JPH0432749A - Light quantity adjustment control system for milling rate sensor - Google Patents

Light quantity adjustment control system for milling rate sensor

Info

Publication number
JPH0432749A
JPH0432749A JP14059690A JP14059690A JPH0432749A JP H0432749 A JPH0432749 A JP H0432749A JP 14059690 A JP14059690 A JP 14059690A JP 14059690 A JP14059690 A JP 14059690A JP H0432749 A JPH0432749 A JP H0432749A
Authority
JP
Japan
Prior art keywords
light
light amount
distribution
value
rate sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14059690A
Other languages
Japanese (ja)
Inventor
Takashi Nagai
隆 永井
Shinji Ninomiya
伸治 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP14059690A priority Critical patent/JPH0432749A/en
Publication of JPH0432749A publication Critical patent/JPH0432749A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To properly adjust the quantity of light by varying the quantity of transmitted light and then moving the transmitted light quantity distribution into a proper range, and to decide that the milling rate sensor is abnormal unless the light quantity adjustment ends with the maximum and minimum values of the light quantity variation. CONSTITUTION:Rubbed rice 3 is passed through irradiation light from a light emitting element 16, grain by grain, and the milling rate sensor 1 detects the quantity of transmitted light that a light receiving element 17 receives and outputs the detected quantity to a milling rate controller 10. The controller 10 calculates a milling rate such as the threshold value of the transmitted light quantity distribution 4. Further, a light quantity controller 18 as part of the controller 10 has an output circuit 19 which inverts the output voltage to adjust and control the quantity of light of the element 16 automatically and adjusts the quantity of light of the element 16 so that the unpolished rice mean block value of the distribution 4 is put in a light quantity adjustment set range (proper range) L by varying the quantity of light; when the mean block value enters the range L, the adjustment control is finished. When the quantity of light does not enter the range L while varying from the minimum value to the maximum value, abnormality is decided and the milling rate control by the sensor 1 is not performed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、脱■率センサの光量調節制御方式に関する
もので、籾摺機の脱■率制御等に利用できる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a light amount adjustment control method for a dehulling rate sensor, and can be used to control the dehulling rate of a rice huller.

(従来の技術、及び発明が解決しようとする課題)投光
素子から受光素子へ投光するセンサ投光域に脱■装置で
摺出された摺出米を流しながら、このセンサ投光による
透過光量によって透過光量分布を作成し、脱■率を算出
する脱■率センサにあっては、この脱■率センサに対す
る摺出米の供給が正確であっても、発光素子による投光
光量が適正でなかったり、又、光量調節を行っても調節
不可能の状態にあるときは、透過光量分布が正確に作成
されなかったり、脱■率が不正確となり易い。
(Prior art and problem to be solved by the invention) While flowing the rubbed rice scraped out by the desorption device into the sensor light emitting area where light is emitted from the light emitting element to the light receiving element, the light transmitted by this sensor light emitting For the removal rate sensor that creates a transmitted light amount distribution based on the light amount and calculates the removal rate, even if the supply of polished rice to the removal rate sensor is accurate, the amount of light emitted by the light emitting element may not be appropriate. If the amount of light is not adjusted, or if the amount of light cannot be adjusted even if the amount of light is adjusted, the transmitted light amount distribution may not be created accurately, and the removal rate may be inaccurate.

異常は、脱■率センサ側だけでなく、これを制御するコ
ントローラ側の光量出力回路等の異常も考えられる。異
常時で透過光量分布が動かなければ、光量出力は、光量
変更範囲内の上限か下限に固定されてしまう。
It is possible that the abnormality is not only on the side of the removal rate sensor, but also on the light amount output circuit of the controller that controls it. If the transmitted light amount distribution does not change in an abnormal situation, the light amount output will be fixed at the upper or lower limit within the light amount change range.

この発明は、このような欠陥を解消するもので、脱■率
センサにおける割込信号があっても、コントローラで光
量電圧を変更して最大又は最小にしても、光量調節処理
が終了しないときは、この脱■率センサを異常として判
定処理することとし、次の対応を図るものである。
This invention solves such defects, and even if there is an interrupt signal from the removal rate sensor or the controller changes the light intensity voltage to the maximum or minimum, if the light intensity adjustment process does not end. , this removal rate sensor will be determined to be abnormal and the following measures will be taken.

