JP2005106706A - Instrument and method for measuring refractive index and thickness - Google Patents

Instrument and method for measuring refractive index and thickness Download PDF

Info

Publication number
JP2005106706A
JP2005106706A JP2003342493A JP2003342493A JP2005106706A JP 2005106706 A JP2005106706 A JP 2005106706A JP 2003342493 A JP2003342493 A JP 2003342493A JP 2003342493 A JP2003342493 A JP 2003342493A JP 2005106706 A JP2005106706 A JP 2005106706A
Authority
JP
Japan
Prior art keywords
light
optical path
state
measured
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003342493A
Other languages
Japanese (ja)
Inventor
Takeshi Sakai
猛 坂井
Hitoshi Oguri
均 小栗
Katsuhito Mure
勝仁 牟禮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Oyokoden Lab Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Oyokoden Lab Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, Oyokoden Lab Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2003342493A priority Critical patent/JP2005106706A/en
Publication of JP2005106706A publication Critical patent/JP2005106706A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To quicken measurement for a thickness and a refractive index of a measured object using an optical interference method. <P>SOLUTION: The measured object 3 is irradiated with transmission light transmitted through a semi-transparent mirror 22 out of light source light, via a condenser lens 23. A peak of non-interfered light is detected by the first photoreceiver 5 while scanning a Z-stage 25, so as to obtain a moving amount Δz of the Z-stage between the first state light-converged on a front face of the measured object 3 and the second state light-converged on a rear face thereof. The first state is held, and the third state where intensity of the interference light gets maximum is detected by the second photoreceiver 4 while scanning an L-stage 39. The second state is held, and the fourth state where intensity of the interference light gets maximum is detected by the second photoreceiver 4 while scanning the L-stage 39. The refractive index and the thickness of the measured object 3 are found based on a moving amount ΔL of the L-stage between the third state and the fourth state, and based on the Δz hereinbefore. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば薄膜の屈折率及び厚さなど、光の屈折率が異なる媒質の界面間に挟まれた被測定物における屈折率及び厚さを測定することができる装置に関する。   The present invention relates to an apparatus capable of measuring a refractive index and a thickness of an object to be measured sandwiched between interfaces of media having different refractive indexes of light, such as a refractive index and a thickness of a thin film.

従来より、光干渉法を用いて薄膜等の被測定物の屈折率と厚さを同時に測定できる方法および装置が知られている(例えば、下記特許文献1〜5参照)。
特開平9−218016号公報 特開平10−2855号公報 特開平10−325795号公報 特開平11−344313号公報 特開2001−4538号公報
Conventionally, a method and an apparatus capable of simultaneously measuring the refractive index and thickness of an object to be measured such as a thin film using an optical interference method are known (for example, see Patent Documents 1 to 5 below).
Japanese Patent Laid-Open No. 9-2108016 Japanese Patent Laid-Open No. 10-2855 JP-A-10-325795 JP-A-11-344313 JP 2001-4538 A

図5に、光干渉法を用いて媒質の屈折率及び厚さを測定する装置の従来例を示す。
この例の装置にあっては、光源51から出射された低コヒーレント光が、ビームスプリッタ52で2つに分岐される。一方の分岐光は集光レンズ53で集光されて被測定物54に照射され、他方の分岐光は参照ミラー55に照射される。被測定物54で反射された検査光と、参照ミラー55で反射された参照光は、ビームスプリッタ52で合波されて干渉光を形成し、該干渉光の光強度が受光器56で検知されるように構成されている。被測定物54は微動可能なZステージ61上に保持されており、参照ミラー55は微動可能なLステージ62上に保持されている。また参照ミラー55は振動子(図示略)に固定され、所定の周波数で所定振幅の振動が加えられ、これにより参照光が位相変調されるように構成されている。
FIG. 5 shows a conventional example of an apparatus for measuring the refractive index and thickness of a medium using optical interferometry.
In the apparatus of this example, the low coherent light emitted from the light source 51 is branched into two by the beam splitter 52. One branched light is condensed by the condensing lens 53 and irradiated to the measurement object 54, and the other branched light is irradiated to the reference mirror 55. The inspection light reflected by the DUT 54 and the reference light reflected by the reference mirror 55 are combined by the beam splitter 52 to form interference light, and the light intensity of the interference light is detected by the light receiver 56. It is comprised so that. An object 54 to be measured is held on a Z stage 61 that can be finely moved, and a reference mirror 55 is held on an L stage 62 that can be finely moved. Further, the reference mirror 55 is fixed to a vibrator (not shown), and is configured such that vibration of a predetermined amplitude is applied at a predetermined frequency, and thereby the reference light is phase-modulated.

かかる構成の装置により、薄膜状の被測定物54における屈折率及び厚さを測定する方法を説明する。
まず被測定物54を、その厚さ方向が光軸方向となるようにセットし、光源51から光を出射させる。
そして、被測定物54の表裏両面のうち、集光レンズ53に近い方の面(前面という)に、光源51からの光が集光し、かつ、ビームスプリッタ52で分岐された一方の分岐光(検査光)が被測定物54の前面で反射されて受光器56に至るまでの光路長と、他方の分岐光(参照光)が参照ミラー55で反射されて受光器56に至るまでの光路長とが等しくなるような、被測定物54と参照ミラー55の位置を検出する(第1の位置検出)。
さらに、被測定物54の表裏両面のうち、集光レンズ53から遠い方の面(後面という)に、光源51からの光が集光し、かつ、ビームスプリッタ52で分岐された一方の分岐光(検査光)が被測定物54の前面で反射されて受光器56に至るまでの光路長と、他方の分岐光(参照光)が参照ミラー55で反射されて受光器56に至るまでの光路長とが等しくなるような、被測定物54と参照ミラー55の位置を検出する(第2の位置検出)。
具体的に、上記第1の位置および第2の位置は、受光器56で検知される干渉光信号のピーク強度が最大となる位置として検出される。
A method for measuring the refractive index and the thickness of the thin film-like object 54 using the apparatus having such a configuration will be described.
First, the measurement object 54 is set so that the thickness direction thereof is the optical axis direction, and light is emitted from the light source 51.
Then, one of the branched lights branched from the beam splitter 52 while the light from the light source 51 is condensed on the surface (referred to as the front surface) closer to the condensing lens 53 among the front and back surfaces of the measurement object 54. The optical path length from when (inspection light) is reflected from the front surface of the measurement object 54 to the light receiver 56 and the optical path from the other branched light (reference light) reflected by the reference mirror 55 to the light receiver 56 The positions of the DUT 54 and the reference mirror 55 are detected so that the lengths are equal (first position detection).
Furthermore, the light from the light source 51 condenses on the surface (referred to as the rear surface) far from the condensing lens 53 among the front and back surfaces of the object to be measured 54 and one branched light branched by the beam splitter 52. The optical path length from when (inspection light) is reflected from the front surface of the measurement object 54 to the light receiver 56 and the optical path from the other branched light (reference light) reflected by the reference mirror 55 to the light receiver 56 The positions of the DUT 54 and the reference mirror 55 are detected so that the lengths are equal (second position detection).
Specifically, the first position and the second position are detected as positions where the peak intensity of the interference light signal detected by the light receiver 56 is maximum.

すなわち、図6に示すように、Zステージ61を初期位置「P=0μm」に固定した状態でLステージ62をスキャンさせて、受光器56で検知される検査光と参照光の干渉光信号の強度を測定し、ピークが得られるときのLステージの位置「L(P)」と、その時のピーク強度を測定する。Zステージ61の初期位置は、集光レンズ53の焦点が被測定物54の表裏両面のうちのいずれか一方の近傍に位置するように設定するのが好ましい。
この後、Zステージ61を微動させて「P=P+1μm」の位置に固定し、その状態で再びLステージ62をスキャンさせて干渉光信号の強度を測定し、ピークが得られるときのLステージの位置「L(P)」と、その時のピーク強度を測定する。このようにしてZステージ61の微動および固定とLステージ62のスキャンとを交互に繰り返しつつ、干渉光信号のピーク強度を測定し、ピーク強度が最大となるところを上記第1の位置および第2の位置として検出する。
したがって、例えば、Zステージの微動可能な最小距離(分解能)が1μmであり、被測定物54の厚さ(表裏面間の距離)が5mmの場合、Lステージ62のスキャンは5000回以上行われることになる。
That is, as shown in FIG. 6, the L stage 62 is scanned with the Z stage 61 fixed at the initial position “P 0 = 0 μm”, and the interference light signal of the inspection light and the reference light detected by the light receiver 56 is detected. The L stage position “L (P 0 )” when the peak is obtained and the peak intensity at that time are measured. The initial position of the Z stage 61 is preferably set so that the focal point of the condenser lens 53 is located in the vicinity of either one of the front and back surfaces of the object to be measured 54.
Thereafter, the Z stage 61 is finely moved and fixed at the position of “P 1 = P 0 +1 μm”, and in this state, the L stage 62 is scanned again to measure the intensity of the interference light signal, and a peak is obtained. The L stage position “L (P 1 )” and the peak intensity at that time are measured. In this way, while finely moving and fixing the Z stage 61 and scanning of the L stage 62 are repeated alternately, the peak intensity of the interference light signal is measured, and the place where the peak intensity becomes maximum is the first position and the second position. Detect as the position of.
Therefore, for example, when the minimum distance (resolution) at which the Z stage can be finely moved is 1 μm and the thickness of the DUT 54 (the distance between the front and back surfaces) is 5 mm, the scanning of the L stage 62 is performed 5000 times or more. It will be.

