JPH0440242A - Controlling apparatus for husking ratio of husker - Google Patents

Controlling apparatus for husking ratio of husker

Info

Publication number
JPH0440242A
JPH0440242A JP14650890A JP14650890A JPH0440242A JP H0440242 A JPH0440242 A JP H0440242A JP 14650890 A JP14650890 A JP 14650890A JP 14650890 A JP14650890 A JP 14650890A JP H0440242 A JPH0440242 A JP H0440242A
Authority
JP
Japan
Prior art keywords
husking
husk
rice
light
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14650890A
Other languages
Japanese (ja)
Inventor
Koichi Hachitsuka
浩一 八塚
Shinji Ninomiya
伸治 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP14650890A priority Critical patent/JPH0440242A/en
Publication of JPH0440242A publication Critical patent/JPH0440242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Adjustment And Processing Of Grains (AREA)

Abstract

PURPOSE:To prevent closing operation of the gap of husking rolls in vain by computing husking ratio while husk-removed rice is led to pass a sensor light projecting region of a husking ratio sensor by a husk removing apparatus to carry out open operation of the roll gap of husk removing rolls and then recovering the husking ratio by adjusting quantity of light. CONSTITUTION:In the upper part of it, a husk removing machine has a husking apparatus 2 consisting of a pair of husking rolls 5, 6 having different rotating speed, a paddy supplying funnel 7 to supply paddy to the husking apparatus 2, and a sorting apparatus 8 consisting of a rotary sorting cylinder to sort the husk-removed rice 3 which is husked by the husking apparatus 2 into unpolished rice G and husk M and in the lower part of the machine, a blowing and sorting apparatus 9, etc. to blow a wind and sort the husk-removed rice by the husking apparatus 2 is installed. A husking ratio sensor 1 detects the quantity of permeated light which a photodetector 17 receives when light is applied to a sampling grain by passing sampling grains of the husk- removed rice 3 one by one transversely to the luminous light radiated from a light emitting device 16 to the photodetector 17 and the sensor 1 sends an output to a husking ratio controlling apparatus 10. Consequently, vain wear of husk removing rolls is lessened.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、籾摺機の脱■率制御装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a dehulling rate control device for a rice huller.

(従来の技術、及び発明が解決しようとする課題) 籾摺機の脱■率が80〜90%の場合は、脱■ロール等
を駆動するモータが過負荷になることは少いが、脱話し
難い米の場合は、脱■率の設定を高くすると、この設定
脱■率になる以前にモータが過負荷になり易い、このよ
うな場合は、過負荷を防止するために、脱■ロール間隙
を開く、従ってこのような制御を脱■率センサによると
きは、脱■ロール間隙の閉、及び過負荷防止による脱拮
ロール間隙の開を繰返し、この結果、脱■ロールの摩耗
を早くする。とくに脱■率センサの光量調節が適正に行
われていないときは、このような脱■ロール間隙が無駄
に閉作動されることが多い。
(Prior art and problems to be solved by the invention) When the removal rate of a rice huller is 80 to 90%, the motor that drives the removal rolls, etc. is unlikely to be overloaded; In the case of rice that is difficult to handle, if you set the derolling rate high, the motor is likely to be overloaded before the set derolling rate is reached.In such cases, to prevent overload, the derolling When the gap is opened, therefore, such control is performed by the removal rate sensor, the removal roll gap is repeatedly closed and the removal roll gap is opened to prevent overload, which results in faster wear of the removal roll. . In particular, when the light amount of the removal rate sensor is not properly adjusted, such a removal roll gap is often closed in vain.

この発明は、脱■ロールのロール間隙を一旦開作動させ
後ちに、光量調節を行って脱■率を復帰させて、上記の
ような不具合を解消しようとするものである。
This invention attempts to solve the above-mentioned problems by once opening the gap between the rolls for removing the rolls, and then adjusting the amount of light to restore the removal rate.

