JPH03221846A - Light quantity adjustment control system for rice-hull removing rate sensor - Google Patents

Light quantity adjustment control system for rice-hull removing rate sensor

Info

Publication number
JPH03221846A
JPH03221846A JP1663690A JP1663690A JPH03221846A JP H03221846 A JPH03221846 A JP H03221846A JP 1663690 A JP1663690 A JP 1663690A JP 1663690 A JP1663690 A JP 1663690A JP H03221846 A JPH03221846 A JP H03221846A
Authority
JP
Japan
Prior art keywords
light
rice
amount
adjustment
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1663690A
Other languages
Japanese (ja)
Inventor
Takashi Nagai
隆 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP1663690A priority Critical patent/JPH03221846A/en
Publication of JPH03221846A publication Critical patent/JPH03221846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Adjustment And Processing Of Grains (AREA)

Abstract

PURPOSE:To control the adjustment of light quantity within a short time by executing initial adjustment for changing the light quantity of a light emitting element so that the output level of a light receiving element becomes constant at the initial time when no slided rice flows. CONSTITUTION:While allowing slided rice S from an unhulled rice sliding device to flow into a sensor light projection area in which light is projected from the light emitting element to the light receiving element 2, a hull removing rate sensor 5 finds out a threshold K which is a boundary between unhulled rice 'momi' M and unpolished rice 'genmai' G and calculates a hull removing rate by a transmitted light quantity distribution 4 of the sensor projecting light. A hull removing rate control device 11 executes initial adjustment for changing the light quantity of the element 1 so that the output level of the element 2 becomes constant at the initial time when no slided rice S flows and sets up the obtained quantity of light emission as the starting light quantity for light quantity adjustment to be executed after the flow of the slided rice S. Since the quantity of light emission due to the element 1 is included in the proper light receiving quantity range L of the element 2 by the initial adjust ment from the start of the light quantity adjustment control when the slided rice starts to flow, the light quantity adjustment control can be accurately and rapidly executed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、籾摺機の籾摺制御に使用する脱ぷ率センサ
の光量調節制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a light amount adjustment control method for a hulling rate sensor used for controlling the hulling of a hulling machine.

(従来の技術、及び発明が解決しようとする課題) 発光素子から受光素子ヘセンサ投光して、このセンサ投
光域に摺出米を流しながら、発光素子の受ける透過光量
によって、透過光量分布を作成制御する脱ぷ率センサを
用いて、この透過光量分布から籾と玄米との境界である
しきい値を求め、脱ぷ率を算出して、脱ぷ率による籾摺
制御を行う形態にあっては、発光素子から発光される光
量によって、該透過光量分布が変化し、又、同じ光量で
あってち、脱ぷ率センサの特性により、センサ毎に受光
量を異にすることが多い。
(Prior Art and Problems to be Solved by the Invention) A sensor emits light from a light emitting element to a light receiving element, and while flowing the polished rice in the sensor light emitting area, the transmitted light amount distribution is determined by the amount of transmitted light received by the light emitting element. Using the husking rate sensor that is created and controlled, the threshold value that is the boundary between paddy and brown rice is determined from this transmitted light amount distribution, the husking rate is calculated, and the hulling is controlled based on the husking rate. In other words, the transmitted light amount distribution changes depending on the amount of light emitted from the light emitting element, and even if the amount of light is the same, the amount of light received often differs from sensor to sensor depending on the characteristics of the shedding rate sensor.

この発明は、脱ぷ率センサの光量調節を自動的に行わせ
るものであるが、この場合、各細説ぶ率センサの特性に
応じた光量調節制御を行って、短時間に光量調節制御を
完了させようとするものである。
This invention automatically adjusts the light amount of the shedding rate sensor, but in this case, the light amount adjustment control is performed in accordance with the characteristics of the rate sensor described in each detail, and the light amount adjustment control is performed in a short time. It's something you want to complete.

