JPH0231103A - Apparatus for detecting three-dimensional shape of pattern - Google Patents
Apparatus for detecting three-dimensional shape of patternInfo
- Publication number
- JPH0231103A JPH0231103A JP18107388A JP18107388A JPH0231103A JP H0231103 A JPH0231103 A JP H0231103A JP 18107388 A JP18107388 A JP 18107388A JP 18107388 A JP18107388 A JP 18107388A JP H0231103 A JPH0231103 A JP H0231103A
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- objective lens
- lens
- laser beam
- pinhole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 37
- 238000001514 detection method Methods 0.000 claims description 12
- 239000000758 substrate Substances 0.000 abstract description 13
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
基板上に形成したパターンを検査するパターン立体形状
検知装置に関し、
透明な微細パターンの立体形状を効率的に且つ正確に測
定することを目的とし、
異なる波長光を発振する二つのレーザ光源と、酸二つの
レーザ光を、試料に対向して配置された一つの対物レン
ズに導くための少なくとも2個のビームスプリッタを含
む同軸光学系と、上記試料で反射し該対物レンズを逆行
するレーザ光を、上記同軸光学系中の1個のビームスプ
リフタを用いて集束レンズとピンホールおよびフォトデ
ィテクタよりなる共焦点光学系に導く光学系とで構成し
、上記対物レンズまたはピンホールを光軸に沿って微動
可能な如くに構成する。[Detailed Description of the Invention] [Summary] This invention relates to a pattern three-dimensional shape detection device for inspecting a pattern formed on a substrate, and aims to efficiently and accurately measure the three-dimensional shape of a transparent fine pattern. A coaxial optical system including two laser light sources that oscillate light, at least two beam splitters that guide the two acid laser beams to one objective lens placed facing the sample, and a coaxial optical system that includes two laser beams that oscillate light. and an optical system that guides the laser light traveling backward through the objective lens to a confocal optical system consisting of a focusing lens, a pinhole, and a photodetector using one beam splitter in the coaxial optical system, and The lens or pinhole is configured to be able to move slightly along the optical axis.
本発明は、基板上の微細パターンの検査装置に係り、特
に透明な微細パターンの立体形状を効率的に且つ正確に
測定するパターン立体形状検知装置に関する。The present invention relates to an inspection device for fine patterns on a substrate, and more particularly to a three-dimensional pattern shape detection device for efficiently and accurately measuring the three-dimensional shape of a transparent fine pattern.
第3図は従来の微細パターン検知方法の例を示した図で
ある。FIG. 3 is a diagram showing an example of a conventional fine pattern detection method.
図で、1は基板2上に形成されている厚さ数μm程度の
パターンを示している。In the figure, numeral 1 indicates a pattern formed on a substrate 2 and having a thickness of approximately several μm.
従来、このようなパターン1の厚さhまたは断面形状(
プロフィール)を検知するには、通常光切断法と呼ばれ
る方法によることが多い。Conventionally, the thickness h or cross-sectional shape (
In order to detect the profile), a method called photosection method is often used.
すなわち、シート状の例えばレーザ光3を該パターン1
に対して斜め方向(図の場合には垂直面に対して角度θ
)から照射し、該レーザ光3がパターン1を切断する形
状(図のA)をレーザ光3の照射角に対してほぼ垂直方
向の光軸上に設置している光学系4で読み取り、更にそ
の信号をディテクタ5に導き演算処理することによって
モニタ画像6に例えば基板部反射光6aに対するパター
ン表面反射位置6bとして表示し、その差h′を検出す
る。That is, a sheet-like laser beam 3 is applied to the pattern 1.
(in the case of the figure, the angle θ with respect to the vertical plane)
), and the shape (A in the figure) in which the laser beam 3 cuts the pattern 1 is read by an optical system 4 installed on the optical axis substantially perpendicular to the irradiation angle of the laser beam 3, and further The signal is led to the detector 5 and subjected to arithmetic processing to be displayed on the monitor image 6 as, for example, a pattern surface reflection position 6b relative to the substrate part reflection light 6a, and the difference h' therebetween is detected.
ここで検出されるhlは、パターン1の高さhと比例す
ることから、hlを読み取ることによってパターン1の
厚さhおよび断面形状を検知するようにしている。Since the hl detected here is proportional to the height h of the pattern 1, the thickness h and cross-sectional shape of the pattern 1 are detected by reading hl.