(課題を解決するための手段) この発明は、脱■率センサ1のセンサ投光域に籾摺装!
2による摺出米3を通過させながら、脱■率を算出して
一対の脱■ロール5,6間のロール間隙を調節制御する
脱■率センサに、過負荷となったときは、この過負荷解
除まで該ロール間隙を開き、脱■率センサ1の光量を適
正光量に調節する光量調節をした後ち脱■率制御に復帰
することを特徴とする籾摺機の脱■率制御装置の構成と
する。
(Means for Solving the Problems) According to the present invention, rice husk is installed in the sensor light emitting area of the removal rate sensor 1!
When the removal rate sensor, which calculates the removal rate and adjusts and controls the roll gap between the pair of removal rolls 5 and 6 while passing the removed rice 3 from 2, is overloaded, this overload is detected. A dehulling rate control device for a rice huller, characterized in that the roll gap is opened until the load is released, and the light intensity of the dehulling rate sensor 1 is adjusted to an appropriate light intensity, and then the dehulling rate control is returned to. composition.

(作用) 脱■率センサ1のセンサ投光域に籾摺装置2で脱■され
た摺出米3の一部がサンプリングとして供給され、その
センサ投光の透過率によって脱■率が算出制御され、こ
の検出脱■率と予め設定された設定脱■率との比較のも
とに脱■率制御によって脱■ロール5,6間のロール間
隙調節制御が行われる。
(Function) A part of the crushed rice 3 dehulled by the hulling device 2 is supplied as a sampling to the sensor light emitting area of the dehulling rate sensor 1, and the dehulling rate is calculated and controlled based on the transmittance of the sensor light. Based on the comparison between the detected removal rate and a preset removal rate, the roll gap between the removal rolls 5 and 6 is controlled by removal rate control.

この脱■率制御において、籾摺装置2が過負荷になった
ときは、これによってロール5,6間のロール間隙が開
かれて、該過負荷状態が解除される。この過負荷解除状
態で、脱■率センサ1の光量調節が行われ、光量が適正
な範囲に設定されると、この脱■率センサlの脱■率の
検出による脱■率制御に復帰される。
In this removal rate control, when the hulling device 2 becomes overloaded, the roll gap between the rolls 5 and 6 is opened, and the overloaded state is released. In this overload release state, the light intensity of the removal rate sensor 1 is adjusted, and when the light intensity is set to an appropriate range, the removal rate is returned to control by detecting the removal rate of the removal rate sensor 1. Ru.

(発明の効果) このように脱■率センサに籾摺装置が過負荷になると、
直ちにこの過負荷がロール間隙の開きによって解除され
ると共に、適正な光量でないとき°は一旦光量調節が行
われた後ちに、脱活率制御に復帰されるものであるから
、脱■率センサ1による的確な脱■率制御を維持するこ
とができ、ロール間隙を閉めることを少なくして、脱■
ロールの無駄な摩耗を少なくすることができる。
(Effect of the invention) When the hulling device becomes overloaded to the de-hulling rate sensor in this way,
This overload is immediately released by opening the roll gap, and if the light intensity is not appropriate, the light intensity is adjusted once and then the deactivation rate control is returned to, so the deactivation rate sensor 1, it is possible to maintain accurate removal rate control, reduce the need to close the roll gap, and improve removal rate.
Unnecessary wear of the roll can be reduced.

(実施例) なお、回倒において、籾摺機は、第4図において、機体
の上部に、回転周速差を有する一対の脱■ロール5,6
からなる籾摺装置2、この籾摺装!2に籾を供給する籾
供給漏斗7、及び籾摺装置2で脱■された摺出米3を玄
米Gと籾Mとに選別する回転選別筒からなる選別装置8
等を有し、又。
(Example) In the rotation, the hulling machine has a pair of dehulling rolls 5 and 6 at the top of the machine body, which have a difference in rotational circumferential speed, as shown in Fig. 4.
The rice hulling device 2 consists of this rice hulling device! A sorting device 8 consisting of a paddy supply funnel 7 for supplying paddy to the huller 2, and a rotating sorting tube that sorts the crushed rice 3 removed by the hulling device 2 into brown rice G and paddy M.
etc., and also.

機体の下部には、該籾摺装置2にょる摺出米を風選する
風選装置!9等を設けている。
At the bottom of the machine, there is a wind selection device that winds the rice that has been removed from the hulling device 2! There are 9 prizes.