このようにして上記第1の位置および第2の位置を検出することにより、第1の位置から第2の位置に至るまでのZステージ61の移動量△z、およびLステージ62の移動量△Lが得られるので、この△zの値と△Lの値とから、被測定物の屈折率と厚さを同時に得ることができる(例えば、上記特許文献4[0007]〜[0012]参照)。   By detecting the first position and the second position in this manner, the movement amount Δz of the Z stage 61 from the first position to the second position and the movement amount Δ of the L stage 62 are detected. Since L is obtained, the refractive index and thickness of the object to be measured can be obtained simultaneously from the value of Δz and the value of ΔL (see, for example, Patent Document 4 [0007] to [0012] above). .

ところで、このような測定方法にあっては、測定に時間がかかるという不満があった。すなわち、厚さ未知の被測定物の表面および裏面のそれぞれに光源光が集光されている状態を見つけるためには、Zステージ61を微動させる度にLステージ62のスキャンを行う必要があり、測定の迅速性に欠けるものであった。   By the way, in such a measuring method, there was dissatisfaction that it took time for the measurement. That is, in order to find the state where the light source light is condensed on each of the front and back surfaces of the object to be measured whose thickness is unknown, it is necessary to scan the L stage 62 every time the Z stage 61 is finely moved. The measurement was not quick.

本発明は前記事情に鑑みてなされたもので、光干渉法を用いた、被測定物の厚さと屈折率の測定を迅速化できるようにした測定装置および測定方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a measuring apparatus and a measuring method capable of speeding up the measurement of the thickness and refractive index of an object to be measured using an optical interference method. .

前記課題を解決するために、本発明の屈折率及び厚さの測定装置は、光源と、該光源からの光の一部を反射し一部を透過する半透鏡と、該半透鏡の透過光を集光して被測定物に照射する集光手段と、前記被測定物で反射された検査光を含む非干渉光の強度を検出する第1の検出手段と、前記半透鏡で反射された参照光と前記被測定物で反射された検査光とを含む光を、第1の分岐光路と、光路長可変手段を備えた第2の分岐光路に分岐する分岐手段と、前記第1の分岐光路を経た光と、前記第2の分岐光路を経た光とを合波して干渉光を生成する合波手段と、前記干渉光の強度を検出する第2の検出手段を備えてなることを特徴とする。   In order to solve the above problems, a refractive index and thickness measuring apparatus according to the present invention includes a light source, a semi-transparent mirror that reflects part of light from the light source and transmits part of the light, and transmitted light of the semi-transparent mirror. The light is reflected by the semi-transparent mirror, the light collecting means for collecting the light and irradiating the object to be measured, the first detecting means for detecting the intensity of the non-interference light including the inspection light reflected by the object to be measured. Branching means for branching light including reference light and inspection light reflected by the object to be measured into a first branching optical path and a second branching optical path having an optical path length varying unit; and the first branching And a light combining means for combining the light having passed through the optical path and the light having passed through the second branch optical path to generate interference light, and a second detection means for detecting the intensity of the interference light. Features.

前記半透鏡で反射された参照光と前記被測定物で反射された検査光とを含む光を、前記第1の分岐光路に至る前に分岐して前記第1の検出手段に導く分岐手段を設けることができる。
または、前記第2の分岐光路の光路長を、前記第1の分岐光路を経た光と前記第2の分岐光路を経た光とが干渉光を生成しない非干渉領域に調節可能とし、前記第2の検出手段が前記第1の検出手段を兼ねている構成としてもよい。
または、前記第1の分岐光路および第2の分岐光路のいずれか一方を遮断し得る手段を設け、前記第2の検出手段が前記第1の検出手段を兼ねている構成とすることもできる。
Branching means for branching light including reference light reflected by the semi-transparent mirror and inspection light reflected by the measurement object before reaching the first branch optical path and leading to the first detection means; Can be provided.
Alternatively, the optical path length of the second branch optical path can be adjusted to a non-interference region in which the light passing through the first branch optical path and the light passing through the second branch optical path do not generate interference light, The detecting means may also serve as the first detecting means.
Alternatively, a means capable of blocking either one of the first branch optical path and the second branch optical path may be provided, and the second detection means may also serve as the first detection means.

本発明はまた、本発明の測定装置を用いて被測定物の屈折率及び厚さを測定する方法であって、前記光源からの光のうち前記半透鏡を透過した光を、前記集光手段を介して前記被測定物に照射して、該集光手段と被測定物との間の距離を変化させつつ、前記第1の検出手段で前記非干渉光の強度を検出することによって、前記半透鏡を透過した光が、前記被測定物の光源側の前面上に集光されている第1の状態、および前記被測定物の光源から遠い後面上に集光されている第2の状態をそれぞれ検知し、該第1の状態と第2の状態との間における、前記集光手段と被測定物との間の距離の変化量△zを求める工程と、
前記第1の状態を保持した状態で、前記第2の分岐光路の光路長を変化させつつ、前記第2の検出手段で検出される前記干渉光の強度を検出することによって、該干渉光の強度が最大となる第3の状態を検知する工程と、
前記第2の状態を保持した状態で、前記第2の分岐光路の光路長を変化させつつ、前記第2の検出手段で検出される前記干渉光の強度を検出することによって、該干渉光の強度が最大となる第4の状態を検知する工程と、
前記第3の状態と第4の状態との間における、前記第2の分岐光路の光路長の変化量△Lを求める工程と、
前記△zと△Lの値を用いて前記被測定物の屈折率及び厚さを求める工程とを有することを特徴とする屈折率及び厚さの測定方法を提供する。
The present invention is also a method for measuring the refractive index and thickness of an object to be measured using the measuring apparatus of the present invention, wherein light from the light source that has passed through the semi-transparent mirror is used as the light collecting means. The intensity of the non-interfering light is detected by the first detecting means while irradiating the object to be measured via the first detecting means while changing the distance between the light collecting means and the object to be measured. A first state in which light transmitted through the semi-transparent mirror is collected on the light source side front surface of the object to be measured, and a second state in which the light is condensed on a rear surface far from the light source of the object to be measured. Respectively, and obtaining a change amount Δz of the distance between the light collecting means and the object to be measured between the first state and the second state;
By detecting the intensity of the interference light detected by the second detection means while changing the optical path length of the second branch optical path while maintaining the first state, Detecting a third state where the intensity is maximum;
By detecting the intensity of the interference light detected by the second detection means while changing the optical path length of the second branch optical path while maintaining the second state, Detecting a fourth state where the intensity is maximum;
Obtaining a change amount ΔL of the optical path length of the second branch optical path between the third state and the fourth state;
A method for measuring the refractive index and thickness, comprising the step of determining the refractive index and thickness of the object to be measured using the values of Δz and ΔL.

本発明によれば、△zと△Lを求めるのに必要なステージのスキャン回数を、大幅に減らすことができるので、測定の迅速化を図ることができる。   According to the present invention, the number of stage scans required to obtain Δz and ΔL can be greatly reduced, so that the measurement can be speeded up.