この場合、該パターン1が光学的に不透明な材料で形成
されている場合は効率的で且つ正確なパターン検知が可
能である。In this case, if the pattern 1 is formed of an optically opaque material, efficient and accurate pattern detection is possible.
しかし、該パターン1が写真蝕刻技術におけるレジスト
の如く光学的に透明な場合には、照射するレーザ光3は
パターン表面で殆ど反射しないため上記パターン表面反
射位?1i6bが形成されても微弱であり、厚さは検知
することができてもそのパターン表面反射位置6bから
実際のパターン断面形状までを検知することは不可能で
あった。However, if the pattern 1 is optically transparent, such as a resist in photo-etching technology, the irradiated laser beam 3 is hardly reflected on the pattern surface, so the pattern surface reflection level is not as high as the above-mentioned reflection level. Even if 1i6b was formed, it was weak, and although the thickness could be detected, it was impossible to detect the actual cross-sectional shape of the pattern from the pattern surface reflection position 6b.
従来のパターン検知方法では、パターンが光学的に透明
な場合には断面形状を検知することができないと云う問
題があった。Conventional pattern detection methods have a problem in that the cross-sectional shape cannot be detected when the pattern is optically transparent.
上記問題点は、異なる波長光を発振する二つのレーザ光
源と、
酸二つのレーザ光を、試料に対向して配置された一つの
対物レンズに導くための少なくとも2個のビームスプリ
ッタを含む同軸光学系と、上記試料で反射し該対物レン
ズを逆行するレーザ光を、上記同軸光学系中の1個のビ
ームスプリッタを用いて集束レンズとピンホールおよび
フォトディテクタよりなる共焦点光学系に導く光学系と
で構成し、
上記対物レンズまたはピンホールを光軸に沿って微動可
能としたパターン立体形状検知装置によって解決される
。The above problem is solved by a coaxial optical system that includes two laser sources that emit light of different wavelengths and at least two beam splitters that guide the two laser beams to one objective lens placed opposite the sample. an optical system that guides the laser beam reflected by the sample and traveling backward through the objective lens to a confocal optical system including a focusing lens, a pinhole, and a photodetector using one beam splitter in the coaxial optical system; The problem is solved by a pattern three-dimensional shape detection device that is configured with the above-mentioned objective lens or pinhole that can be moved slightly along the optical axis.
互いに波長の異なる二つの光ビームを透明パターンの同
一箇所に照射すると、パターン内部における屈折率の差
によって焦点位置にずれが生ずる。When two light beams with different wavelengths are irradiated onto the same part of a transparent pattern, a difference in refractive index within the pattern causes a shift in the focal position.
そこでこの焦点位置のずれを検出し演算することによっ
て透明パターンの厚さを知ることができると共に、光ビ
ームまたはパターン部分を該パターンの長手方向と直角
方向に移動させることによって該パターンの断面形状を
容易に検知することができる。Therefore, by detecting and calculating this focal position shift, it is possible to know the thickness of the transparent pattern, and by moving the light beam or pattern part in a direction perpendicular to the longitudinal direction of the pattern, the cross-sectional shape of the pattern can be determined. Can be easily detected.
本発明では、波長の異なる二つのレーザ光を透明パター
ン上に照射し、屈折率の差で生ずる焦点位置(換言すれ
ば集束位置)のずれ量を対物レンズまたはピンホールを
光軸に沿って微動させることによってフォトディテクタ
で検出するようにしている。In the present invention, two laser beams with different wavelengths are irradiated onto a transparent pattern, and the amount of shift in the focal point (in other words, the focusing position) caused by the difference in refractive index is adjusted by finely moving the objective lens or pinhole along the optical axis. By doing so, it is detected by a photodetector.
従って、透明パターンの厚さおよび断面形状(プロフィ
ール)を効率よくしかも正確に検知することができる。Therefore, the thickness and cross-sectional shape (profile) of the transparent pattern can be detected efficiently and accurately.
第1図は本発明を説明する原理図であり、第2図は本発
明の実施例を示す構成図である。FIG. 1 is a principle diagram explaining the present invention, and FIG. 2 is a configuration diagram showing an embodiment of the present invention.
第1図で、1が基板2上に形成されている厚さ数μm程
度のパターンを示していることは第3図の場合と同様で
あり、該基板2はX−Yテーブル9上に載置されている
。In FIG. 1, 1 indicates a pattern with a thickness of several μm formed on a substrate 2, which is the same as in FIG. 3, and the substrate 2 is placed on an X-Y table 9. It is placed.