又1機体の一側には、籾摺制御を行う脱■率制御装置1
10を設けると共に、摺出米の一部のサンプリング粒を
流下させながら、このサンプリング粒から脱■率を検出
する脱■率センサ1を設けている。11は摺出米揚穀機
で、籾摺装置2で摺出された摺出米や、選別装!8で選
別された戻り混合米等を受けて、この選別装[8へ揚穀
する構成である。12は、玄米揚穀機で、該選別装置2
下の玄米風選装置!13で風選された玄米を受けて取出
す構成である。14は、排塵機で、各風選装置。
Also, on one side of the machine, there is a dehulling rate control device 1 that controls the hulling.
10 is provided, and a de-dusting rate sensor 1 is provided which detects the de-dusting rate from some of the sampled grains of the washed rice while flowing down the sampled grains. Reference numeral 11 is a crushed rice grain lifting machine, which handles the crushed rice that has been crushed by the hulling device 2 and the sorting equipment! It is configured to receive the returned mixed rice, etc. sorted in step 8, and fry it in the sorter [8]. 12 is a brown rice frying machine, and the sorting device 2
The brown rice sorting device below! It is configured to receive and take out the brown rice selected in step 13. 14 is a dust extractor and each wind sorting device.

13.9で風選した籾殻や、塵埃等を吸引排出するもの
である。
This is to suck and discharge the rice husks, dust, etc. that were wind-selected in step 13.9.

第1図において、マイクロコンピュータCPUを有した
脱■率制御装置110は、脱■率センサ1からの入力を
受けて、脱■ロール5,6のロール間隙を調節する間隙
制御モータ15を出力制御する構成である。脱■率セン
サ1は、発光素子16から受光素子17へ照射される発
光に、摺出米3のサンプリング粒を一粒毎横断通過させ
ることによって、このサンプリング粒を照射したときの
受光素子17の受ける透過光量を検出して、脱■率制御
装置10へ出力するものである。22は過負荷センサで
、籾摺装置2.とくに脱括ロール5゜6を駆動するモー
タの過負荷を検出する。
In FIG. 1, a removal rate control device 110 having a microcomputer CPU receives input from the removal rate sensor 1 and controls the output of a gap control motor 15 that adjusts the roll gap between removal rolls 5 and 6. It is configured to do this. The removal rate sensor 1 allows the light emitted from the light emitting element 16 to the light receiving element 17 to pass through each sampling grain of the polished rice 3, thereby detecting the value of the light receiving element 17 when the sampled grains are irradiated. The amount of transmitted light received is detected and outputted to the removal rate control device 10. 22 is an overload sensor, which is connected to the hulling device 2. In particular, overload of the motor that drives the unclamping roll 5.6 is detected.

光量制御装!18は、脱■率制御装置lOの一部として
設けられ1発光素子16の光量を自動調節制御する光量
調節出力の出力回路19を有し、又、受光素子17が検
出する一粒毎の透過光量を入力回路20.及び−粒毎の
信号を検出する粒信号検出回路21を設け、発光素子1
6による光量が予め設定された基準電圧による光量調節
設定範囲り内に入るように自動的に調節制御される構成
である。
Light control device! Reference numeral 18 includes an output circuit 19 for outputting a light amount adjustment output, which is provided as a part of the removal rate control device IO and automatically adjusts and controls the light amount of one light emitting element 16. Light amount input circuit 20. and - A grain signal detection circuit 21 for detecting a signal for each grain is provided, and the light emitting element 1
In this configuration, the light amount according to No. 6 is automatically adjusted and controlled so that it falls within a light amount adjustment setting range based on a preset reference voltage.

脱■率制御装置110における脱■率の演算処理制御に
ついて、第3図は、脱■率センサ1によって検出される
所定粒数のサンプリング粒の一粒毎の透過光量の透過率
を度数分布としてグラフィック化した(デイスプレィに
現される)透過率粒数分布曲線(以下透過光量分布と云
う)4の一般的な形態を示すものである。この脱■率制
御装置10における脱■率の算出処理は、 (1)このような透過光量分布4のグラフィック処理制
御を行う。
Regarding the arithmetic processing control of the removal rate in the removal rate control device 110, FIG. This figure shows a general form of a graphic transmittance particle number distribution curve (hereinafter referred to as transmitted light amount distribution) 4 (displayed on a display). The calculation process of the breakout rate in the breakout rate control device 10 is as follows: (1) Graphic processing control of the transmitted light amount distribution 4 is performed.

(2)この透過光量分布4を作成しながら、玄米平均ブ
ロック値KGを光量調節設定範囲りに入るように光量調
節を行う。
(2) While creating this transmitted light amount distribution 4, the light amount is adjusted so that the brown rice average block value KG falls within the light amount adjustment setting range.

(3)この透過光量分布4から玄米平均ブロック値KG
と籾平均ブロック値KMとを算出処理制御する。
(3) From this transmitted light amount distribution 4, the brown rice average block value KG
and the paddy average block value KM are calculated and controlled.