(課題を解決するための手段) この発明は、発光素子1から受光素子2へ投光されるセ
ンサ投光域に、籾摺装置3による摺出米Sを流しながら
、該センサ投光の透過光量分布4によって籾Mと玄米G
との境界であるしきい値にを求めて脱ぷ率を算出する脱
ぷ率センサ5において、摺出米Sが流れていない初期時
に、受光素子2の出力レベルが一定値になるように発光
素子1の光量を変更する初期調節を行い、このときの発
光量を摺出米Sが流れ出してから行う光量調節のスター
ト光量とすることを特徴とする光量調節制御方式の手段
を講する。
(Means for Solving the Problems) This invention provides for transmitting the sensor light while flowing the rice S removed by the hulling device 3 into the sensor light emitting area where light is emitted from the light emitting element 1 to the light receiving element 2. Paddy M and brown rice G by light intensity distribution 4
In the pulp removal rate sensor 5, which calculates the pulp removal rate by determining the threshold value that is the boundary between A light amount adjustment control method is provided, which is characterized in that an initial adjustment is made to change the light amount of the element 1, and the light emitted amount at this time is used as a start light amount for the light amount adjustment performed after the rolled rice S has flowed out.

(作用) 脱ぷ率センサ5へ摺出米Sを流さない状態にして、初期
調節制御を行わせると、発光素子1の駆動電圧が低電圧
から順次高められる等によって、発光素子の発光量が変
更され、この発光量によって受光素子2の受光量が順次
増大する。この受光素子2の適正な受光量の範囲は、適
正受光量範囲として予め決められているから、この適正
受光量範囲の最低域内に入ったときの発光素子1の発光
量を光量調節のスタート光量とする。
(Function) When the initial adjustment control is performed with the scraped rice S not flowing to the scraping rate sensor 5, the drive voltage of the light emitting element 1 is gradually increased from a low voltage, so that the amount of light emitted by the light emitting element is increased. The amount of light received by the light receiving element 2 increases sequentially depending on the amount of light emitted. Since the range of the appropriate amount of light received by the light receiving element 2 is predetermined as the appropriate amount of light received, the amount of light emitted from the light emitting element 1 when it falls within the lowest range of this range of appropriate amount of light received is the starting light amount for light amount adjustment. shall be.

このような初期調節が終ると、摺出米の流れによって光
量調節制御による光量調節が開始される。
When such initial adjustment is completed, the light amount adjustment by the light amount adjustment control is started depending on the flow of the crushed rice.

脱ぷ率センサ5によって摺出米が検出されると、透過光
量分布4が形成される。光量調節のスタート時は、発光
素子1の発光量は最低域にあるから、透過光量分布の位
置は全体として透過光量の小さい領域にあり、これに対
して適正として設定される光量調節設定範囲は大きい領
域にあるから、発光量を順次増大制御して、透過光量分
布を光量調節設定範囲内に入るように光量調節制御を行
わせる。
When the scraped rice is detected by the shedding rate sensor 5, a transmitted light amount distribution 4 is formed. At the start of light intensity adjustment, the light emission amount of light emitting element 1 is at the lowest level, so the position of the transmitted light amount distribution is in the region where the amount of transmitted light is small as a whole, and the light amount adjustment setting range that is set as appropriate for this is Since the area is large, the amount of light emitted is controlled to increase sequentially, and light amount adjustment control is performed so that the transmitted light amount distribution falls within the light amount adjustment setting range.

(発明の効果) このように脱ぷ率センサ5によって、脱ぷ率を検出する
場合に、この脱ぷ率センサ5に摺出米が流れる以前にお
いて、初期調節によって、脱ぷ率センサ5の特性に応じ
た一定の適正受光量範囲になるように、発光素子lの発
光量を駆動電圧等によって調節制御しておき、続いて、
摺出米が流れ出してからは、この初期調節によって決め
られた発行量をスタート時の発光量として、順次大きく
光量変更しながら、透過光量分布4を光量調節設定範囲
へ移動させるものであるから、摺出米が流れ出した光量
調節制御の開始時から、予め初期調節により発光素子1
による発光量が、受光素子2による適正受光量範囲にあ
るため、光量調節制御が的確に、速かに行われる。
(Effects of the Invention) When the pulping rate is detected by the pulping rate sensor 5 as described above, the characteristics of the pulping rate sensor 5 are adjusted by initial adjustment before the washed rice flows to the pulping rate sensor 5. The amount of light emitted by the light emitting element l is adjusted and controlled by the drive voltage etc. so that it falls within a certain appropriate amount of light received according to the amount of light received, and then,
After the rice has flowed out, the amount of emitted light determined by this initial adjustment is used as the starting amount of light, and the transmitted light amount distribution 4 is moved to the light amount adjustment setting range while gradually changing the amount of light. From the start of the light amount adjustment control when the washed rice begins to flow, the light emitting element 1 is adjusted in advance by initial adjustment.
Since the amount of light emitted by the light receiving element 2 is within the appropriate amount of light received by the light receiving element 2, the light amount adjustment control is performed accurately and quickly.