以下、本発明を詳しく説明する。図1は、本発明の測定装置の第1の実施形態を示した概略構成図である。図中符号1は光源を示し、3は被測定物を示す。
光源光は低コヒーレンス光であることが好ましく、光源1としては、広帯域なバンド幅を有する光を出射できるものが好ましく用いられ、例えばSLD(super-luminescent diode:スーパールミネセントダイオード)やLED(light emitting diode:発光ダイオオード)が好適に用いられる。
被測定物3は、薄板や薄膜等、光の屈折率が異なる媒質の界面間に挟まれた層状であり、光源光を透過可能で、かつ光学的に一様な層とみなせるものが適用される。
被測定物3は、光源光の光軸方向が厚さ方向と一致するように保持、固定されている。被測定物3の表裏両面のうちの光源1側の一方の面(以下、前面という)が最表面を成していてもよく、該前面上に光源光を透過する層が設けられていてもよい。また被測定物3の他方の面(以下、後面という)が最表面を成していてもよく、該後面上に被測定物3と屈折率が異なる層が設けられていてもよい。被測定物3の厚さは、使用する広帯域光源1のコヒーレンス長よりも、被測定物の厚さと屈折率の積の値が小さいと分解能の関係により測定が困難になる。一方、厚過ぎると被測定物の前面に焦点を位置させたときの反射光量と、後面に焦点を位置させたときの反射光量との差が大きくなるので、10μm〜10mm程度が好ましく、より好ましくは10μm〜2mm程度である。
The present invention will be described in detail below. FIG. 1 is a schematic configuration diagram showing a first embodiment of the measuring apparatus of the present invention. In the figure, reference numeral 1 denotes a light source, and 3 denotes an object to be measured.
The light source light is preferably low coherence light, and the light source 1 is preferably one that can emit light having a wide bandwidth, such as SLD (super-luminescent diode) or LED (light An emitting diode (light emitting diode) is preferably used.
The object to be measured 3 is a layer sandwiched between the interfaces of media having different light refractive indexes, such as a thin plate or a thin film, and is capable of transmitting light from the light source and can be regarded as an optically uniform layer. The
The DUT 3 is held and fixed so that the optical axis direction of the light source light coincides with the thickness direction. One of the front and back surfaces of the DUT 3 on the light source 1 side (hereinafter referred to as the front surface) may form the outermost surface, and a layer that transmits light source light may be provided on the front surface. Good. Further, the other surface (hereinafter referred to as a rear surface) of the device under test 3 may form the outermost surface, and a layer having a refractive index different from that of the device under test 3 may be provided on the rear surface. If the value of the product of the thickness of the object to be measured and the refractive index is smaller than the coherence length of the broadband light source 1 to be used, the thickness of the object to be measured 3 becomes difficult to measure due to the resolution. On the other hand, if the thickness is too thick, the difference between the amount of reflected light when the focal point is located on the front surface of the object to be measured and the amount of reflected light when the focal point is located on the rear surface becomes large. Is about 10 μm to 2 mm.

本実施形態の装置において、光源1から出射された光は、第1の光ファイバ11、サーキュレータ2、および第2の光ファイバ12を順に経て測定部20に至るように構成されている。
サーキュレータ2は3つのポートを有しており、それぞれに第1の光ファイバ11、第2の光ファイバ12、第3の光ファイバ13が接続されている。サーキュレータ2は、第1の光ファイバ11から第2の光ファイバ12へは光が通り、第2の光ファイバ12から第3の光ファイバ13へも光が通るが、これらの逆向きには光は戻らないように構成されている。
第1の光ファイバ11、第2の光ファイバ12、および第3の光ファイバ13としては、一般的な伝送用光ファイバが用いられ、石英系ガラスファイバが好適に用いられる。
In the apparatus of the present embodiment, the light emitted from the light source 1 is configured to reach the measurement unit 20 through the first optical fiber 11, the circulator 2, and the second optical fiber 12 in order.
The circulator 2 has three ports, to which a first optical fiber 11, a second optical fiber 12, and a third optical fiber 13 are connected. In the circulator 2, light passes from the first optical fiber 11 to the second optical fiber 12, and light also passes from the second optical fiber 12 to the third optical fiber 13. Is configured not to return.
As the first optical fiber 11, the second optical fiber 12, and the third optical fiber 13, a general transmission optical fiber is used, and a silica-based glass fiber is preferably used.

測定部20では、コリメータ21、1/4波長板24、半透鏡22、および集光レンズ(集光手段)23が、光軸が一致するように配置されており、かつ該光軸方向に沿って微動可能なZステージ25上に固定されている。   In the measurement unit 20, the collimator 21, the quarter wavelength plate 24, the semi-transparent mirror 22, and the condensing lens (condensing means) 23 are arranged so that their optical axes coincide with each other, and along the optical axis direction. And is fixed on a Z stage 25 that can be moved finely.

測定部20において、第2の光ファイバ12から出射された光は、コリメータ21で平行光とされた後、半透鏡22へ入射される。
半透鏡22は、入射光の一部を反射し一部を透過する特性を有しており、該半透鏡22の透過光は集光レンズ23によって集光され、該集光光が被測定物3へ照射される。そして被測定物3の反射光(以下、検査光ということもある)が、集光レンズ23を経て半透鏡22を透過した後、コリメータ21を経て第2の光ファイバ12に入射されるように構成されている。
一方、半透鏡22の反射光(以下、参照光ということもある)はコリメータ21を経て第2の光ファイバ12に入射される。
In the measurement unit 20, the light emitted from the second optical fiber 12 is collimated by the collimator 21 and then enters the semi-transparent mirror 22.
The semi-transparent mirror 22 has a characteristic of reflecting a part of incident light and transmitting a part of the incident light. The transmitted light of the semi-transparent mirror 22 is collected by a condenser lens 23, and the collected light is measured. 3 is irradiated. Then, the reflected light of the object to be measured 3 (hereinafter also referred to as inspection light) passes through the condensing lens 23 and passes through the semi-transparent mirror 22, and then enters the second optical fiber 12 through the collimator 21. It is configured.
On the other hand, the reflected light of the semi-transparent mirror 22 (hereinafter also referred to as reference light) is incident on the second optical fiber 12 through the collimator 21.

半透鏡22としては、例えばガラス基板上に誘電体多層膜を蒸着した構成のものを用いることができる。半透鏡22における反射率および透過率は特に制限されるものではないが、透過率が低すぎると、被測定物3からの反射光(検査光)の強度が弱すぎて測定精度の劣化が大きくなる。したがって、半透鏡22の反射率は、被測定物3の前面および後面における反射率にもよるが、概ね3%〜20%程度であることが好ましい。
1/4波長板24は必須ではないが、これを設けると、光源1から第1の光ファイバ11に入射されて第2の光ファイバ12から測定部20へ出射される光の偏波面と、半透鏡22および被測定物3でそれぞれ反射されて第2の光ファイバ12に入射される光の偏波面とが直交することになるので、サーキュレータ2の構成を簡易にすることができる。コリメータ21と半透鏡22との間に設けることが好ましい。1/4波長板24と半透鏡22を一体的に設けることもできる。
As the semi-transparent mirror 22, for example, one having a configuration in which a dielectric multilayer film is deposited on a glass substrate can be used. The reflectance and transmittance of the semi-transparent mirror 22 are not particularly limited. However, if the transmittance is too low, the intensity of reflected light (inspection light) from the object to be measured 3 is too weak and the measurement accuracy is greatly degraded. Become. Therefore, the reflectance of the semi-transparent mirror 22 is preferably about 3% to 20%, although it depends on the reflectance on the front surface and the rear surface of the DUT 3.
The quarter-wave plate 24 is not essential, but if it is provided, the polarization plane of the light incident on the first optical fiber 11 from the light source 1 and emitted from the second optical fiber 12 to the measuring unit 20; Since the polarization planes of the light reflected by the semi-transparent mirror 22 and the DUT 3 and incident on the second optical fiber 12 are orthogonal to each other, the configuration of the circulator 2 can be simplified. It is preferable to provide between the collimator 21 and the semi-transparent mirror 22. The quarter wave plate 24 and the semi-transparent mirror 22 can be provided integrally.

このように測定部20から第2の光ファイバ12へは、検査光および参照光が入射され、該検査光の光信号と参照光の光信号の両方を含む光が第2の光ファイバ12、サーキュレータ2、および第3の光ファイバ13を順に経て干渉部30に至るように構成されている。
また、本実施形態では、第3の光ファイバ13の中途に分岐が設けられており、第3の光ファイバ13を伝搬する光信号の一部が第5の光ファイバ15を経て、第1の検出手段としての第1の受光器5に入射されるように構成されている。
In this way, the inspection light and the reference light are incident on the second optical fiber 12 from the measurement unit 20, and the light including both the optical signal of the inspection light and the optical signal of the reference light is the second optical fiber 12, The circulator 2 and the third optical fiber 13 are sequentially passed to reach the interference unit 30.
In the present embodiment, a branch is provided in the middle of the third optical fiber 13, and a part of the optical signal propagating through the third optical fiber 13 passes through the fifth optical fiber 15 and passes through the first optical fiber 13. It is configured to be incident on a first light receiver 5 as a detecting means.

干渉部30は、第3の光ファイバ13からの出射光の光路上に設けられたコリメータ31、ビームスプリッタ32、第1のミラー35、前記ビームスプリッタ32内で第3の光ファイバ13からの出射光の光路と直交する光軸を有する第2のミラー36、および前記ビームスプリッタ32を挟んで前記第2のミラー36と対峙する位置関係にあるコリメータ37を備えている。   The interference unit 30 includes a collimator 31, a beam splitter 32, a first mirror 35, and an output from the third optical fiber 13 within the beam splitter 32 provided on the optical path of the outgoing light from the third optical fiber 13. A second mirror 36 having an optical axis perpendicular to the optical path of the incident light, and a collimator 37 in a positional relationship facing the second mirror 36 with the beam splitter 32 interposed therebetween are provided.