10は光軸Sに沿って図示A方向(紙面では上下方向)
に微動できる対物レンズであり、11は検知側の集束レ
ンズ、12はピンホール、13はフォトディテクタであ
る。10 is along the optical axis S in the direction A shown in the figure (vertical direction on the paper)
11 is a focusing lens on the detection side, 12 is a pinhole, and 13 is a photodetector.
なお、集束レンズ11.ピンホール12およびフォトデ
ィテクタ13よりなる光学系は光信号の強弱を検知する
最小のユニットとして通常共焦点光学系と呼ばれている
ものである。Note that the focusing lens 11. The optical system consisting of the pinhole 12 and the photodetector 13 is usually called a confocal optical system as the smallest unit for detecting the strength of an optical signal.
また点線で示す14は偏光ビームスプリフタであり15
は投光レンズである。Also, 14 indicated by a dotted line is a polarizing beam splitter, and 15
is a projection lens.
ここで該投光レンズ15から平行な波長λ1のレーザ光
■と波長λ2のレーザ光■を同時に射出し偏光ビームス
プリッタ14で共にパターン1の方向に反射させる。Here, the parallel laser beam (1) with a wavelength λ1 and the laser beam (2) with a wavelength λ2 are simultaneously emitted from the projecting lens 15 and reflected in the direction of the pattern 1 by the polarizing beam splitter 14.
この反射したレーザ光■、■は対物レンズ10を通過し
た後、波長λ1のレーザ光■はパターン1に進入しパタ
ーン下面すなわち基板2の面の所定位置Fで焦点を結び
反射して■“となる。その後対物レンズ10と偏光ビー
ムスプリッタ14を透過し更に集束レンズ11で集束さ
れてピンホール12部分のFlで焦点を結びフォトディ
テクタ13に強力な光信号として入射するように各光学
系を配置している。After the reflected laser beams ■ and ■ pass through the objective lens 10, the laser beam ■ with a wavelength λ1 enters the pattern 1, focuses at a predetermined position F on the lower surface of the pattern, that is, the surface of the substrate 2, and is reflected. After that, each optical system is arranged so that the light passes through the objective lens 10 and the polarizing beam splitter 14, is further focused by the focusing lens 11, is focused at Fl in the pinhole 12, and enters the photodetector 13 as a strong optical signal. ing.
一方、波長λ2のレーザ光■は上記レーザ光■と同様に
透明パターン1に進入するが、波長が異なっているため
該パターン内での屈折率に差が生じレーザ光■とは異な
った光路を辿る。On the other hand, the laser beam (2) with a wavelength λ2 enters the transparent pattern 1 in the same way as the laser beam (2), but since the wavelength is different, there is a difference in the refractive index within the pattern, and the laser beam (2) follows a different optical path than the laser beam (2). follow.
すなわち、該レーザ光■は図ではパターン内のFl点に
焦点を結ぶようになっている。That is, the laser beam (2) is focused on the Fl point within the pattern in the figure.
従ってパターン下面すなわち基板2の面で反射したレー
ザ光■1は対物レンズ10および偏光ビームスプリッタ
14を透過し更に集束レンズ11で集束されてもピンホ
ール12で集束せず例えばFl ’に集束するのでフ
ォトディテクタ13には微弱な光信号しか到達しない。Therefore, even if the laser beam (1) reflected from the lower surface of the pattern, that is, the surface of the substrate 2, passes through the objective lens 10 and the polarizing beam splitter 14 and is further focused by the focusing lens 11, it is not focused at the pinhole 12 but is focused at, for example, Fl'. Only a weak optical signal reaches the photodetector 13.
ここで、対物レンズ10を光軸方向に微動させてレーザ
光■のパターン1内部における焦点位置F°を基板2上
のF点に合わせると、該レーザ光■の反射光■9は上記
のレーザ光■9とほぼ同じ光路を辿ることからピンホー
ル12部分のFlで集束することになり、フォトディテ
クタ13に強力な光信号を入射させることができる。Here, when the objective lens 10 is slightly moved in the optical axis direction to align the focal position F° in the pattern 1 of the laser beam (2) with the point F on the substrate 2, the reflected light (9) of the laser beam (2) is reflected by the laser beam (2). Since it follows almost the same optical path as the light (1) 9, it is focused by Fl in the pinhole 12 portion, and a strong optical signal can be made incident on the photodetector 13.
