method and laser scanning type shape measuring apparatus are simple shape measuring methods, but the irradiation light and the laser beam are installed in the collector. When scanning on the side opposite to the optical lens, the angle of incidence of the reflected light on the condenser lens increases, so the astigmatism and coma aberration of the image displayed on the position detection element increases and the measurement There is a problem that errors are likely to occur.

【0008】そこで、本発明の目的は、反射光の集光レ
ンズに対する入射角度を小さくし、高精度な形状測定を
行うことができる形状測定技術を提供することにある。
Therefore, an object of the present invention is to provide a shape measuring technique capable of performing highly accurate shape measurement by reducing the incident angle of reflected light with respect to a condenser lens.

【0009】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0010】[0010]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
以下のとおりである。
Among the inventions disclosed in the present application, a brief description will be given to the outline of typical ones.
It is as follows.

【0011】すなわち、本発明の形状測定装置は、レー
ザビームを回転鏡に反射させ、被測定物の表面に走査さ
せる形状測定装置であって、被測定物からの反射光の集
光レンズ通過後に発生する非点収差やコマ収差などの収
差を少なくする収差減少手段が設けられるものである。
That is, the shape measuring apparatus of the present invention is a shape measuring apparatus which reflects a laser beam on a rotating mirror and scans the surface of an object to be measured, and after the reflected light from the object to be measured passes through a condenser lens. Aberration reducing means for reducing aberrations such as astigmatism and coma that occur are provided.

【0012】また、前記収差減少手段は、被測定物から
の反射光を集光する少なくとも2つの集光レンズであ
る。
The aberration reducing means is at least two condenser lenses for condensing the reflected light from the object to be measured.

【0013】[0013]

【作用】前記した手段によれば、被測定物からの反射光
を集光する、たとえば少なくとも2つの集光レンズより
なる収差減少手段が設けられるため、前記集光レンズに
対する反射光の入射角度を小さくすることができる。
According to the above-mentioned means, since the aberration reducing means for condensing the reflected light from the object to be measured, which comprises, for example, at least two condensing lenses, is provided, the incident angle of the reflected light with respect to the condensing lens can be adjusted. Can be made smaller.

【0014】そのため、前記収差減少手段(集光レン
ズ)によって集光された光の非点収差やコマ収差などの
収差を減少させることができる。
Therefore, it is possible to reduce aberrations such as astigmatism and coma of the light condensed by the aberration reducing means (condenser lens).

【0015】[0015]

【実施例】図1は本発明の一実施例である形状測定装置
の構成および測定原理を示す解説図である。また、図2
は本発明の一実施例である形状測定装置における被測定
物の表面の変位量を示す理論図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram showing the configuration and measurement principle of a shape measuring apparatus which is an embodiment of the present invention. Also, FIG.
FIG. 4 is a theoretical diagram showing the amount of displacement of the surface of the object to be measured in the shape measuring apparatus which is an embodiment of the present invention.

【0016】まず、図1を用いて、本実施例の形状測定
装置の構成を説明すると、レーザビームを発する半導体
レーザ1と、前記半導体レーザ1から発せられたレーザ
ビーム1aを絞り込むビーム絞りレンズ2と、前記ビー
ム絞りレンズ2によって絞り込まれたコリメート光2a
の光路を変換させる直角プリズム3と、前記直角プリズ
ム3によって光路を変換されたコリメート光2aを被測
定物5に対して走査させる回転鏡4と、被測定物5から
の反射光5a,5bを集光させる少なくとも2つの集光
レンズ(収差減少手段)6a,6bと、被測定物5の表
面の変位を検出する位置検出素子7a,7bとから構成
されるものである。
First, the configuration of the shape measuring apparatus of this embodiment will be described with reference to FIG. 1. A semiconductor laser 1 for emitting a laser beam and a beam diaphragm lens 2 for narrowing down the laser beam 1a emitted from the semiconductor laser 1 are described. And the collimated light 2a narrowed down by the beam diaphragm lens 2
A right-angle prism 3 for changing the optical path of the object, a rotary mirror 4 for scanning the collimated light 2a whose optical path is changed by the right-angle prism 3 with respect to the object 5 to be measured, and reflected lights 5a and 5b from the object 5 to be measured. It is composed of at least two condenser lenses (aberration reducing means) 6a, 6b for condensing and position detecting elements 7a, 7b for detecting the displacement of the surface of the DUT 5.