(実施例) なお、国側において、籾摺機は、第6図において、機体
の上部に、回転周速差を有する一対の脱ぷロール6から
なる籾摺装置3に籾を供給する籾供給漏斗7、及び籾摺
装置3で脱ぷされた摺出米Sを玄米Gと籾Mとに選別す
る回転選別筒からなる選別装置8等を有し、又、機体の
下部には、該籾摺装置3による摺出米を風選する風選装
置9、及び選別装置8で選別された玄米等を風選する風
選装置10等を設ける。
(Example) On the national side, as shown in FIG. 6, the huller is equipped with a paddy supply device 3, which supplies paddy to the huller device 3, which is composed of a pair of dehulling rolls 6 having a rotational circumferential speed difference, on the upper part of the machine. It has a funnel 7 and a sorting device 8 consisting of a rotary sorting tube that sorts the crushed rice S that has been hulled by the hulling device 3 into brown rice G and paddy M. A wind selection device 9 for wind screening the rice that has been removed by the sliding device 3, and a wind selection device 10 for wind screening the brown rice etc. sorted by the sorting device 8 are provided.

又、機体の一側には、籾摺制御を行う脱ぷ半制御装置1
1を設け、摺出米Sの一部のサンプリング粒を流下させ
ながら、このサンプリング粒から脱ぷ率を検出する脱ぷ
率センサ5を設けている。
In addition, on one side of the machine, there is a husking semi-control device 1 that controls the hulling.
1 is provided, and a hulling rate sensor 5 is provided which detects the hulling rate from some of the sampled grains of the washed rice S while flowing down the sampled grains.

12は、摺出米揚穀機で、籾摺装置3で摺出された摺出
米や、選別装置8で選別された戻り混合米等を受けて、
この選別装置8へ揚穀する構成である。13は、玄米揚
穀機で、該選別装置3下の玄米風選装置10で風選され
た玄米を受けて取出す構成である。14は、排塵機で、
各風選装置9.10で風選した籾殻や、塵埃等を吸引排
出するものである。
12 is a crushed rice grain lifting machine, which receives the crushed rice crushed by the hulling device 3, the returned mixed rice sorted by the sorting device 8, etc.
The grain is fried to this sorting device 8. Reference numeral 13 denotes a brown rice lifting machine, which is configured to receive and take out the brown rice that has been air-sorted by the brown rice wind sorting device 10 below the sorting device 3. 14 is a dust extractor,
The rice husks, dust, etc. that have been air-sorted by the wind-selecting devices 9 and 10 are sucked and discharged.

第1図において、マイクロコンピュータCPUを有した
脱ぷ半制御装置11は、脱ぷ率センサ5からの入力を受
けて、脱ぷロール6のロール間隙を調節する間隙制御モ
ータ15を出力制御する構成である。脱ぷ率センサ5は
、発光素子1から受光素子2へ照射される発光に、摺出
米Sのサンプリング粒を一粒毎横断通過させることによ
って、このサンプリング粒を照射したときの受光素子2
の受ける透過光量を検出して、脱ぷ半制御装置11へ出
力するものである。
In FIG. 1, a shedding semi-control device 11 having a microcomputer CPU receives input from a shedding rate sensor 5 and controls the output of a gap control motor 15 that adjusts the roll gap of the shedding rolls 6. It is. The pulp removal rate sensor 5 allows the light emitted from the light emitting element 1 to the light receiving element 2 to pass through each sampled grain of the polished rice S, so that the light receiving element 2 when the sampled grains are irradiated with the light emitted from the light emitting element 1.
It detects the amount of transmitted light received by the filter and outputs the detected amount to the skimming semi-control device 11.