このことは、対物レンズ10を移動することによってレ
ーザ光■の場合と■の場合それぞれについてフォトディ
テクタ13に強力な光信号が到達することになり、対物
レンズ10の作動距離から透明パターン1の厚さを演算
することができる。This means that by moving the objective lens 10, a strong optical signal will reach the photodetector 13 for each of the laser beams (2) and (2), and the thickness of the transparent pattern 1 will be can be calculated.
またレーザ光を投射しなからX−Yテーブル9でパター
ン1を図示B方向に移動させると、該パターンの存在領
域を外れる位置ではフォトディテクタ13に到達する光
信号が急激に変化するため、その変化の度合を演算する
ことによって断面形状が検知できる。Furthermore, if the pattern 1 is moved in the direction B in the figure on the X-Y table 9 without projecting the laser beam, the optical signal reaching the photodetector 13 will change rapidly at a position outside the area where the pattern exists. The cross-sectional shape can be detected by calculating the degree of .
ここで例えば、
対物レンズ10の作動距離をUとし、レーザ光■■のパ
ターン1に対する入射角(=パターンからの出射角)を
θ、波長λ1のレーザ光■のパターン1における屈折角
をα(この場合の屈折率はnl)、波長λ2のレーザ光
■のパターン1における屈折角をβ(この場合の屈折率
はn2)とすると、
透明パターン1の厚さhは、
sin α=rzsin θ
sin β=n2sin θ
から、対物レンズ10の作動距離Uを求めることによっ
て該パターン1の厚さhと断面形状を検知することがで
きる。Here, for example, the working distance of the objective lens 10 is U, the incident angle of laser beam ■■ to pattern 1 (=outgoing angle from the pattern) is θ, and the refraction angle of laser beam ■ of wavelength λ1 in pattern 1 is α( In this case, the refractive index is nl), and the refraction angle of the laser beam ■ in pattern 1 with wavelength λ2 is β (in this case, the refractive index is n2), then the thickness h of transparent pattern 1 is sin α=rzsin θ sin By determining the working distance U of the objective lens 10 from β=n2sin θ, the thickness h and cross-sectional shape of the pattern 1 can be detected.
一方、上記の対物レンズ10を固定し共焦点光学系にお
けるピンホール12をFlの位置から点線で示すFl
1の位置に微動させてもフォトディテクタ13には強力
な光信号が到達する。On the other hand, with the objective lens 10 fixed, the pinhole 12 in the confocal optical system is indicated by a dotted line from the position of Fl.
Even if the photodetector 13 is slightly moved to position 1, a strong optical signal reaches the photodetector 13.
従ってピンホールの作動距離を検知しても全く同等の効
果が得られることを確認している。Therefore, we have confirmed that the same effect can be obtained even if the working distance of the pinhole is detected.
第2図で、(A)は全体の構成例を示しくB)は検知信
号例を示したものである。In FIG. 2, (A) shows an example of the overall configuration, and B) shows an example of a detection signal.
図(A)で、X−Yテーブル9上には透明パターン1が
形成された基板2が載置されている。In Figure (A), a substrate 2 on which a transparent pattern 1 is formed is placed on an X-Y table 9.
20.21はそれぞれ異なった波長(λ1.λ2)のレ
ーザ光を発振するレーザ光源であり、例えば20は実線
で示す400μmの波長光■をまた21は破線で示す9
00μmの波長光■をそれぞれ発振するものである。20 and 21 are laser light sources that emit laser beams of different wavelengths (λ1, λ2), for example, 20 is a laser light source with a wavelength of 400 μm shown by a solid line, and 21 is a laser light source 9 shown by a broken line.
They each oscillate light with a wavelength of 00 μm.
22a、22bはフィルタ、23は上記二つの光ビーム
を同軸化し特定の偏光成分として送出するビームスプリ
フタ、24は特定の偏光成分のみを反射し他の偏光成分
を透過するビームスプリッタ、25は光軸方向(A方向
)に微動可能な対物レンズ、26は反射ミラ、27は集
束レンズ、28はピンホール、29はフォトディテクタ
、30は該フォトディテクタ29の信号を演算処理して
表示するモニタ画像を示している。22a and 22b are filters; 23 is a beam splitter that makes the two light beams coaxial and sends them out as a specific polarized component; 24 is a beam splitter that reflects only a specific polarized component and transmits other polarized components; 25 is a light beam 26 is a reflection mirror, 27 is a focusing lens, 28 is a pinhole, 29 is a photodetector, and 30 is a monitor image that is displayed by processing the signal of the photodetector 29. ing.