【0017】次に、図1を用いて、本実施例の形状測定
装置における測定原理を説明する。
Next, the measurement principle of the shape measuring apparatus of this embodiment will be described with reference to FIG.

【0018】最初に、半導体レーザ1から発せられたレ
ーザビーム1aは、ビーム絞りレンズ2によって、絞り
込まれ、コリメート光2aになる。
First, the laser beam 1a emitted from the semiconductor laser 1 is narrowed down by the beam diaphragm lens 2 and becomes collimated light 2a.

【0019】さらに、前記コリメート光2aは、直角プ
リズム3によってその光路が変換される。
Further, the optical path of the collimated light 2a is changed by the rectangular prism 3.

【0020】続いて、光路が変換されたコリメート光2
aは、ガルバノメータなどによる回転鏡4によって、投
光ビーム4aとなり、前記投光ビーム4aが被測定物5
の表面に一次元的に走査される。
Next, the collimated light 2 whose optical path has been changed
a is turned into a light projection beam 4a by the rotating mirror 4 such as a galvanometer, and the light projection beam 4a is the object 5 to be measured.
The surface is scanned one-dimensionally.

【0021】なお、走査後、被測定物5の表面からの反
射光5a,5bは、回転鏡4のビーム走査方向に対して
左右両側に設けられた収差減少手段である少なくとも2
つの集光レンズ6a,6bのどちらか近い方のレンズに
集光される。
After scanning, the reflected lights 5a and 5b from the surface of the object to be measured 5 are at least 2 which are aberration reducing means provided on the left and right sides of the rotating mirror 4 in the beam scanning direction.
The light is condensed by the one of the two condenser lenses 6a and 6b, whichever is closer.

【0022】この時、集光レンズ6aに集光された反射
光5aは位置検出素子7a上に結像され、また、集光レ
ンズ6bに集光された反射光5bは位置検出素子7b上
に結像される。
At this time, the reflected light 5a focused on the condenser lens 6a is focused on the position detecting element 7a, and the reflected light 5b focused on the condenser lens 6b is focused on the position detecting element 7b. It is imaged.

【0023】そして、被測定物5からの反射光5a,5
bが、収差減少手段である少なくとも2つの集光レンズ
6a,6bによって集光されるため、1つの集光レンズ
だけによって集光される場合よりも、集光レンズ6a,
6bに対する反射光5a,5bの入射角度が小さくな
り、集光後の光の収差を減少させることが可能となる。
The reflected lights 5a, 5 from the object 5 to be measured
b is condensed by at least two condenser lenses 6a and 6b which are aberration reducing means, so that the condenser lens 6a, 6b is condensed more than the case where only one condenser lens is condensed.
The incident angle of the reflected lights 5a and 5b with respect to 6b becomes small, and it becomes possible to reduce the aberration of the condensed light.

【0024】次に、図1および図2を用いて、本実施例
の形状測定装置における被測定物5の表面の変位量を求
める計算方法について説明する。
Next, a calculation method for obtaining the displacement amount of the surface of the object 5 to be measured in the shape measuring apparatus of this embodiment will be described with reference to FIGS. 1 and 2.

【0025】前記変位量は、ビーム振れ中心8(または
集光レンズ中心9)から被測定物5の表面までの鉛直距
離Dと、被測定物5の水平方向の距離Xとによって表さ
れるものである。
The displacement amount is represented by a vertical distance D from the center 8 of the beam deflection (or the center 9 of the condenser lens) to the surface of the DUT 5 and a horizontal distance X of the DUT 5. Is.

【0026】ここで、ガルバノメータなどによる回転鏡
4を経て投下される投光ビーム4aのビーム投光角を
θ、ビーム振れ中心8と集光レンズ中心9との距離を
A、集光レンズ中心9と位置検出素子受光面10との距
離をB、位置検出素子7上の像点の変位をCとすると、
前記変位量は、D=(A*B*SINθ)/(B*CO
Sθ−C*SINθ),X=(A*C*SINθ)/
(B*COSθ−C*SINθ)の計算式によって求め
られる。
Here, the beam projection angle of the projection beam 4a projected through the rotary mirror 4 such as a galvanometer is θ, the distance between the beam deflection center 8 and the condenser lens center 9 is A, and the condenser lens center 9 is When the distance between the position detection element light receiving surface 10 is B and the displacement of the image point on the position detection element 7 is C,
The displacement amount is D = (A * B * SINθ) / (B * CO
Sθ-C * SINθ), X = (A * C * SINθ) /
It is obtained by the calculation formula of (B * COSθ-C * SINθ).