光量制御装置16は、脱ぷ半制御装置11の部として設
けられ、発光素子1の光量を自動調節制御する光量調節
出力の出力回路17を有し、又、発光素子2が検出する
一粒毎の透過光量を入力回路18、及び−粒毎の信号を
検出する粒信号検出回路19を設け、発光素子1による
光量が、予め設定された基準電圧による光量調節設定範
囲り内に入るように自動的に調節制御される構成である
The light amount control device 16 is provided as a part of the stripper control device 11, and has an output circuit 17 for automatically adjusting the light amount of the light emitting element 1, and also has an output circuit 17 for automatically controlling the light amount of the light emitting element 1. An input circuit 18 for inputting the amount of transmitted light, and a grain signal detection circuit 19 for detecting a signal for each grain are provided, and the light amount from the light emitting element 1 is automatically controlled so that it falls within the light amount adjustment setting range based on a preset reference voltage. It is a configuration that can be adjusted and controlled.

脱ぷ率制御装置11における脱ぷ率の演算処理制御につ
いて、第5図は、脱ぷ率センサ5によって検出される所
定粒数のサンプリング粒の一粒毎の透過光量の透過率を
度数分布としてグラフィック化した透過率粒数分布曲線
(以下透過光量分布と云う。)4の一般的な形態を示す
ものである。
Regarding the arithmetic processing control of the pulp removal rate in the pulp removal rate control device 11, FIG. This figure shows a general form of a graphic transmittance particle number distribution curve (hereinafter referred to as transmitted light amount distribution) 4.

脱ぷ率の算出処理制御は、 (1) 透過光量分布4のグラフィック処理制御を行う
The calculation processing control of the shedding rate is as follows: (1) Graphic processing control of the transmitted light amount distribution 4 is performed.

(2) この透過光量分布4から玄米平均ブロック値K
Gと籾平均ブロック値KMとを算出処理制御する。
(2) From this transmitted light amount distribution 4, the brown rice average block value K
G and the grain average block value KM are calculated and controlled.

(3) 透過光量分布における玄米Gと、籾Mとの境界
位置である境界ブロック値をしきい値にとして算出処理
制御する。
(3) The calculation process is controlled using the boundary block value, which is the boundary position between brown rice G and paddy M in the transmitted light amount distribution, as a threshold value.

(4) このしきい値Kを境として、玄米G側のサンプ
リング粒数と、籾M側のサンプリング粒数とによって悦
ぶ率を算出処理制御する。
(4) With this threshold value K as a boundary, the rate of pleasure is calculated and controlled based on the number of sampled grains on the brown rice G side and the number of sampled grains on the paddy M side.

の各行程によって行わわる。This is done through each process.

このしきい値算出制御を更に詳細に説明すると、透過光
量の透過率は、第5図に示すように最大から最小透過率
までの間を1からNまでの各ブロックにN区分している
。そこで−回のサンプリング粒の粒数を、例えば2.0
00粒、検出時間20秒、ブロック数Nを64等に設定
しておく。又、全ブロック数N間の各平均透過光量に相
当する出力電圧を一粒信号電圧として、○〜10■(ボ
ルト)として出力するように設定している。
To explain this threshold value calculation control in more detail, the transmittance of the amount of transmitted light is divided into N blocks from 1 to N from the maximum transmittance to the minimum transmittance, as shown in FIG. Therefore, the number of grains sampled for - times is set to 2.0, for example.
00 grains, the detection time is 20 seconds, and the number of blocks N is set to 64, etc. Further, the output voltage corresponding to each average amount of transmitted light among the total number of blocks N is set to be output as a signal voltage of .about.10.about.10 (volts).

玄米平均ブロック値K Gは、玄米の平均値であって、
この算出は、玄米粒数が第5図のピーク値のときの粒数
を基準として、この基準粒数から定値(例えば25粒)
の範囲内にある粒数のブロックの光量積算の加算値を、
粒数の加算値で割った値とする。即ち、玄米ピーク値部
分の一粒当りの平均透過光量を求める。この場合、ピー
ク粒数が25粒以上のブロックが例えば10ブロツク未
渦のときは、上位10ブロツクにして上記と同様に計算
を行うように制御する。
Brown rice average block value KG is the average value of brown rice,
This calculation is based on the number of brown rice grains at the peak value in Figure 5, and a fixed value (for example, 25 grains) from this reference grain number.
The sum of the light intensity integration of blocks with grain numbers within the range of
The value shall be divided by the added value of the number of grains. That is, the average amount of transmitted light per grain of brown rice at its peak value is determined. In this case, if, for example, 10 blocks with a peak grain number of 25 grains or more are not swirled, the calculation is performed in the same manner as above using the top 10 blocks.