ここで、レーザ光源20.21から発振した二つの光ビ
ームはビームスプリッタ23で特定な偏光成分を持つ同
軸二光線となり、更にビームスプリフタ24で反射した
後そのまま対物レンズ25で集束せられて透明パターン
1の表面所定位置を照射する。Here, the two light beams oscillated from the laser light sources 20 and 21 are turned into coaxial two beams with specific polarization components by the beam splitter 23, and then reflected by the beam splitter 24 and then focused by the objective lens 25 to become transparent. A predetermined position on the surface of pattern 1 is irradiated.
その後、Hf5 透明パターン1の下面すなわちi+t
2の上面で反射した光ビームは対物レンズ25を通った
後ビームスプリッタ24を透過し、集束レンズ27で集
束せられてピンホール28を経てフォトディテクタ29
に入射するように構成されている。After that, Hf5 is applied to the lower surface of transparent pattern 1, that is, i+t
The light beam reflected from the upper surface of 2 passes through the objective lens 25, passes through the beam splitter 24, is focused by the focusing lens 27, passes through the pinhole 28, and is directed to the photodetector 29.
is configured to be incident on the
この際、対物レンズ25を図示されない焦点移動機構で
図示入方向に微動させることによってフォトディテクタ
29には、光ビーム■、■のそれぞれについての光信号
としてのピークを検知することができる。At this time, by slightly moving the objective lens 25 in the direction shown in the drawing using a focus moving mechanism (not shown), the photodetector 29 can detect the peak as an optical signal for each of the light beams (1) and (2).
図(B)は図(A)のモニタ画像30における検知信号
の例を示したもので、横軸Xには時間をまた縦軸Yには
信号パワーをそれぞれ表わしている。Figure (B) shows an example of a detection signal in the monitor image 30 of Figure (A), in which the horizontal axis X represents time and the vertical axis Y represents signal power.
この場合、上記対物レンズ25の移動で得られるカーブ
は図の如く二つのピークを示すカーブとなるため、該ピ
ーク間の時間Δtから対物レンズ25の作動距離Uを求
め第1図で説明した如く、透明パターン1の厚さおよび
断面形状を効率よく且つ正確に検知することができる。In this case, the curve obtained by moving the objective lens 25 becomes a curve showing two peaks as shown in the figure, so the working distance U of the objective lens 25 is calculated from the time Δt between the peaks, as explained in FIG. 1. , the thickness and cross-sectional shape of the transparent pattern 1 can be detected efficiently and accurately.
なお第1図で説明した如く、第2図(A)における対物
レンズ25を固定し、共焦点光学系のピンホール28を
図示されない移動機構によって光軸に沿う図示B方向に
微動させても、全く同様の効果を得ることができる。As explained in FIG. 1, even if the objective lens 25 in FIG. 2(A) is fixed and the pinhole 28 of the confocal optical system is slightly moved in the direction B in the diagram along the optical axis by a moving mechanism (not shown), Exactly the same effect can be obtained.
上述の如(本発明により、基板上に形成された透明パタ
ーンの厚さおよび断面形状が効率的に且つ正確に検知で
きるパターン立体形状検知装置を提供することができる
。As described above, the present invention can provide a pattern three-dimensional shape detection device that can efficiently and accurately detect the thickness and cross-sectional shape of a transparent pattern formed on a substrate.
23.24はビームスプリッタ、
25は対物レンズ、 26は反射ミラ、27は集束レ
ンズ、 28はピンホール、29はフォトディテクタ
、 3oはモニタ画像、をそれぞれ表わす。23 and 24 represent a beam splitter, 25 an objective lens, 26 a reflecting mirror, 27 a focusing lens, 28 a pinhole, 29 a photodetector, and 3o a monitor image.