【0027】この結果、前記計算式によって、被測定物
5の表面の一次元的な変位量を測定することができる。
As a result, the one-dimensional displacement amount of the surface of the object to be measured 5 can be measured by the calculation formula.

【0028】さらに、被測定物5または本実施例による
形状測定装置を、回転あるいは移動させて、副走査する
ことによって前記変位量を表す数値(DおよびX)を合
成すれば、被測定物5の表面形状を三次元的に測定する
ことができる。
Further, by rotating or moving the object to be measured 5 or the shape measuring apparatus according to the present embodiment and sub-scanning, the numerical values (D and X) representing the displacement amount are combined, and the object to be measured 5 is measured. The surface shape of can be measured three-dimensionally.

【0029】以上、本発明者によってなされた発明を実
施例に基づき具体的に説明したが、本発明は前記実施例
に限定されるものではなく、その要旨を逸脱しない範囲
で種々変更可能であることは言うまでもない。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the embodiments and various modifications can be made without departing from the scope of the invention. Needless to say.

【0030】例えば、本実施例においてはレーザビーム
の照射源として半導体レーザを用いて説明したが、実際
に使用されるレーザはHe−Neレーザであってもかま
わない。
For example, although the semiconductor laser is used as the irradiation source of the laser beam in this embodiment, the laser actually used may be a He-Ne laser.

【0031】また、本実施例における回転鏡は、ガルバ
ノメータによるものを用いたが、ポリゴンミラーを用い
れば、さらに高速なビーム走査を実現することが可能と
なる。
Further, although the rotary mirror in this embodiment uses a galvanometer, a polygon mirror can be used to realize higher speed beam scanning.

【0032】[0032]

【発明の効果】本願において開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
下記のとおりである。
The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows.
It is as follows.

【0033】(1).被測定物からの反射光を集光する
収差減少手段、たとえば少なくとも2つの集光レンズが
設置されることによって、反射光の前記集光レンズへの
入射角度が小さくなるため、集光された光の非点収差や
コマ収差などの収差が減少し、高精度な形状測定を実現
することができる。
(1). Since the aberration reducing means for condensing the reflected light from the object to be measured, for example, at least two condensing lenses are installed, the incident angle of the reflected light on the condensing lens becomes small, so that the condensed light is collected. Astigmatism, coma, and other aberrations are reduced, and highly accurate shape measurement can be realized.

【0034】(2).前記収差減少手段は少なくとも2
つの集光レンズが設置されることであるため、装置全体
を大形化することなく、高精度な形状測定を実現するこ
とができる。
(2). The aberration reducing means is at least 2
Since two condenser lenses are installed, highly accurate shape measurement can be realized without increasing the size of the entire apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である形状測定装置の構成お
よび測定原理を示す解説図である。
FIG. 1 is an explanatory diagram showing a configuration and a measurement principle of a shape measuring apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例である形状測定装置における
被測定物の表面の変位量を示す理論図である。
FIG. 2 is a theoretical diagram showing the amount of displacement of the surface of the object to be measured in the shape measuring apparatus which is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 1a レーザビーム 2 ビーム絞りレンズ 2a コリメート光 3 直角プリズム 4 回転鏡 4a 投光ビーム 5 被測定物 5a,5b 反射光 6a,6b 集光レンズ(収差減少手段) 7a,7b 位置検出素子 8 ビーム振れ中心 9 集光レンズ中心 10 位置検出素子受光面 θ ビーム投光角 A ビーム振れ中心と集光レンズ中心との距離 B 集光レンズ中心と位置検出素子受光面との距離 C 位置検出素子上の像点の変位 D ビーム振れ中心から被測定物の表面までの鉛直距離 X 被測定物の水平方向の距離 1 Semiconductor Laser 1a Laser Beam 2 Beam Stop Lens 2a Collimated Light 3 Right Angle Prism 4 Rotating Mirror 4a Projected Beam 5 DUT 5a, 5b Reflected Light 6a, 6b Condenser Lens (Aberration Reduction Means) 7a, 7b Position Detection Element 8 Beam shake center 9 Condenser lens center 10 Position detection element light receiving surface θ Beam projection angle A Distance between beam shake center and condensing lens center B Distance between condensing lens center and position detecting element light receiving surface C Position detecting element Image point displacement D Vertical distance from the center of beam deflection to the surface of the measured object X Horizontal distance of the measured object