(4)透過光量分布4における玄米Gと、籾Mとの境界
位置である境界ブロック値をしきい値にとして算出処理
制御する。
(4) The calculation process is controlled using the boundary block value, which is the boundary position between brown rice G and paddy M in the transmitted light amount distribution 4, as a threshold value.

(5)このしきい値Kを境として、玄米G側のサンプリ
ング粒数と、籾M側のサンプリング粒数とによって脱穀
率を算出処理制御する。
(5) With this threshold value K as a boundary, the threshing rate is calculated and controlled based on the number of sampled grains on the brown rice G side and the number of sampled grains on the paddy M side.

の各行程によって行われる このしきい値算出制御を更に詳細に説明すると。performed by each step of This threshold value calculation control will be explained in more detail.

透過光量の透過率は、第3図に示すように蒼天から最小
透過率までの間を1からNまでの各ブロックにN区分し
ている。そこで−回のサンプリング粒の粒数を、例えば
2000粒、脱■率センサ1によって検出する時間を2
0秒、ブロック数Nを63ブロツクとしている。又、全
ブロック数N間の各平均透過光量に相当する8力電圧を
一粒信号電圧として、0〜l0V(ボルト)として反転
出力するように設定している。
As shown in FIG. 3, the transmittance of the amount of transmitted light is divided into N blocks from 1 to N from the blue sky to the minimum transmittance. Therefore, the number of grains sampled - times is, for example, 2000 grains, and the time required to detect the number of grains sampled by the removal rate sensor 1 is 2.
0 seconds, and the number of blocks N is 63 blocks. Further, the 8-power voltage corresponding to each average amount of transmitted light among the total number of blocks N is set as a single signal voltage, and is set to be inverted and output as 0 to 10V (volts).

玄米平均ブロック値KGは、玄米の平均値であって、こ
の算出は、玄米粒数が第3図のピーク値のときの粒数を
基準として、この基準粒数から一定値(例えば25粒)
の範囲内にある粒数のブロック光量積算の加算値を、粒
数の加算値で割った値とする。即ち、玄米ピーク値部分
の一粒当りの平均透過光量を求める。この場合、ピーク
粒数25粒以上のブロックが例えば10ブロック未満の
ときは、上位10ブロツクとして上記と同様に計算を行
うように制御する。
The brown rice average block value KG is the average value of brown rice, and this calculation is based on the number of grains when the number of brown rice grains is at the peak value in Figure 3, and a fixed value (for example, 25 grains) from this reference grain number.
The value obtained by dividing the sum of block light quantity integration for the number of grains within the range by the sum of the number of grains. That is, the average amount of transmitted light per grain of brown rice at its peak value is determined. In this case, if the number of blocks with a peak grain count of 25 or more is less than, for example, 10 blocks, the calculation is performed in the same manner as above as the top 10 blocks.

籾平均ブロック値KMは、籾の平均値であって、この算
出は、総サンプリング粒数(2000粒)の籾側から例
えば5粒をカットしたブロックを最大ブロックとし、こ
の籾側から一定ブロック(例えば10ブロツク)の光量
積算の加算値を粒数の加算値で割った値とする。即ち、
籾Mピーク値部分の一粒当りの平均透過光量を求める。
The paddy average block value KM is the average value of paddy, and in this calculation, the maximum block is a block obtained by cutting, for example, 5 grains from the paddy side of the total number of sampled grains (2000 grains), and a certain block ( For example, the value obtained by dividing the sum of the light amount integration for 10 blocks by the sum of the number of particles. That is,
The average amount of transmitted light per grain of rice M peak value portion is determined.

このようにして、玄米平均ブロック値KGと籾平均ブロ
ック値KMとが求められると、これら各平均ブロック値
KG、KMによって、境界ブロック値であるしきい値K
を次式によって算出する。
In this way, when the brown rice average block value KG and the paddy average block value KM are determined, the threshold value K, which is the boundary block value, is determined by each of these average block values KG and KM.
is calculated using the following formula.