第1図は本発明を説明する原理図、
第2図は本発明の実施例を示す構成図、第3図は従来の
微細パターン検知方法の例を示した図、
である。図において、
1は透明パターン、 2は基板、
9はX−Yテーブル、
20.21はレーザ光源、22a、 22bはフィルタ
、木溌」月r洸明する岸y工図FIG. 1 is a principle diagram explaining the present invention, FIG. 2 is a configuration diagram showing an embodiment of the present invention, and FIG. 3 is a diagram showing an example of a conventional fine pattern detection method. In the figure, 1 is a transparent pattern, 2 is a substrate, 9 is an X-Y table, 20.21 is a laser light source, 22a and 22b are filters,
Claims (1)
)と、 該二つのレーザ光を、試料に対向して配置された一つの
対物レンズ(25)に導くための少なくとも2個のビー
ムスプリッタ(23、24)を含む同軸光学系と、 上記試料で反射し該対物レンズ(25)を逆行するレー
ザ光を、上記同軸光学系中の1個のビームスプリッタ(
24)を用いて集束レンズ(27)とピンホール(28
)およびフォトディテクタ(29)よりなる共焦点光学
系に導く光学系とで構成し、 上記対物レンズ(25)またはピンホール(28)を光
軸に沿って微動可能としたことを特徴とするパターン立
体形状検知装置。[Claims] Two laser light sources (20, 21
); and a coaxial optical system including at least two beam splitters (23, 24) for guiding the two laser beams to one objective lens (25) disposed facing the sample; The laser beam that is reflected and travels backward through the objective lens (25) is transmitted through one beam splitter (
24) using a focusing lens (27) and a pinhole (28).
) and an optical system leading to a confocal optical system consisting of a photodetector (29), and the objective lens (25) or pinhole (28) can be moved slightly along the optical axis. Shape detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18107388A JPH0231103A (en) | 1988-07-19 | 1988-07-19 | Apparatus for detecting three-dimensional shape of pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18107388A JPH0231103A (en) | 1988-07-19 | 1988-07-19 | Apparatus for detecting three-dimensional shape of pattern |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0231103A true JPH0231103A (en) | 1990-02-01 |
Family
ID=16094331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18107388A Pending JPH0231103A (en) | 1988-07-19 | 1988-07-19 | Apparatus for detecting three-dimensional shape of pattern |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0231103A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09113240A (en) * | 1995-10-16 | 1997-05-02 | Agency Of Ind Science & Technol | Method and device for detecting three-dimensional information of light transmitting substance |
KR100363218B1 (en) * | 2000-06-22 | 2002-11-30 | 에스엔유 프리시젼 주식회사 | Optical measuring system |
JP2010122193A (en) * | 2008-11-21 | 2010-06-03 | Fujitsu Ltd | Shape-measuring device of three dimensional structures |
-
1988
- 1988-07-19 JP JP18107388A patent/JPH0231103A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09113240A (en) * | 1995-10-16 | 1997-05-02 | Agency Of Ind Science & Technol | Method and device for detecting three-dimensional information of light transmitting substance |
KR100363218B1 (en) * | 2000-06-22 | 2002-11-30 | 에스엔유 프리시젼 주식회사 | Optical measuring system |
JP2010122193A (en) * | 2008-11-21 | 2010-06-03 | Fujitsu Ltd | Shape-measuring device of three dimensional structures |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5929983A (en) | Optical apparatus for determining the height and tilt of a sample surface | |
JPH08505952A (en) | Inspection interferometer with scanning function | |
JP5268061B2 (en) | Board inspection equipment | |
KR830006705A (en) | Method and apparatus for detecting confocal condition of objective lens | |
KR101446061B1 (en) | Apparatus for measuring a defect of surface pattern of transparent substrate | |
EP0627610B1 (en) | Two-stage detection noncontact positioning apparatus | |
US5202740A (en) | Method of and device for determining the position of a surface | |
JP4130236B2 (en) | Object surface shape measuring method and apparatus | |
JPH04236307A (en) | Detecting device of three-dimensional shape of pattern | |
JPS5979104A (en) | Optical device | |
JPH0231103A (en) | Apparatus for detecting three-dimensional shape of pattern | |
JPS6161178B2 (en) | ||
JP2019178923A (en) | Distance measuring unit and light irradiation device | |
GB2379011A (en) | Apparatus for measuring the thickness of materials using the focal length of a lensed fibre | |
JP2005106706A (en) | Instrument and method for measuring refractive index and thickness | |
JP2949179B2 (en) | Non-contact type shape measuring device and shape measuring method | |
JPH0648399Y2 (en) | Non-contact micro surface abnormality detector | |
JP2625209B2 (en) | Optical micro displacement measuring device | |
JP2528761B2 (en) | Position detection device | |
JPH074909A (en) | Laser sensor apparatus | |
JPH06109435A (en) | Surface displacement meter | |
JPH0255722B2 (en) | ||
RU2148790C1 (en) | Method and device for precise contactless measurement of distance between surfaces | |
CN116783024A (en) | Apparatus and method for determining focus position | |
JPS63182547A (en) | Particle analyzer |