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定物に対してレーザビームを走査し
て、その被測定物の形状を非接触で測定する方法であっ
て、前記レーザビームを回転鏡により走査し、前記被測
定物からの反射光を少なくとも2つの集光レンズを通し
て、それぞれの位置検出素子上に結像させ、前記レーザ
ビームの投光角度と前記反射光の位置検出素子上におけ
る結像点の位置とからの計算によって、前記被測定物の
表面の形状を導き出すことを特徴とする形状測定方法。
1. A method for scanning a laser beam on a measured object to measure the shape of the measured object in a non-contact manner, wherein the laser beam is scanned by a rotating mirror to remove the measured object from the measured object. The reflected light of the above is imaged on each position detecting element through at least two condenser lenses, and the calculation is performed from the projection angle of the laser beam and the position of the image forming point of the reflected light on the position detecting element. A shape measuring method, which comprises deriving a shape of a surface of the object to be measured.
【請求項2】 被測定物に対してレーザビームを走査す
ることによって、前記被測定物の形状を非接触で測定す
る装置であって、前記レーザビームを走査させる回転鏡
と、前記被測定物からの反射光の収差を減少させる収差
減少手段と、前記被測定物の表面の変位量を検出する位
置検出素子とからなることを特徴とする形状測定装置。
2. A device for measuring the shape of the object to be measured in a non-contact manner by scanning the object to be measured with a laser beam, the rotating mirror scanning the laser beam, and the object to be measured. A shape measuring device comprising: an aberration reducing means for reducing the aberration of the reflected light from and a position detecting element for detecting the amount of displacement of the surface of the object to be measured.
【請求項3】 前記収差減少手段は、被測定物からの反
射光を集光する少なくとも2つの集光レンズであること
を特徴とする請求項2記載の形状測定装置。
3. The shape measuring apparatus according to claim 2, wherein the aberration reducing means is at least two condenser lenses for condensing reflected light from the object to be measured.
JP14103593A 1993-06-14 1993-06-14 Method and apparatus for measuring shape Pending JPH06347230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14103593A JPH06347230A (en) 1993-06-14 1993-06-14 Method and apparatus for measuring shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14103593A JPH06347230A (en) 1993-06-14 1993-06-14 Method and apparatus for measuring shape

Publications (1)

Publication Number Publication Date
JPH06347230A true JPH06347230A (en) 1994-12-20

Family

ID=15282718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14103593A Pending JPH06347230A (en) 1993-06-14 1993-06-14 Method and apparatus for measuring shape

Country Status (1)

Country Link
JP (1) JPH06347230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105698706A (en) * 2014-11-26 2016-06-22 北京智朗芯光科技有限公司 Device for automatically detecting two-dimensional morphology of wafer substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105698706A (en) * 2014-11-26 2016-06-22 北京智朗芯光科技有限公司 Device for automatically detecting two-dimensional morphology of wafer substrate

Similar Documents

Publication Publication Date Title
JPS5999304A (en) Method and apparatus for comparing and measuring length by using laser light of microscope system
US4168126A (en) Electro-optical measuring system using precision light translator
US4932781A (en) Gap measuring apparatus using interference fringes of reflected light
JPH0455243B2 (en)
US20030058455A1 (en) Three-dimensional shape measuring apparatus
JPH10239036A (en) Three-dimensional measuring optical device
JPS5979104A (en) Optical device
JP2002296018A (en) Three-dimensional shape measuring instrument
JPH06347230A (en) Method and apparatus for measuring shape
JP2949179B2 (en) Non-contact type shape measuring device and shape measuring method
JPS63241407A (en) Method and device for measuring depth of fine recessed part
JPH06347229A (en) Method and apparatus for measuring shape
JPS632324B2 (en)
JP2597711B2 (en) 3D position measuring device
JPH05215526A (en) Surface-shape measuring apparatus
JP2000097633A (en) Device for detecting mark location and method for detecting mark location using the device
KR19990051522A (en) 3D measuring device using cylindrical lens and laser scanner
JPH08166209A (en) Polygon mirror evaluating device
JP3326682B2 (en) Displacement measuring device
JPS5826325Y2 (en) position detection device
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
KR910007629Y1 (en) Measuring apparatus
JP2004037191A (en) Spherical part measuring method and spherical part measuring device
JPH0652168B2 (en) Three-dimensional shape measuring device
JPH0540821A (en) 3-dimensional measuring device