干渉部30では、第3の光ファイバ13から出射された光がコリメータ31で平行光とされた後、ビームスプリッタ(分岐手段かつ合波手段)32で、直進する第1の分岐光路33と、入射方向に対して直交する第2の分岐光路34に分岐される。
第1の分岐光路33を進む光は、第1のミラー35で反射され、該反射光は第1の分岐光路33と平行に前記ビームスプリッタ32に入射される。
一方、第2の分岐光路34を進む光は、第2のミラー36で反射され、該反射光は第2の分岐光路33と平行に前記ビームスプリッタ32に入射される。
そして、ビームスプリッタ32は、第2のミラー36からの反射光を直進させるとともに、第1のミラー35からの反射光を、その入射方向に対して直交する方向に進行方向を変えるように構成されており、これによって第1のミラー35の反射光と第2のミラーの反射光が合波されるようになっている。合波された2つの光は干渉光を生成し、該干渉光は、コリメータ37を経て第4の光ファイバ14に入射される。第4の光ファイバ14を伝送された前記干渉光は、第2の検出手段としての第2の受光器4に入射され、干渉信号の光強度が検出されるように構成されている。
In the interference unit 30, after the light emitted from the third optical fiber 13 is converted into parallel light by the collimator 31, the beam splitter (branching unit and combining unit) 32 first straightly travels the first branch optical path 33. The light is branched to a second branch optical path 34 that is orthogonal to the incident direction.
The light traveling through the first branch optical path 33 is reflected by the first mirror 35, and the reflected light is incident on the beam splitter 32 in parallel with the first branch optical path 33.
On the other hand, the light traveling through the second branch optical path 34 is reflected by the second mirror 36, and the reflected light is incident on the beam splitter 32 in parallel with the second branch optical path 33.
The beam splitter 32 is configured to linearly propagate the reflected light from the second mirror 36 and change the traveling direction of the reflected light from the first mirror 35 in a direction orthogonal to the incident direction. Thus, the reflected light of the first mirror 35 and the reflected light of the second mirror are combined. The two combined lights generate interference light, and the interference light is incident on the fourth optical fiber 14 via the collimator 37. The interference light transmitted through the fourth optical fiber 14 is incident on a second light receiver 4 as second detection means, and the light intensity of the interference signal is detected.

第1のミラー35および第2のミラー36は、反射率が高い方が好ましく、全反射ミラーが好適に用いられる。
本実施形態において、第1のミラー35および第2のミラー36はいずれも、2枚の全反射ミラーを、反射面が内側となるように、かつ該2つの全反射ミラーがなす角度が90度となるように配置した光学素子からなっており、ビームスプリッタ32からの出射光が、該光学素子の一方の反射面に45度の入射角度で入射するように構成されている。すなわち、ビームスプリッタ32から第1のミラー35に入射される光と、第1のミラー35で反射されてビームスプリッタ32へ向かう光、およびビームスプリッタ32から第2のミラー36に入射される光と、第2のミラー36で反射されてビームスプリッタ32へ向かう光とが、それぞれ互いに平行な別々の光路を通るように構成されている。
かかる光学素子を用いると、後述する微動可能な第2のステージ39の移動中の機械的な角度エラーを、第2の分岐光路34における光の平行移動に変換することができるので、該第2のステージ39の移動による、第4の光ファイバ14に結合する干渉光量の変動を小さくすることができる。
The first mirror 35 and the second mirror 36 preferably have a high reflectance, and a total reflection mirror is preferably used.
In the present embodiment, each of the first mirror 35 and the second mirror 36 includes two total reflection mirrors such that the reflection surface is on the inner side and the angle formed by the two total reflection mirrors is 90 degrees. The light emitted from the beam splitter 32 is configured to be incident on one reflection surface of the optical element at an incident angle of 45 degrees. That is, light incident on the first mirror 35 from the beam splitter 32, light reflected by the first mirror 35 toward the beam splitter 32, and light incident on the second mirror 36 from the beam splitter 32 The light that is reflected by the second mirror 36 and travels toward the beam splitter 32 passes through separate optical paths that are parallel to each other.
By using such an optical element, a mechanical angle error during the movement of the second stage 39 that can be finely moved, which will be described later, can be converted into a parallel movement of light in the second branch optical path 34. The variation in the amount of interference light coupled to the fourth optical fiber 14 due to the movement of the stage 39 can be reduced.

また第1のミラー35は、第1の分岐光路33の光軸方向に沿って、進退可能な第1のステージ38(光路長補正手段)上に固定されており、これによりビームスプリッタ32から第1のミラー35までの距離を調節できるように構成されている。
第2のミラー36は、第2の分岐光路34の光軸方向に沿って、微動可能な第2のステージ39(光路長可変手段、以下「Lステージ」ということもある)上に固定されている。第2のステージ(Lステージ)39は、所定周波数、所定振幅で振動可能であるとともに、該振動を続けながら第2の分岐光路34の光軸方向に微細な間隔で進退可能に構成されている。
The first mirror 35 is fixed on a first stage 38 (optical path length correcting means) that can advance and retreat along the optical axis direction of the first branch optical path 33, and thereby the first splitter 35 is connected to the first splitter 35 from the beam splitter 32. The distance to one mirror 35 can be adjusted.
The second mirror 36 is fixed on a second stage 39 (optical path length variable means, hereinafter also referred to as “L stage”) that can be finely moved along the optical axis direction of the second branch optical path 34. Yes. The second stage (L stage) 39 is configured to vibrate at a predetermined frequency and a predetermined amplitude, and is capable of moving back and forth at a fine interval in the optical axis direction of the second branch optical path 34 while continuing the vibration. .

かかる構成の装置を用いて被測定物3の屈折率及び厚さを測定する方法を、図2を参照しながら説明する。
まず、光源1からの低コヒーレンス光を集光レンズ23で集光したときの焦点が、被測定物3の前面上に位置する第1の状態、および光源1からの光を集光レンズ23で集光したときの焦点が、被測定物3の後面上に位置する第2の状態をそれぞれ検知する。
具体的には、光源1から光を出射させて、半透鏡22の透過光を集光レンズ23を介して被測定物3へ照射しながら、Zステージ25をスキャンさせる。このとき、第1の受光器5に入射される光には参照光と検査光が互いに干渉されていない状態で含まれている。このような光を本明細書では非干渉光という。かかる非干渉光は直流成分(DC成分)に相当するものである。
A method for measuring the refractive index and thickness of the DUT 3 using the apparatus having such a configuration will be described with reference to FIG.
First, in the first state where the focus when the low-coherence light from the light source 1 is collected by the condenser lens 23 is located on the front surface of the object to be measured 3, and the light from the light source 1 is collected by the condenser lens 23. The second state where the focal point when the light is condensed is located on the rear surface of the DUT 3 is detected.
Specifically, the Z stage 25 is scanned while emitting light from the light source 1 and irradiating the object to be measured 3 with the light transmitted through the semi-transparent mirror 22 via the condenser lens 23. At this time, the light incident on the first light receiver 5 includes the reference light and the inspection light in a state where they do not interfere with each other. Such light is referred to as non-interfering light in this specification. Such non-interfering light corresponds to a direct current component (DC component).

かかる非干渉光の強度は被測定物3の前面が集光レンズ23の焦点に位置するとき(第1の状態)、および後面が集光レンズ23の焦点に位置するとき(第2の状態)にピークを示す。
例えば、前記第1の状態では図7(a)(b)に示すように、集光レンズ23の焦点が被測定物3の前面上に位置している。この状態では、図7(a)に示すように、第2の光ファイバ12から出射した光が被測定物3の前面に達し、被測定物3の前面で反射した後、図7(b)に示すように第2の光ファイバ12の端面に集光されるので、第2の光ファイバ12に効率良く結合する。したがって、第1の受光器5に入射される非干渉光(DC成分)の強度は最大となる。前記第2の状態、すなわち集光レンズ23の焦点が被測定物3の後面上に位置している場合も同様に第2の光ファイバ12に効率良く結合する。
一方、図8(a)(b)に示すように、被測定物3の前面が、集光レンズ23の焦点よりも該集光レンズ23に近い位置にある状態では、図8(a)に示すように、第2の光ファイバ12から出射した光が被測定物3の前面で反射した後、図8(b)に示すように、集光する前に第2の光ファイバ12の端面に到達してしまう。このため、該反射光が第2の光ファイバ12の端面に集光せず、第2の光ファイバ12に結合しない。したがって第1の受光器5に入射される非干渉光(DC成分)の強度は低減する。
また、図9(a)(b)に示すように、被測定物3の前面が、集光レンズ23の焦点よりも該集光レンズ23から遠い位置にある状態では、図9(a)に示すように、第2の光ファイバ12から出射した光が被測定物3の前面で反射した後、図9(b)に示すように、第2の光ファイバ12の端面に到達する前に集光してしまう。そして、該反射光が広がった状態で第2の光ファイバ12の端面に到達するので、第2の光ファイバ12に結合しない。したがって第1の受光器5に入射される非干渉光(DC成分)の強度は低減する。
The intensity of such non-interference light is such that when the front surface of the DUT 3 is located at the focal point of the condenser lens 23 (first state) and when the rear surface is located at the focal point of the condenser lens 23 (second state). Shows a peak.
For example, in the first state, as shown in FIGS. 7A and 7B, the focal point of the condensing lens 23 is located on the front surface of the DUT 3. In this state, as shown in FIG. 7 (a), the light emitted from the second optical fiber 12 reaches the front surface of the device under test 3 and is reflected by the front surface of the device under test 3; As shown in FIG. 4, since the light is condensed on the end face of the second optical fiber 12, it is efficiently coupled to the second optical fiber 12. Therefore, the intensity of the non-interfering light (DC component) incident on the first light receiver 5 is maximized. Similarly in the second state, that is, when the focal point of the condensing lens 23 is located on the rear surface of the object 3 to be measured, the second optical fiber 12 is also efficiently coupled.
On the other hand, as shown in FIGS. 8A and 8B, when the front surface of the DUT 3 is located closer to the condenser lens 23 than the focal point of the condenser lens 23, as shown in FIG. As shown in FIG. 8B, after the light emitted from the second optical fiber 12 is reflected by the front surface of the object 3 to be measured, the light is focused on the end surface of the second optical fiber 12 before being condensed as shown in FIG. Will reach. For this reason, the reflected light is not condensed on the end face of the second optical fiber 12 and is not coupled to the second optical fiber 12. Accordingly, the intensity of non-interfering light (DC component) incident on the first light receiver 5 is reduced.
9A and 9B, when the front surface of the DUT 3 is located farther from the condenser lens 23 than the focal point of the condenser lens 23, as shown in FIG. As shown in FIG. 9, after the light emitted from the second optical fiber 12 is reflected by the front surface of the object 3 to be measured, the light is collected before reaching the end surface of the second optical fiber 12 as shown in FIG. It will shine. Then, since the reflected light reaches the end face of the second optical fiber 12 in a spread state, it is not coupled to the second optical fiber 12. Accordingly, the intensity of non-interfering light (DC component) incident on the first light receiver 5 is reduced.