籾平均ブロック値KMは、籾の平均値であってこの算出
は、総サンプリング粒数(2,000粒)の精側から例
えば5粒をカットしたブロックを最大ブロックとし、こ
の精側から一定ブロック(例えば]0ブロック)の光量
積算の加算値を粒数の加算値で割った値とする。即ち、
籾Mのピーク値部分の一粒当りの平均透過光量を求める
The paddy average block value KM is the average value of paddy, and in this calculation, the maximum block is a block obtained by cutting, for example, 5 grains from the fine side of the total number of sampled grains (2,000 grains), and a certain block from this fine side is calculated. (For example, the value obtained by dividing the sum of the light amount integration of block 0) by the sum of the number of grains. That is,
The average amount of transmitted light per grain of rice M at its peak value is determined.

このようにして、玄米平均ブロック値KGと籾平均ブロ
ック値K Mとが求められると、これら各ブロック値に
、G、KMによって、境界ブロック値であるしきい値K
を次の式によって算出制御する。
In this way, when the brown rice average block value KG and the paddy average block value KM are determined, each of these block values is given a threshold value K, which is the boundary block value, by G and KM.
is calculated and controlled by the following formula.

K= (KM−KG)xk+KG k:定数 この定数kについては、籾ブロック値KMの算出を行っ
た上位]Oブロックの粒数により、次のように設定する
K=(KM-KG)xk+KG k: Constant This constant k is set as follows according to the number of grains of the upper]O block where the paddy block value KM was calculated.

100  粒未満 ・・・k=0.55100〜149
粒・・・k=0.47 150 粒以」二 −・・k=0.40摺出米サンプリ
ング粒の分布により、脱ぷ率を算出するとき、脱ぷ率セ
ンサ1の発光の透過率に対する分布は、玄米Gと籾Mが
完全に分れた分布形態ではなく、両者が相重合した部分
をもつ分布となり、しきい値にはこの重合した部分より
も玄米G側に位置し、このしきい値Kにより計算脱ぷ率
の精度が決まる。実説ぶ率の高低によって、精側上位ブ
ロックの粒数が変ることを利用して、その粒数により境
界ブロック位置を調整することにより、実説ぶ率に対す
る計算脱ぷ率の精度を高めることができる。
Less than 100 grains...k=0.55100~149
Grains...k=0.47 150 grains or more"2 -...k=0.40 When calculating the hulling rate based on the distribution of the sampled grains of polished rice, The distribution is not a distribution form in which brown rice G and paddy M are completely separated, but a distribution with a part where the two are phase-polymerized, and the threshold is located on the side of brown rice G from this polymerized part, and this The accuracy of the calculated skipping rate is determined by the threshold value K. By taking advantage of the fact that the number of grains in the upper block on the fine side changes depending on the actual rate, and adjusting the boundary block position according to the number of grains, it is possible to improve the accuracy of the calculated skipping rate relative to the actual rate. .

このようにして、しきい値Kか決まると、例えば、次式
のようにサンプリング全粒数(2,000粒)に刻する
しきい値Kから玄米側にある玄米Gの総粒数の比を求め
て脱ぷ率とする。
In this way, once the threshold value K is determined, the ratio of the total number of grains of brown rice G on the brown rice side to the threshold value K, which is divided into the total number of grains sampled (2,000 grains) as shown in the following equation. Find this and use it as the shedding rate.

脱ぷ率=((サンプリング全粒数−しきい値K 以上の
ブロックにある総粒数)/サンプリング全粒数)×10
0(%) このようにして、脱ぷ率が算出されると、この算出脱ぷ
率が設定脱ぷ率になるように間隙制御モタ15を出力し
て、ロール間隙を調整する。
Slipping rate = ((total number of grains sampled - total number of grains in blocks above threshold value K)/total number of grains sampled) x 10
0 (%) When the shedding rate is calculated in this manner, the gap control motor 15 is output to adjust the roll gap so that the calculated shedding rate becomes the set shedding rate.