K= (KM−KG)Xk+KO k:定数 この定数kについては、籾平均ブロック値KMの算出を
行った上位10ブロツクの粒数により、次のように設定
する。
K= (KM-KG)

100  粒未満  ・・・k=0.55100〜14
9粒 ・・・k=0.47150粒以上   ・・・k
=0.40摺出米サンプリング粒の分布により、脱■率
に算出するとき、脱■率センサ1の発光の透過率に対す
る分布は、玄米Gと籾Mが完全に分かれた分布形態では
なく、両者が相重合した部分をしきい値に近くにもつ分
布となり、しきい値Kにより計算脱■率の精度が決まる
。実脱■率の高低によって、精側上位ブロックの粒数が
変ることを利用して、その粒数により境界ブロック位置
を調整することにより、実脱■率に対する計算脱■率の
精度を高めることができる。
Less than 100 grains...k=0.55100~14
9 grains ・・・k=0.47150 grains or more ・・・k
= 0.40 When calculating the removal rate based on the distribution of the sample grains of polished rice, the distribution for the transmittance of the light emitted by the removal rate sensor 1 is not a distribution form in which brown rice G and paddy M are completely separated, The distribution has a portion where both of them are phase-polymerized near the threshold value, and the accuracy of the calculated removal rate is determined by the threshold value K. By taking advantage of the fact that the number of grains in the upper block on the fine side changes depending on the actual shedding rate, and adjusting the position of the boundary block according to the number of grains, the accuracy of the calculated shedding rate relative to the actual shedding rate can be improved. I can do it.

このようにして、しきい値Kが決ると、例えば、次式の
ようにサンプリング全粒数(2000粒)に対するしき
い値Kから玄米側にある玄米Gの総粒数の比を求めて脱
■率とする。
Once the threshold value K is determined in this way, for example, the ratio of the total number of grains of brown rice G on the brown rice side is calculated from the threshold value K to the total number of grains sampled (2000 grains) as shown in the following equation. ■ Rate.

脱■率=((サンプリング全粒数−しきい値に以上のブ
ロックにある総粒数)/サンプリング全粒数)X100
 (%) このようにして脱せ率が算出されると、この算出脱■率
が設定脱■率になるように間隙制御モータ〕5を出力し
て、ロール間隙を調整する。
Elimination rate = ((total number of grains sampled - total number of grains in blocks above the threshold value)/total number of grains sampled) x 100
(%) When the shedding rate is calculated in this manner, the gap control motor 5 is outputted to adjust the roll gap so that the calculated shedding rate becomes the set shedding rate.

第2図を参照して光量調節制御を説明する。透過光量分
布4は、脱■率センサ1の発光素子16の光量を変更す
ることによって、水平方向へ移動される。玄米Gと籾M
との判別に適する光量調節設定範囲りを予め決めておき
、透過率分布4の玄米平均ブロックのピーク値である玄
米平均ブロック値KOが、この光量調節設定範囲りに入
ったとき、脱■率センサ1の光量調節制御を終るように
制御構成する。
The light amount adjustment control will be explained with reference to FIG. The transmitted light amount distribution 4 is moved in the horizontal direction by changing the amount of light emitted from the light emitting element 16 of the exfoliation rate sensor 1. Brown rice G and paddy M
A light intensity adjustment setting range suitable for discrimination is determined in advance, and when the brown rice average block value KO, which is the peak value of the brown rice average block of transmittance distribution 4, falls within this light intensity adjustment setting range, the removal rate The control structure is configured so that the light amount adjustment control of the sensor 1 is completed.

実際に通過する摺出米3のサンプリング粒の信号により
、脱■率センサ1のセンサ光量を適正光量に調節する。
Based on the signal of the sampling grains of the polished rice 3 that actually pass through, the sensor light amount of the removal rate sensor 1 is adjusted to an appropriate light amount.

サンプリング粒の信号を信号電圧(0〜10v)として
N区分し、各区分のブロック毎の度数を算出して度数分
布で表し、最大度数である透過光量分布4の玄米平均ブ
ロック値KGの電圧を玄米の平均信号電圧とみなす、こ
の玄米電圧を適正な範囲り内に入るようにセンサ光量を
前記脱活率制御装置10内の光量制御装置18により光
量調節出力して行う、光量調節出力によって、センサ光
量を大きくして明るくする(光量ダラーではFF→00
)と、透過光量分布4は低信号電圧側へ移動し、又、セ
ンサ光量を小さくして暗くする(00→FF)と高信号
電圧側へ移動する。初期設定では、光量データがクリア
されているために、最も暗い側の信号電圧10V(FF
)でスタートし、その後の分布状態を見ながらΔB移動
させて、光量の適正範囲り内に位置させる。
The signal of the sampling grain is divided into N divisions as a signal voltage (0 to 10V), the frequency of each block in each division is calculated and expressed as a frequency distribution, and the voltage of the brown rice average block value KG of transmitted light amount distribution 4, which is the maximum frequency, is calculated. The sensor light amount is adjusted and outputted by the light amount control device 18 in the deactivation rate control device 10 so that the brown rice voltage, which is regarded as the average signal voltage of brown rice, falls within an appropriate range. Increase the sensor light amount to make it brighter (FF → 00 for light amount dollar)
), the transmitted light amount distribution 4 moves to the low signal voltage side, and when the sensor light amount is decreased and darkened (00→FF), it moves to the high signal voltage side. In the initial setting, the light amount data is cleared, so the signal voltage on the darkest side is 10V (FF
), and while observing the subsequent distribution state, move it by ΔB to position it within the appropriate light amount range.