これにより、Zステージ25をスキャンさせつつ第1の受光器5で光強度を測定することにより、第1の状態が得られるときのZステージ25の位置(P=A)と、第2の状態が得られるときのZステージ25の位置(P=B)を検知することができる。
そして、これより第1の状態(P=A)と第2の状態(P=B)との間における、集光レンズ23と被測定物3との距離の変化量、すなわち第1の状態から第2の状態に至るまでのZステージ25の移動量(△z)が得られる。
Accordingly, the position (P = A) of the Z stage 25 when the first state is obtained by measuring the light intensity with the first light receiver 5 while scanning the Z stage 25, and the second state. It is possible to detect the position (P = B) of the Z stage 25 when.
From this, the amount of change in the distance between the condenser lens 23 and the object to be measured 3 between the first state (P = A) and the second state (P = B), that is, from the first state. The amount of movement (Δz) of the Z stage 25 up to the second state is obtained.

次いで、Zステージ25を第1の状態が得られる位置(P=A)に固定する。そして、この状態での半透鏡22の反射面から被測定物3の前面までの距離をXとすると、ビームスプリッタ32で分岐された第1の分岐光路33と第2の分岐光路34との光路長差が前記Xとほぼ等しくなるように、第1のステージ38の位置を設定する。具体的には、ビームスプリッタ32から第1のミラー35までの距離と、ビームスプリッタ32から第2のミラー36までの距離との差が前記Xとほぼ等しくなるように設定すればよい。
そして、第2のステージ(Lステージ)39を、一定周波数、一定振幅で振動させながらスキャンしつつ、第2の受光器4で干渉信号の光強度を測定し、該干渉信号のピーク強度が最大となる第3の状態を検知する(Lステージの1回目のスキャン)。これにより、第3の状態が得られるときの第2のステージ39の位置(L(P))を検知することができる。
Next, the Z stage 25 is fixed at a position (P = A) where the first state is obtained. In this state, if the distance from the reflecting surface of the semi-transparent mirror 22 to the front surface of the object to be measured 3 is X, the optical path between the first branch optical path 33 and the second branch optical path 34 branched by the beam splitter 32. The position of the first stage 38 is set so that the length difference is substantially equal to X. Specifically, the difference between the distance from the beam splitter 32 to the first mirror 35 and the distance from the beam splitter 32 to the second mirror 36 may be set to be substantially equal to X.
Then, while scanning the second stage (L stage) 39 while vibrating at a constant frequency and constant amplitude, the light intensity of the interference signal is measured by the second light receiver 4, and the peak intensity of the interference signal is maximized. The third state is detected (first scan of the L stage). Thereby, the position (L (P A )) of the second stage 39 when the third state is obtained can be detected.

次いで、Zステージ25を第2の状態が得られる位置(P=B)に固定する。そして、2のステージ39の振動を続けながら、該第2のステージ39をスキャンしつつ、第2の受光器4で干渉信号の光強度を測定し、該干渉信号のピーク強度が最大となる第4の状態を検知する(Lステージの2回目のスキャン)。これにより、第4の状態が得られる第2のステージ39の位置(L(P))を検知することができる。
そして、第3の状態と第4の状態の間における第2の分岐光路の光路長の変化量△L、すなわち、第3の状態から第4の状態に至るまでの、第2のステージ(Lステージ)39の移動量(△L)が得られる。
Next, the Z stage 25 is fixed at a position (P = B) where the second state is obtained. Then, while continuing to vibrate the second stage 39, while scanning the second stage 39, the light intensity of the interference signal is measured by the second light receiver 4, and the peak intensity of the interference signal is maximized. 4 is detected (second scanning of the L stage). Thereby, the position (L (P B )) of the second stage 39 where the fourth state is obtained can be detected.
Then, the change amount ΔL of the optical path length of the second branch optical path between the third state and the fourth state, that is, the second stage (L from the third state to the fourth state) The amount of movement (ΔL) of the stage 39 is obtained.

本実施形態において、第3の光ファイバ13から出射される光は、半透鏡22からの反射光(参照光)と被測定物3からの反射光(検査光)とを含んでいる。したがってこれをビームスプリッタ32で分岐した2つの分岐光(第1の分岐光路33の伝搬光および第2の分岐光路34の伝搬光)の光強度に関しては、いずれも参照光に由来するピークと検査光に由来するピークとを含んでおり、該2つのピークの時間軸上のずれは半透鏡22の反射面から被測定物3の前面までの距離Xに相当する。
そこで、前記第1の分岐光路33と第2の分岐光路34の光路長差を前記Xとほぼ等しくした状態で、前記2つの分岐光を合波して得られる干渉光強度が最大となる状態を検出することによって、参照光と検査光(前面からの反射光)とが干渉し合う状態(第3の状態)を検知することができる。
この後、第1のステージ38を固定し、光源光の焦点を被測定物3の後面上に移動させて、受光器4で検出される干渉光強度が最大となる状態を検出することによって、参照光と検査光(後面からの反射光)とが干渉し合う状態(第4の状態)を検知することができる。
In the present embodiment, the light emitted from the third optical fiber 13 includes reflected light (reference light) from the semi-transparent mirror 22 and reflected light (inspection light) from the object to be measured 3. Therefore, regarding the light intensity of the two branched lights (the propagating light of the first branching optical path 33 and the propagating light of the second branching optical path 34) branched by the beam splitter 32, both the peak derived from the reference light and the inspection The peak derived from light is included, and the deviation of the two peaks on the time axis corresponds to the distance X from the reflecting surface of the semi-transparent mirror 22 to the front surface of the object 3 to be measured.
Therefore, in a state where the optical path length difference between the first branch optical path 33 and the second branch optical path 34 is substantially equal to the X, the interference light intensity obtained by combining the two branch lights is maximized. By detecting this, it is possible to detect a state (third state) in which the reference light and the inspection light (reflected light from the front surface) interfere with each other.
Thereafter, the first stage 38 is fixed, the focus of the light source light is moved onto the rear surface of the object 3 to be measured, and the state in which the interference light intensity detected by the light receiver 4 is maximized is detected. A state (fourth state) in which the reference light and the inspection light (reflected light from the rear surface) interfere with each other can be detected.

このようにして得られるZステージ25の移動量(△z)と第2のステージ(Lステージ)39の移動量(△L)の値から、被測定物3の位相屈折率nと厚さtを、次のようにして導出することができる。
すなわち、低コヒーレンス光を被測定物3に対して集光させる集光レンズ23の開口数をS、被測定物3の位相屈折率をn、被測定物3の屈折率波長分散量を△nとする。波長分散量△n<<1と近似すると、被測定物3の位相屈折率nは下記数式(1)で表される。
数式(1)中の波長分散量△nは、前記△Lおよび△zと、定数aおよびbを用いて、下記数式(2)で表される。ここで定数aおよびbは、実験的に得られており、被測定物3が固体である場合はaが0.0241、bが1.69となり、被測定物3が液体である場合はaが0.0460、bが1.53となる。
さらに被測定物3の厚さtは、ここで求められる被測定物3の位相屈折率n、波長分散量△nと、前記△Lと△zを用いて下記数式(3)で表される。
From the values of the movement amount (Δz) of the Z stage 25 and the movement amount (ΔL) of the second stage (L stage) 39 obtained in this way, the phase refractive index n and the thickness t of the DUT 3 are measured. Can be derived as follows.
That is, the numerical aperture of the condenser lens 23 for condensing the low-coherence light on the device under test 3 is S, the phase refractive index of the device under test 3 is n, and the refractive index wavelength dispersion amount of the device under test 3 is Δn. And When approximated by the chromatic dispersion amount Δn << 1, the phase refractive index n of the DUT 3 is expressed by the following mathematical formula (1).
The chromatic dispersion amount Δn in the formula (1) is expressed by the following formula (2) using the ΔL and Δz and the constants a and b. Here, the constants a and b are experimentally obtained. When the DUT 3 is solid, a is 0.0241 and b is 1.69. When the DUT 3 is liquid, a is a. Is 0.0460, and b is 1.53.
Further, the thickness t of the device under test 3 is expressed by the following formula (3) using the phase refractive index n, the wavelength dispersion amount Δn of the device under test 3 obtained here, and the ΔL and Δz. .