第2図を参照して光量調節制御を説明する。透過光量分
布4は、脱ぷ率センサ5の発光素子1の光量を変更する
ことによって、水平方向へ移動される。玄米Gと籾Mと
の判別に適する光量調節設定範囲りを予め決めておき、
透過率分布4の玄米平均ブロックのピーク像である玄米
ブロック値KGが、この光量調節設定範囲りに入ったと
き、脱ぷ率センサ1の光量調節制御を終るように制御構
成する。
The light amount adjustment control will be explained with reference to FIG. The transmitted light amount distribution 4 is moved in the horizontal direction by changing the light amount of the light emitting element 1 of the shedding rate sensor 5. Decide in advance the light intensity adjustment setting range suitable for distinguishing between brown rice G and paddy M,
When the brown rice block value KG, which is the peak image of the brown rice average block of the transmittance distribution 4, falls within this light intensity adjustment setting range, the control is configured so that the light intensity adjustment control of the pulp removal rate sensor 1 is terminated.

実際に透過する摺出米Sのサンプリング粒の信号により
、脱ぷ率センサ5のセンサ光量を適正光量に調節する。
The sensor light amount of the pulp removal rate sensor 5 is adjusted to an appropriate light amount based on the signal of the sampled grains of the polished rice S that actually passes through.

サンプリング粒の信号を信号電圧(0−10V)として
N区分し、各区分のブロック毎の度数を算出して度数分
布で表わし、最大度数で透過光量分布4の玄米ブロック
値KGの電圧を玄米の平均信号電圧とみなす。この玄米
電圧を適正な範囲り内に入るようにセンサ光量を前記脱
ぷ率制御装置11内の光量制御装置16により光量調節
出力して行う。光量調節出力によって、センサ光量を大
きくして明るくする(光量ダラーではFF→○O)と、
透過光量分布4は低電圧I11へ移動し、又、センサ光
量を小さくして暗くする(00−FF)と高電圧側へ移
動する。初期設定では、光量データかクリアされている
ために、最も暗い側の10V (FF)でスタートし、
その後の分布状態によってD移動されて、光量の適正範
囲り内に位置される。
The signal of the sampling grain is divided into N divisions as a signal voltage (0-10V), the frequency for each block of each division is calculated and expressed as a frequency distribution, and the voltage of the brown rice block value KG of the transmitted light amount distribution 4 at the maximum frequency is calculated as the voltage of brown rice. Regarded as average signal voltage. The sensor light amount is adjusted and outputted by the light amount control device 16 in the pulp removal rate control device 11 so that the brown rice voltage falls within an appropriate range. If you increase the sensor light amount and make it brighter by using the light amount adjustment output (FF → ○O for light amount dollar),
The transmitted light amount distribution 4 moves to the low voltage I11, and also moves to the high voltage side when the sensor light amount is decreased to make it darker (00-FF). In the initial setting, the light amount data is cleared, so it starts at the darkest side, 10V (FF),
Depending on the subsequent distribution state, it is moved by D and is positioned within the appropriate light amount range.

第3図に示すように、発光素子1の発光量と、受光素子
2の受光量との関係を示すセンサ特性は、各個の脱ぷ率
センサA、B、Cによって異なり、従って、これが脱ぷ
率センサの検出感度のばらつきとなる。受光素子2にお
(づる適正受光量範囲Eを設定しておくと、各脱ぷ率セ
ンサA、B、Cの発光素子1による発光量の範囲KA、
KB、KCは各々異なるものであるから、前記光量調節
のスタート時の発光量を一定値とすると、上記ばらつき
により発光量が強すぎたり、弱すぎたりして1 、その後の光量調節が確実に行い難いことがある。
As shown in FIG. 3, the sensor characteristics indicating the relationship between the amount of light emitted by the light emitting element 1 and the amount of light received by the light receiving element 2 are different for each of the shedding rate sensors A, B, and C. This results in variation in the detection sensitivity of the rate sensor. By setting the appropriate light receiving amount range E on the light receiving element 2, the range KA of the amount of light emitted by the light emitting elements 1 of each shedding rate sensor A, B, C,
Since KB and KC are different from each other, if the amount of light emitted at the start of the light amount adjustment is set to a constant value, the amount of light emitted may be too strong or too weak due to the above-mentioned variations. There are some things that are difficult to do.