この光量調節制御は、光量調節設定範囲りの中央位置の
ブロック値NCと、調節前の透過光量分布4曲線の玄米
平均ブロック値NBとの差ΔBを演算させて、この差Δ
Bを一定の変更光量のもとに出力回路19からの出力調
節をすることによって、透過光量分布4曲線の玄米平均
ブロック値KGをNBからNCへ移動させて、この玄米
平均ブロック値KGが光量調節設定範囲りに入ったとき
、発光素子16から受光素子17へ投光する光量として
決定される。
This light amount adjustment control is performed by calculating the difference ΔB between the block value NC at the center position of the light amount adjustment setting range and the brown rice average block value NB of the four curves of the transmitted light amount distribution before adjustment.
By adjusting the output from the output circuit 19 under a constant changing light amount, the brown rice average block value KG of the transmitted light amount distribution 4 curve is moved from NB to NC, and this brown rice average block value KG becomes the light amount. When the adjustment setting range is entered, the amount of light emitted from the light emitting element 16 to the light receiving element 17 is determined.

第5図において、籾摺作業開始時の初期光量調節を行っ
た脱■率センサ1による脱■率の検出によって脱■率制
御が行われているとき、脱■率センサ1の汚れ等によっ
て正確な検出ができないために、戒は、脱話し難い米に
代ること等によって、ロール間隙が狭くなって、過負荷
となったときは、負荷センサ22等によるこの過負荷が
検出されて、脱■ロール5,6間のロール間隙が開かれ
て、過負荷が解除される。
In Fig. 5, when the dehulling rate is controlled by detecting the dehulling rate by the dehulling rate sensor 1, which adjusts the initial light intensity at the start of the hulling operation, the dehulling rate sensor 1 is not accurate due to dirt etc. If the gap between the rolls narrows and an overload occurs due to the use of rice that is difficult to deviate from, the overload will be detected by the load sensor 22, etc., and the system will be removed. (2) The gap between the rolls 5 and 6 is opened, and the overload is released.

この過負荷が解除されると、摺出米の一部が脱■率セン
サ1によって検出されているから、透過光量分布4の作
成と共に、再光量調節の制御が行われる。このときn=
2000粒のサンプリングによって透過光量分布4が作
成されて、この玄米平均ブロック値KOが光量調節設定
範囲りに入ったとき(第2図)の光量をもって、再光量
調節による適正光量と決定され、脱■率制御に復帰され
る。このようにして、脱■率センサ1による検出腕能率
が、設定脱■率と比較されて、設定脱■率よりも高いと
きは、ロール間隙を開き、低いときはロール間隙を閉じ
るようにして、設定脱■率の籾摺作業が維持制御される
When this overload is released, since a part of the removed rice has been detected by the removal rate sensor 1, the transmitted light amount distribution 4 is created and the light amount adjustment is controlled again. At this time n=
Transmitted light amount distribution 4 is created by sampling 2000 grains, and the light amount when this brown rice average block value KO falls within the light amount adjustment setting range (Figure 2) is determined to be the appropriate light amount by re-light amount adjustment, and the removal is performed. ■Return to rate control. In this way, the arm efficiency detected by the removal rate sensor 1 is compared with the set removal rate, and when it is higher than the set removal rate, the roll gap is opened, and when it is lower, the roll gap is closed. , the hulling operation at the set shedding rate is maintained and controlled.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の実施例を示すもので、第1図は制御ブロ
ック図、第2図、第3図は脱■率センサにおける透過光
量分布グラフ、第4図は籾摺機の斜面図、第5図は脱■
率制御の一部のフローチャートである。 (符号の説明) 1 脱■率センサ   2 籾摺装置 3 摺出米      4 透過光量分布5.6 脱■
ロール  16 発光素子光量制御装置 過負荷センサ 玄米 しきい値 19 出力回路 M籾
The figures show an embodiment of the present invention, in which Fig. 1 is a control block diagram, Figs. 2 and 3 are graphs of the transmitted light amount distribution in the removal rate sensor, Fig. 4 is a slope view of the hulling machine, and Fig. Figure 5 is undressed.
3 is a flowchart of part of rate control. (Explanation of symbols) 1 De-■ rate sensor 2 Hulling device 3 Dehulled rice 4 Transmitted light amount distribution 5.6 De-■
Roll 16 Light emitting element light amount control device Overload sensor Brown rice threshold 19 Output circuit M paddy