Figure 2005106706
Figure 2005106706

Figure 2005106706
Figure 2005106706

Figure 2005106706
Figure 2005106706

このように、本実施形態によれば、光干渉法を用いた測定方法により、被測定物3の位相屈折率nと厚さtを同時に、非接触、非破壊で測定することができる。
本実施形態によれば、まず、第1の受光器5で非干渉光の強度を測定しながら、Zステージ25を1回スキャンさせるだけで、△zを得ることができる。
そして、Zステージ25を第1の状態が得られる位置に固定して、Lステージを1回スキャンさせ、さらにZステージ25を第2の状態が得られる位置に固定して、Lステージを1回スキャンさせるだけで△Lを得ることができるので、△zと△Lを得るのに必要なスキャン回数を、従来に比べて大幅に減らすことができる。
したがって、これまで多数回のスキャンに費やしていた測定時間を短縮することができ、被測定物に厚さおよび屈折率の測定を迅速化することができる。
Thus, according to the present embodiment, the phase refractive index n and the thickness t of the device under test 3 can be simultaneously measured in a non-contact and non-destructive manner by the measurement method using the optical interference method.
According to the present embodiment, Δz can be obtained by simply scanning the Z stage 25 once while measuring the intensity of non-interfering light with the first light receiver 5.
Then, the Z stage 25 is fixed at a position where the first state is obtained, the L stage is scanned once, the Z stage 25 is fixed at a position where the second state is obtained, and the L stage is operated once. Since ΔL can be obtained simply by scanning, the number of scans required to obtain Δz and ΔL can be greatly reduced as compared with the conventional case.
Therefore, it is possible to shorten the measurement time that has been spent for many scans so far, and to speed up the measurement of the thickness and refractive index of the object to be measured.

図3は、本発明の測定装置の第2の実施形態を示した概略構成図である。本実施形態の装置が前記第1の実施形態と大きく異なる点は、第3の光ファイバ13の中途に分岐が設けられておらず、第2のステージ(Lステージ)39が、第2の分岐光路34を第1の実施形態よりも長く調整可能に構成されている点である。
第1の分岐光路33の光路長を固定して、第2の分岐光路34の光路長を長くするとき、第2の分岐光路34の光路長が特定の範囲外(非干渉領域)になると、第1の分岐光路33を経た光と第2の分岐光路34を経た光とがビームスプリッタ32で合波されたときに、干渉光を生成できなくなる。本実施形態において、第2の分岐光路34の光路長は、この非干渉領域に調整できるように構成されている。
すなわち、半透鏡22の反射面から被測定物3の前面までの距離をX、被測定物3の位相屈折率をnで厚さをtとすると、第1の分岐光路33の光路長と第2の分岐光路34の光路長との差が、Xに等しいとき、およびX+ntに等しいときに参照光と検査光との干渉状態が得られるので、かかる干渉状態とならないように第1の分岐光路33の光路長および第2の分岐光路34の光路長を調整することにより、ビームスプリッタ32で合波された光が非干渉光となる。
したがって、第1の分岐光路33の光路長と第2の分岐光路34の光路長との差がXより小さいか、またはX+ntよりも大きい状態(非干渉領域)に設定されていれば、ビームスプリッタ32で合波された光が非干渉光となる。測定前において、Xは測定可能であるが、nおよびtは未知であるので、第1の分岐光路33の光路長および第2の分岐光路34の光路長を、両者の差がXより小さく設定できるか、またはX+ntよりも確実に大きくなる程度に十分大きく設定できるように構成すればよい。
FIG. 3 is a schematic block diagram showing a second embodiment of the measuring apparatus of the present invention. The apparatus of this embodiment differs greatly from the first embodiment in that a branch is not provided in the middle of the third optical fiber 13, and the second stage (L stage) 39 is connected to the second branch. The optical path 34 is configured to be adjustable longer than in the first embodiment.
When fixing the optical path length of the first branch optical path 33 and increasing the optical path length of the second branch optical path 34, if the optical path length of the second branch optical path 34 falls outside a specific range (non-interference area), When the light that has passed through the first branch optical path 33 and the light that has passed through the second branch optical path 34 are combined by the beam splitter 32, interference light cannot be generated. In the present embodiment, the optical path length of the second branch optical path 34 is configured to be adjustable to this non-interference area.
That is, if the distance from the reflecting surface of the semi-transparent mirror 22 to the front surface of the device under test 3 is X, the phase refractive index of the device under test 3 is n, and the thickness is t, the optical path length of the first branch optical path 33 and the first When the difference between the optical path lengths of the two branch optical paths 34 is equal to X and equal to X + nt, an interference state between the reference light and the inspection light is obtained, so that the first branch optical path is prevented from becoming such an interference state. By adjusting the optical path length of 33 and the optical path length of the second branch optical path 34, the light combined by the beam splitter 32 becomes non-interfering light.
Therefore, if the difference between the optical path length of the first branch optical path 33 and the optical path length of the second branch optical path 34 is set to be smaller than X or larger than X + nt (non-interference area), the beam splitter The light combined at 32 becomes non-interfering light. Before measurement, X can be measured, but n and t are unknown. Therefore, the optical path length of the first branch optical path 33 and the optical path length of the second branch optical path 34 are set to be smaller than X. It may be configured so that it can be set sufficiently large to be surely larger than X + nt.

かかる構成の装置を用いて被測定物3の屈折率及び厚さを測定する方法は、前記第1の実施形態とほぼ同様であるが、異なるのは、第1の状態および第2の状態を検知して△zを求める工程において、第2のステージ(Lステージ)39を後退させることによって第2の分岐光路34の光路長を前記非干渉領域に調節した状態で、光源1から光を出射させて、第2の受光器4で非干渉光の強度を測定する点である。
すなわち、ビームスプリッタ32で合波される2つの分岐光は互いに干渉しないので、光源1から光を出射させ、半透鏡22の透過光を集光レンズ23を介して被測定物3へ照射しながら、Zステージ25をスキャンさせると、第2の受光器4で非干渉光の強度のピークを検出することができる。これにより、前記第1の状態が得られるときのZステージ25の位置(P=A)と、第2の状態が得られるときのZステージ25の位置(P=B)を検知することができ、△zが得られる。
この後、第2のステージ(Lステージ)39を前進させて第2の分岐光路34の光路長を前記第1の実施形態と同程度に戻してから、前記第1の実施形態と同様の手順で△Lを得ることができる。
そして、得られた△zおよび△Lより、被測定物3の位相屈折率nと厚さtを求めることができる。
The method for measuring the refractive index and thickness of the DUT 3 using the apparatus having such a configuration is substantially the same as that in the first embodiment, except that the first state and the second state are different. In the step of detecting Δz by detection, light is emitted from the light source 1 in a state where the optical path length of the second branch optical path 34 is adjusted to the non-interference area by moving the second stage (L stage) 39 backward. Thus, the intensity of non-interfering light is measured by the second light receiver 4.
That is, since the two branched lights combined by the beam splitter 32 do not interfere with each other, the light is emitted from the light source 1, and the light to be measured 3 is irradiated onto the object 3 to be measured through the condenser lens 23. When the Z stage 25 is scanned, the second light receiver 4 can detect the intensity peak of non-interfering light. Thereby, the position (P = A) of the Z stage 25 when the first state is obtained and the position (P = B) of the Z stage 25 when the second state is obtained can be detected. , Δz is obtained.
Thereafter, the second stage (L stage) 39 is advanced to return the optical path length of the second branch optical path 34 to the same level as in the first embodiment, and then the same procedure as in the first embodiment. ΔL can be obtained.
Then, from the obtained Δz and ΔL, the phase refractive index n and the thickness t of the DUT 3 can be obtained.

本実施形態によれば、前記第1の実施形態と同様の作用効果を得ることができるほか、特に、第2のステージ39を特定範囲に移動させることによって第2の受光器4で非干渉光を検出できるようにしたので、部品点数が少なくて済む、被測定光の損失が小さい等の利点が得られる。   According to this embodiment, the same operational effects as those of the first embodiment can be obtained, and in particular, the second light receiver 4 can move the second stage 39 to a specific range to cause non-interfering light. Can be detected, so that there are advantages such as a small number of parts and a small loss of light to be measured.