そこで初期調節制御は、サンプリング粒を脱ぷ率センサ
5に流さない状態において、この脱ぷ率センサ5(例え
ばA)の特性を検出する。即ちセンサAにおいて、第4
図のように、適正受光量範囲KAの最低駆動電圧時の受
光量を測定しながら、この適正受光量範囲KAの最低駆
動電圧VAを、光量調節スタート時の発光素子]の駆動
電圧とする。そして、この駆動電圧をスター]・時の発
光量として出力回路17から出力させて次の光量調節制
御へ移る。
Therefore, the initial adjustment control detects the characteristics of the pulp removal rate sensor 5 (for example, A) in a state where the sampling grains are not flowing through the pulp removal rate sensor 5. That is, in sensor A, the fourth
As shown in the figure, while measuring the amount of light received at the lowest drive voltage in the appropriate amount of light received range KA, the lowest drive voltage VA in the appropriate amount of received light amount range KA is set as the drive voltage of the light emitting element at the start of light amount adjustment. Then, this drive voltage is outputted from the output circuit 17 as the light emission amount at the time of STAR], and the process moves on to the next light amount adjustment control.

この出力回路17からの出力開始は、脱ぷ率センサ5に
サンプリング粒が流れ出してから行われるもので、籾供
給漏斗7のシャッター開と同時に行わせるもよい(第4
図)。この発光素子1による発光量(駆動電圧VA)に
よって、サンプリング粒を検出しながら作成処理される
透過光量分布は、第2図のように光量調節設定範囲りか
らDだ0づ精側寄りに離れた位置イにあって、この位置
43から光量調節が開始される。この位置43からの光
2 量調節の開始後の1回の変更量は、光量調節設定範囲り
のセンターブロック位置KGと、透過光量分布43のピ
ーク値位置との差りにより決定されて、発光素子1の発
光量を光量調節制御装置16により変更していく。この
結果、透過光量分布は43→4”−4’−4として移動
し、適正位置になる。
The output from the output circuit 17 is started after the sampling grains have flowed to the pulping rate sensor 5, and may be started at the same time as the shutter of the paddy supply funnel 7 is opened (the fourth
figure). Based on the amount of light emitted by the light emitting element 1 (driving voltage VA), the transmitted light amount distribution that is created while detecting the sampling grains is shifted from the light amount adjustment setting range to the D0 side, as shown in Figure 2. The light quantity adjustment is started from this position 43. The amount of light 2 from this position 43 is changed once after the start of the amount adjustment, which is determined by the difference between the center block position KG in the light amount adjustment setting range and the peak value position of the transmitted light amount distribution 43, The amount of light emitted from the element 1 is changed by the light amount adjustment control device 16. As a result, the transmitted light amount distribution shifts from 43 to 4''-4'-4, reaching the appropriate position.

なお、初期調節の開始において、発光素子1の発光量(
駆動電圧)が、受光素子2の適正受光量範囲Eに対応し
ているときは、も翳や初期調節は不要であるから、シャ
ッター開による光量調節処理に移行させるもよい。サン
プリング粒の2,000粒のデータのうち500粒分布
の玄米ブロック値KGが適正範囲りに1回入り、このと
きの光量において再度500粒の分布をとり、再度玄米
ブロック値KGが適正範囲りに入ったとき光量調節制御
を終了する。
Note that at the start of the initial adjustment, the amount of light emitted from the light emitting element 1 (
When the driving voltage (driving voltage) corresponds to the appropriate light receiving amount range E of the light receiving element 2, no shadowing or initial adjustment is necessary, so the process may be shifted to light amount adjustment processing by opening the shutter. The brown rice block value KG of the 500-grain distribution among the data of 2,000 sampled grains falls within the appropriate range once, and at this time the distribution of 500 grains is taken again, and the brown rice block value KG falls within the appropriate range again. When it enters, the light amount adjustment control ends.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の一実施例を示すもので、第1図は制御ブ
ロック図、第2図は光量調節処理制御を示す作用グラフ
、第3図は脱ぷ率センサの特性を示すグラフ、第4図は
一部の制御作用を示すフローチャート、第5図は透過光
量分布を示すグラフ、第6図は籾摺機の斜面図である。 (符号の説明) 工 発光素子   2 受光素子 3 籾摺装置   4 透過光量分布 5 脱ぷ率センサ
The figures show one embodiment of the present invention, in which Fig. 1 is a control block diagram, Fig. 2 is an action graph showing light amount adjustment processing control, Fig. 3 is a graph showing the characteristics of the pulp removal rate sensor, and Fig. 4 is a graph showing the characteristics of the pulp removal rate sensor. The figure is a flowchart showing a part of the control action, FIG. 5 is a graph showing the transmitted light amount distribution, and FIG. 6 is a slope view of the huller. (Explanation of symbols) Light emitting element 2 Light receiving element 3 Hulling device 4 Transmitted light amount distribution 5 Nulling rate sensor