Claims (1)

【特許請求の範囲】[Claims] 脱■率センサ1のセンサ投光域に籾摺装置2による摺出
米3を通過させながら、脱■率を算出して一対の脱■ロ
ール5、6間のロール間隙を調節制御する脱■率制御中
に、過負荷となったときは、この過負荷解除まで該ロー
ル間隙を開き、脱■率センサ1の光量を適正光量に調節
する光量調節をした後ち脱■率制御に復帰することを特
徴とする籾摺機の脱■率制御装置。
The dehulling process involves calculating the dehulling rate and adjusting and controlling the roll gap between the pair of dehulling rolls 5 and 6 while passing the rice 3 removed by the hulling device 2 through the sensor light emitting area of the dehulling rate sensor 1. When an overload occurs during rate control, the roll gap is opened until the overload is released, the light intensity of the removal rate sensor 1 is adjusted to an appropriate light amount, and then the removal rate control is returned to. A dehulling rate control device for a rice huller.
JP14650890A 1990-06-04 1990-06-04 Controlling apparatus for husking ratio of husker Pending JPH0440242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14650890A JPH0440242A (en) 1990-06-04 1990-06-04 Controlling apparatus for husking ratio of husker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14650890A JPH0440242A (en) 1990-06-04 1990-06-04 Controlling apparatus for husking ratio of husker

Publications (1)

Publication Number Publication Date
JPH0440242A true JPH0440242A (en) 1992-02-10

Family

ID=15409219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14650890A Pending JPH0440242A (en) 1990-06-04 1990-06-04 Controlling apparatus for husking ratio of husker

Country Status (1)

Country Link
JP (1) JPH0440242A (en)

Similar Documents

Publication Publication Date Title
JPH0440242A (en) Controlling apparatus for husking ratio of husker
JPH0438451A (en) Dehulling rate sensor of huller
JPH03277948A (en) Method for detecting and controlling hulled ratio of rice huller and the like
JPH0440243A (en) Controlling apparatus for husking ratio of husker
JPH0440348A (en) Hulling rate sensor
JPH03249955A (en) Adjusting and controlling system for quantity of light in husking ratio sensor
JPH0438450A (en) Light quantity control device of dehulling rate sensor
JPH03258354A (en) Husking controlling system in rice husker
JP2897422B2 (en) Roller clearance adjusting device
JPH0438449A (en) Light quantity control device of dehulling rate sensor
JPH02131145A (en) Supply quantity control device of hulling and selecting machine
JPH0385427A (en) Controlling system of light quantity adjustment of hulling rate sensor
JPH0398652A (en) Abnormality detection apparatus of dehulling ratio sensor
JPH03221846A (en) Light quantity adjustment control system for rice-hull removing rate sensor
JPH0398651A (en) Dehulling ratio control apparatus of huller
JPH03278845A (en) Controlling system for hulling ratio of huller and the like
JPH04222643A (en) Winnowing apparatus of hulling sorter
JPH03278846A (en) Detection control system for hulling ratio of huller and the like
JPH03249954A (en) Adjusting and controlling system for quantity of light in husking ratio sensor
JPH0432750A (en) Light quantity adjustment control system for milling rate sensor
JPH03221148A (en) Dehulling control apparatus of huller
JP3823342B2 (en) Removal rate control device for huller
JPH07124484A (en) Foreign matter deciding device for husking separator
JPH0432749A (en) Light quantity adjustment control system for milling rate sensor
JPH03146138A (en) Hulling roll clearance adjusting device of hulling and sorting machine