図4は、本発明の測定装置の第3の実施形態を示した概略構成図である。本実施形態の装置が前記第1の実施形態と大きく異なる点は、第3の光ファイバ13の中途に分岐が設けられておらず、第1の分岐光路33上に、該光路を遮断するシャッター6が設けられている点である。シャッター6は開閉自在である。   FIG. 4 is a schematic configuration diagram showing a third embodiment of the measuring apparatus of the present invention. The apparatus of this embodiment differs greatly from the first embodiment in that a branch is not provided in the middle of the third optical fiber 13 and a shutter that blocks the optical path on the first branch optical path 33. 6 is provided. The shutter 6 can be freely opened and closed.

かかる構成の装置を用いて被測定物3の屈折率及び厚さを測定する方法は、前記第1の実施形態とほぼ同様であるが、異なるのは、第1の状態および第2の状態を検知して△zを求める工程において、シャッター6を閉じて第1の分岐光路33を遮断した状態で、光源1から光を出射させて、第2の受光器4で非干渉光の強度を測定する点である。
すなわち、第1の分岐光路33を経た光は、第2の受光器4へ入射されないので、第2の受光器4へは第2の分岐光路34を経た光のみ、すなわち非干渉光が入射される。したがって、光源1から光を出射させ、半透鏡22の透過光を集光レンズ23を介して被測定物3へ照射しながら、Zステージ25をスキャンさせると、第2の受光器4で非干渉光の強度のピークを検出することができる。これにより、第1の状態が得られるときのZステージ25の位置(P=A)と、第2の状態が得られるときのZステージ25の位置(P=B)を検知することができ、△zが得られる。
この後、シャッター6を開いて第1の分岐光路33の遮断状態を解除してから、前記第1の実施形態と同様の手順で△Lを得ることができる。
そして、得られた△zおよび△Lより、被測定物3の位相屈折率nと厚さtを求めることができる。
The method for measuring the refractive index and thickness of the DUT 3 using the apparatus having such a configuration is substantially the same as that in the first embodiment, except that the first state and the second state are different. In the step of detecting and obtaining Δz, light is emitted from the light source 1 with the shutter 6 closed and the first branch optical path 33 blocked, and the intensity of non-interfering light is measured by the second light receiver 4. It is a point to do.
That is, since the light that has passed through the first branched light path 33 is not incident on the second light receiver 4, only the light that has passed through the second branched light path 34, that is, non-interfering light, is incident on the second light receiver 4. The Therefore, when the Z stage 25 is scanned while emitting light from the light source 1 and irradiating the object to be measured 3 with the light transmitted through the semi-transparent mirror 22 via the condenser lens 23, the second light receiver 4 does not interfere. The peak of light intensity can be detected. Thereby, the position (P = A) of the Z stage 25 when the first state is obtained and the position (P = B) of the Z stage 25 when the second state is obtained can be detected. Δz is obtained.
Thereafter, after the shutter 6 is opened to release the blocking state of the first branch optical path 33, ΔL can be obtained in the same procedure as in the first embodiment.
Then, from the obtained Δz and ΔL, the phase refractive index n and the thickness t of the DUT 3 can be obtained.

本実施形態によれば、前記第1の実施形態と同様の作用効果を得ることができるほか、特に、第1の分岐光路33をシャッター6で遮断することによって第2の受光器4で非干渉光を検出できるようにしたので、装置を大型化しない、被測定光の損失が小さいという利点が得られる。
なお、シャッター6は、第1の分岐光路33および第2の分岐光路34のいずれか一方に設ければよい。
According to the present embodiment, the same operational effects as the first embodiment can be obtained, and in particular, the second light receiver 4 is non-interfering by blocking the first branch optical path 33 with the shutter 6. Since the light can be detected, there are advantages that the apparatus is not enlarged and the loss of the light to be measured is small.
The shutter 6 may be provided on one of the first branch optical path 33 and the second branch optical path 34.

本発明は、表面上のコーティング材の厚さと屈折率分布の測定や、完全に固体になっていないものの厚さ測定に適用することができる。
特に樹脂の硬化状態の確認や液晶画面のガラス間にあるバッファー層の測定など、非破壊・非接触で測定する必要のある対象物等に最適である。
The present invention can be applied to the measurement of the thickness and refractive index distribution of the coating material on the surface, and the thickness measurement of those that are not completely solid.
It is particularly suitable for objects that need to be measured non-destructively and non-contactly, such as confirmation of the cured state of the resin and measurement of the buffer layer between the glass of the liquid crystal screen.

本発明の測定装置の第1の実施形態を示す概略構成図である。It is a schematic block diagram which shows 1st Embodiment of the measuring apparatus of this invention. 本発明の測定方法の一実施形態を示すフローシートである。It is a flow sheet which shows one embodiment of the measuring method of the present invention. 本発明の測定装置の第2の実施形態を示す概略構成図である。It is a schematic block diagram which shows 2nd Embodiment of the measuring apparatus of this invention. 本発明の測定装置の第3の実施形態を示す概略構成図である。It is a schematic block diagram which shows 3rd Embodiment of the measuring apparatus of this invention. 従来の測定装置の例を示す概略構成図である。It is a schematic block diagram which shows the example of the conventional measuring apparatus. 従来の測定方法の例を示すフローシートである。It is a flow sheet which shows the example of the conventional measuring method. 本発明に係る測定方法の説明図である。It is explanatory drawing of the measuring method which concerns on this invention. 本発明に係る測定方法の説明図である。It is explanatory drawing of the measuring method which concerns on this invention. 本発明に係る測定方法の説明図である。It is explanatory drawing of the measuring method which concerns on this invention.

符号の説明Explanation of symbols

1…光源、3…被測定物、4…第2の受光器(第2の検出手段)、
5…第1の受光器(第1の検出手段)、6…シャッター(遮断手段)
22…半透鏡、23…集光レンズ(集光手段)、
25…Zステージ、
32…ビームスプリッタ(分岐手段・合波手段)、
33…第1の分岐光路、34…第2の分岐光路、
38…第1のステージ(光路長補正手段)、
39…第2のステージ(光路長可変手段、Lステージ)。

DESCRIPTION OF SYMBOLS 1 ... Light source, 3 ... To-be-measured object, 4 ... 2nd light receiver (2nd detection means),
5 ... 1st light receiver (1st detection means), 6 ... Shutter (blocking means)
22 ... Semi-transparent mirror, 23 ... Condensing lens (condensing means),
25 ... Z stage,
32 ... Beam splitter (branching means / multiplexing means),
33 ... 1st branch optical path, 34 ... 2nd branch optical path,
38 ... 1st stage (optical path length correction means),
39. Second stage (optical path length variable means, L stage).

Claims (5)

光源と、該光源からの光の一部を反射し一部を透過する半透鏡と、
該半透鏡の透過光を集光して被測定物に照射する集光手段と、
前記被測定物で反射された検査光を含む非干渉光の強度を検出する第1の検出手段と、
前記半透鏡で反射された参照光と前記被測定物で反射された検査光とを含む光を、第1の分岐光路と、光路長可変手段を備えた第2の分岐光路に分岐する分岐手段と、
前記第1の分岐光路を経た光と、前記第2の分岐光路を経た光とを合波して干渉光を生成する合波手段と、
前記干渉光の強度を検出する第2の検出手段を備えてなることを特徴とする屈折率及び厚さの測定装置。
A light source, a semi-transparent mirror that reflects part of the light from the light source and transmits part of the light,
Condensing means for condensing the transmitted light of the semi-transparent mirror and irradiating the object to be measured;
First detection means for detecting the intensity of non-interference light including inspection light reflected by the object to be measured;
Branch means for branching light including reference light reflected by the semi-transparent mirror and inspection light reflected by the object to be measured into a first branch optical path and a second branch optical path provided with an optical path length variable means When,
A multiplexing unit that combines the light that has passed through the first branch optical path and the light that has passed through the second branch optical path to generate interference light;
An apparatus for measuring refractive index and thickness, comprising second detection means for detecting the intensity of the interference light.
前記半透鏡で反射された参照光と前記被測定物で反射された検査光とを含む光を、前記第1の分岐光路に至る前に分岐して前記第1の検出手段に導く分岐手段が設けられていることを特徴とする請求項1記載の屈折率及び厚さの測定装置。   Branching means for branching light including reference light reflected by the semi-transparent mirror and inspection light reflected by the object to be measured before branching to the first branch optical path and leading to the first detection means; The refractive index and thickness measuring apparatus according to claim 1, wherein the measuring apparatus is provided. 前記第2の分岐光路の光路長を、前記第1の分岐光路を経た光と前記第2の分岐光路を経た光とが干渉光を生成しない非干渉領域に調節可能であり、前記第2の検出手段が前記第1の検出手段を兼ねていることを特徴とする請求項1記載の屈折率及び厚さの測定装置。   The optical path length of the second branch optical path can be adjusted to a non-interference area where the light passing through the first branch optical path and the light passing through the second branch optical path do not generate interference light, 2. The refractive index and thickness measuring apparatus according to claim 1, wherein the detecting means also serves as the first detecting means. 前記第1の分岐光路および第2の分岐光路のいずれか一方を遮断し得る手段が設けられており、前記第2の検出手段が前記第1の検出手段を兼ねていることを特徴とする請求項1記載の屈折率及び厚さの測定装置。   A means capable of blocking either one of the first branch optical path and the second branch optical path is provided, and the second detection means also serves as the first detection means. Item 1. The refractive index and thickness measuring device according to Item 1. 請求項1〜4のいずれか一項に記載の測定装置を用いて被測定物の屈折率及び厚さを測定する方法であって、
前記光源からの光のうち前記半透鏡を透過した光を、前記集光手段を介して前記被測定物に照射して、該集光手段と被測定物との間の距離を変化させつつ、前記第1の検出手段で前記非干渉光の強度を検出することによって、前記半透鏡を透過した光が、前記被測定物の光源側の前面上に集光されている第1の状態、および前記被測定物の光源から遠い後面上に集光されている第2の状態をそれぞれ検知し、該第1の状態と第2の状態との間における、前記集光手段と被測定物との間の距離の変化量△zを求める工程と、
前記第1の状態を保持した状態で、前記第2の分岐光路の光路長を変化させつつ、前記第2の検出手段で検出される前記干渉光の強度を検出することによって、該干渉光の強度が最大となる第3の状態を検知する工程と、
前記第2の状態を保持した状態で、前記第2の分岐光路の光路長を変化させつつ、前記第2の検出手段で検出される前記干渉光の強度を検出することによって、該干渉光の強度が最大となる第4の状態を検知する工程と、
前記第3の状態と第4の状態との間における、前記第2の分岐光路の光路長の変化量△Lを求める工程と、
前記△zと△Lの値を用いて前記被測定物の屈折率及び厚さを求める工程とを有することを特徴とする屈折率及び厚さの測定方法。