Claims (1)

【特許請求の範囲】[Claims] 発光素子1から受光素子2へ投光されるセンサ投光域に
、籾摺装置3による摺出米Sを流しながら、該センサ投
光の透過光量分布4によって籾Mと玄米Gとの境界であ
るしきい値Kを求めて脱ぷ率を算出する脱ぷ率センサ5
において、摺出米Sが流れていない初期時に、受光素子
2の出力レベルが一定値になるように発光素子1の光量
を変更する初期調節を行い、このときの発光量を摺出米
Sが流れ出してから行う光量調節のスタート光量とする
ことを特徴とする光量調節制御方式。
While the grained rice S from the hulling device 3 is flowing through the sensor light emitting area where light is emitted from the light emitting element 1 to the light receiving element 2, the transmitted light amount distribution 4 of the sensor light is used to detect the rice grains at the boundary between the paddy M and brown rice G. A shedding rate sensor 5 that calculates a shedding rate by determining a certain threshold value K
At the initial stage when the rice S is not flowing, the light intensity of the light emitting element 1 is changed so that the output level of the light receiving element 2 becomes a constant value. A light amount adjustment control method characterized in that the light amount is set as the start light amount for light amount adjustment performed after the light begins to flow.
JP1663690A 1990-01-26 1990-01-26 Light quantity adjustment control system for rice-hull removing rate sensor Pending JPH03221846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1663690A JPH03221846A (en) 1990-01-26 1990-01-26 Light quantity adjustment control system for rice-hull removing rate sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1663690A JPH03221846A (en) 1990-01-26 1990-01-26 Light quantity adjustment control system for rice-hull removing rate sensor

Publications (1)

Publication Number Publication Date
JPH03221846A true JPH03221846A (en) 1991-09-30

Family

ID=11921849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1663690A Pending JPH03221846A (en) 1990-01-26 1990-01-26 Light quantity adjustment control system for rice-hull removing rate sensor

Country Status (1)

Country Link
JP (1) JPH03221846A (en)

Similar Documents

Publication Publication Date Title
JP7339336B2 (en) Method for controlling the operation of a machine for harvesting root crops
JPH0232229A (en) Grain distribution detecting device for grain separator
US4687105A (en) Arrangement in grading and cleaning machines with screens
JPH03221846A (en) Light quantity adjustment control system for rice-hull removing rate sensor
JPH03221845A (en) Light quantity adjustment control system for rice-hull removing rate sensor
JPH03277948A (en) Method for detecting and controlling hulled ratio of rice huller and the like
JPH0432750A (en) Light quantity adjustment control system for milling rate sensor
JPH0440348A (en) Hulling rate sensor
JPH03249954A (en) Adjusting and controlling system for quantity of light in husking ratio sensor
JPH0438451A (en) Dehulling rate sensor of huller
JPH03278845A (en) Controlling system for hulling ratio of huller and the like
JPH03258354A (en) Husking controlling system in rice husker
JPH03249955A (en) Adjusting and controlling system for quantity of light in husking ratio sensor
JPH0398651A (en) Dehulling ratio control apparatus of huller
JPH0438449A (en) Light quantity control device of dehulling rate sensor
JPH0440242A (en) Controlling apparatus for husking ratio of husker
JPH0385427A (en) Controlling system of light quantity adjustment of hulling rate sensor
JPH03278846A (en) Detection control system for hulling ratio of huller and the like
JPH0432749A (en) Light quantity adjustment control system for milling rate sensor
JPH0438450A (en) Light quantity control device of dehulling rate sensor
JPH0398652A (en) Abnormality detection apparatus of dehulling ratio sensor
JPH10216650A (en) Granular material color classifier and method for controlling granular material color classifier
JPH0385428A (en) Measuring system of hulling rate
JPH0440243A (en) Controlling apparatus for husking ratio of husker
JPH03221148A (en) Dehulling control apparatus of huller