A method for measuring the refractive index and thickness of an object to be measured using the measuring apparatus according to claim 1,
While irradiating the object to be measured with the light passing through the semi-transparent mirror from the light source through the light collecting means, and changing the distance between the light collecting means and the object to be measured, A first state in which the light transmitted through the semi-transparent mirror is collected on the light source side front surface of the device under test by detecting the intensity of the non-interfering light with the first detection means; and Each of the second states collected on the rear surface far from the light source of the object to be measured is detected, and the condensing means and the object to be measured between the first state and the second state are detected. A step of obtaining a change amount Δz of the distance between,
By detecting the intensity of the interference light detected by the second detection means while changing the optical path length of the second branch optical path while maintaining the first state, Detecting a third state where the intensity is maximum;
By detecting the intensity of the interference light detected by the second detection means while changing the optical path length of the second branch optical path while maintaining the second state, Detecting a fourth state where the intensity is maximum;
Obtaining a change amount ΔL of the optical path length of the second branch optical path between the third state and the fourth state;
A method for measuring the refractive index and thickness, comprising the step of determining the refractive index and thickness of the object to be measured using the values of Δz and ΔL.

JP2003342493A 2003-09-30 2003-09-30 Instrument and method for measuring refractive index and thickness Pending JP2005106706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003342493A JP2005106706A (en) 2003-09-30 2003-09-30 Instrument and method for measuring refractive index and thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003342493A JP2005106706A (en) 2003-09-30 2003-09-30 Instrument and method for measuring refractive index and thickness

Publications (1)

Publication Number Publication Date
JP2005106706A true JP2005106706A (en) 2005-04-21

Family

ID=34536745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342493A Pending JP2005106706A (en) 2003-09-30 2003-09-30 Instrument and method for measuring refractive index and thickness

Country Status (1)

Country Link
JP (1) JP2005106706A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248431A (en) * 2006-03-20 2007-09-27 Seiko Epson Corp Method for measuring hardening degree of hardening resin
JP2013181929A (en) * 2012-03-04 2013-09-12 Canon Inc Measuring apparatus and method, tomography device and method
CN104634263A (en) * 2013-11-11 2015-05-20 三星Sdi株式会社 Coiled plate thickness measuring device and method
CN112082492A (en) * 2020-09-04 2020-12-15 哈尔滨工程大学 Device and method for simultaneously measuring thickness and refractive index of film with angle monitoring function
JPWO2022230193A1 (en) * 2021-04-30 2022-11-03

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113316A (en) * 1991-03-27 1993-05-07 Hughes Aircraft Co Three wavelength optical measuring device and method
JP2001004538A (en) * 1999-06-17 2001-01-12 Matsushita Electric Ind Co Ltd Apparatus and method for measuring medium
JP2001141652A (en) * 1999-11-18 2001-05-25 Japan Science & Technology Corp Method and apparatus for simultaneous measurement of refractive index and thickness of object to be measured by light interference method
JP2002513919A (en) * 1998-05-04 2002-05-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Interferometer type measuring device
JP2002250609A (en) * 2001-02-23 2002-09-06 Nikon Corp Gap-measuring device, gap-measuring method, and manufacturing method of optical system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113316A (en) * 1991-03-27 1993-05-07 Hughes Aircraft Co Three wavelength optical measuring device and method
JP2002513919A (en) * 1998-05-04 2002-05-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Interferometer type measuring device
JP2001004538A (en) * 1999-06-17 2001-01-12 Matsushita Electric Ind Co Ltd Apparatus and method for measuring medium
JP2001141652A (en) * 1999-11-18 2001-05-25 Japan Science & Technology Corp Method and apparatus for simultaneous measurement of refractive index and thickness of object to be measured by light interference method
JP2002250609A (en) * 2001-02-23 2002-09-06 Nikon Corp Gap-measuring device, gap-measuring method, and manufacturing method of optical system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248431A (en) * 2006-03-20 2007-09-27 Seiko Epson Corp Method for measuring hardening degree of hardening resin
JP2013181929A (en) * 2012-03-04 2013-09-12 Canon Inc Measuring apparatus and method, tomography device and method
CN104634263A (en) * 2013-11-11 2015-05-20 三星Sdi株式会社 Coiled plate thickness measuring device and method
CN112082492A (en) * 2020-09-04 2020-12-15 哈尔滨工程大学 Device and method for simultaneously measuring thickness and refractive index of film with angle monitoring function
CN112082492B (en) * 2020-09-04 2021-12-21 哈尔滨工程大学 Device and method for simultaneously measuring thickness and refractive index of film with angle monitoring function
JPWO2022230193A1 (en) * 2021-04-30 2022-11-03
WO2022230193A1 (en) * 2021-04-30 2022-11-03 オリンパス株式会社 Refractive index measurement apparatus and refractive index measurement method
JP7419603B2 (en) 2021-04-30 2024-01-22 オリンパス株式会社 Refractive index measuring device and refractive index measuring method

Similar Documents

Publication Publication Date Title
JP6157240B2 (en) Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method
CA2476174C (en) Low-coherence interferometric apparatus for light-optical scanning of an object
US6172752B1 (en) Method and apparatus for simultaneously interferometrically measuring optical characteristics in a noncontact manner
JP5168168B2 (en) Refractive index measuring device
US5943134A (en) Method of measuring thickness and refractive indices of component layers of laminated structure and measuring apparatus for carrying out the same
US8659761B2 (en) Method and apparatus for measuring displacement of a sample using a wire grid polarizer to generate interference light
JP3602925B2 (en) Simultaneous measuring device of refractive index and thickness of measurement object by optical interferometry
JP3582311B2 (en) Medium measuring method and measuring device
JP4151159B2 (en) Medium measuring device
JP3814343B2 (en) Method and apparatus for measuring film thickness
JPH08101020A (en) Thickness measuring device
KR101112144B1 (en) Interference system and detecting system of using partial reflect
WO2013091584A1 (en) Method and device for detecting defects in substrate
US20050030548A1 (en) Interferometric optical apparatus and method for measurements
JP4208069B2 (en) Refractive index and thickness measuring apparatus and measuring method
WO2012170275A1 (en) Coupled multi-wavelength confocal systems for distance measurements
US8305584B2 (en) Measurement instrument of optical characteristics for sample flowing in passage
KR20150075355A (en) Refractive index distribution measuring method, refractive index distribution measuring apparatus, and method for manufacturing optical element
JP2005106706A (en) Instrument and method for measuring refractive index and thickness
JP2000241128A (en) Plane-to-plane space measuring apparatus
US20120316830A1 (en) Coupled multi-wavelength confocal systems for distance measurements
KR20070076303A (en) Apparatus for refractive index profile measurement of optical waveguide and method using the same
US20120314200A1 (en) Coupled multi-wavelength confocal systems for distance measurements
JP2008196901A (en) Light wave interference measuring device
KR100900477B1 (en) Apparatus of thickness variation and measuring method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715