(課題を解決するための手段) この発明は、センサ投光域に摺出米を通しながら、この
センサ投光による透過光量分布によって、籾と玄米との
境界であるしきい値を求めて脱■率を算出する脱■率セ
ンサにおいて、該透過光量の変更によって透過光量分布
を適正範囲内へ移動させて適正光量調節を行うと共に、
該光量変更の最大値、又は最小値において光量調節が終
了しないときは、脱■率センサの異常として判定するこ
とを特徴とする光量調節制御方式の構成とする。
(Means for Solving the Problems) The present invention allows grained rice to pass through a sensor light emitting area, and determines a threshold value, which is the boundary between paddy and brown rice, based on the transmitted light amount distribution by the sensor light emitting area, and removes the rice. ■ In the exit rate sensor that calculates the rate, the transmitted light amount distribution is moved within the appropriate range by changing the transmitted light amount, and the appropriate light amount is adjusted.
The light amount adjustment control method is characterized in that when the light amount adjustment is not completed at the maximum value or the minimum value of the light amount change, it is determined that the exit rate sensor is abnormal.

(作用) 脱■率センサの投光域内に摺出米を一粒毎供給しながら
、このセンサ投光による透過光量を検出させると透過光
量分布が作成される。この透過光量分布にもとづいて、
籾と玄米との境界であるしきい値が算出され、このしき
い値を境として玄米側と籾側との透過光量分布の比によ
って脱■率が算出制御される。
(Function) While feeding each grain of polished rice into the light projection area of the removal rate sensor, a transmitted light amount distribution is created by detecting the amount of transmitted light emitted by the sensor. Based on this transmitted light amount distribution,
A threshold value, which is the boundary between paddy and brown rice, is calculated, and the removal rate is calculated and controlled based on the ratio of the transmitted light amount distribution between the brown rice side and the paddy side, with this threshold as the boundary.

このような脱■率センサでは、光量調節が適正量に行わ
れる。コントローラによって脱■率センサに対する出力
電圧を変更すると、前記摺出米の供給によって作成され
る透過光量分布が移動されるため、予めこの適正範囲の
移動位置を決めておき、光量変更を1例えば、最小値か
ら最大値へと変更制御する途中で、この透過光量分布の
所定位置が該適正範囲内に入れば、このときの光量を適
正光量として、脱■率検出を行わせるが、光量変更が最
小値から最大値に亘る間において、いずれも該適正範囲
内に入らないときは、これを異常ありとして、脱■率セ
ンサによる脱■率制御は行わず、例えば、負荷制御によ
る脱■制御への切換等の対応措置をとる。
In such a discharge rate sensor, the amount of light is adjusted to an appropriate amount. When the controller changes the output voltage for the removal rate sensor, the transmitted light amount distribution created by the supply of the washed rice is moved. Therefore, the movement position within this appropriate range is determined in advance, and the light amount is changed once, for example, During the change control from the minimum value to the maximum value, if a predetermined position of the transmitted light amount distribution falls within the appropriate range, the light amount at this time is set as the appropriate light amount and the defect rate detection is performed, but the light amount change is not performed. If none of the values are within the appropriate range between the minimum value and the maximum value, this is considered to be an abnormality, and the removal rate control using the removal rate sensor is not performed, and, for example, removal control using load control is performed. Take corresponding measures such as switching.

(発明の効果) このように脱■率センサにおける透過光量が、最小値に
おいても、又は最大値においても、予め適正範囲に入ら
ないときは、この脱■率センサに異常ありとして処理さ
せるものであるから、光量調節処理を短時間で行い、そ
の後の異常処理対応や、脱■率算出処理対応を速やかに
行うことができる。
(Effects of the Invention) In this way, when the amount of transmitted light in the %-1 ratio sensor does not fall within the appropriate range, either at the minimum value or at the maximum value, the %-x ratio sensor is treated as having an abnormality. Therefore, the light amount adjustment process can be performed in a short time, and subsequent abnormality processing and failure rate calculation processing can be quickly performed.

(実施例) なお、回倒において、籾摺機は、第7図において、機体
の上部に、回転周速差を有する一対の脱■ロール5,6
からなる籾摺装置2、この籾摺装置2に籾を供給する籾
供給漏斗7、及び籾摺装置2で脱■された摺出米3を玄
米Gと籾Mとに選別する回転選別筒からなる選別装置8
等を有し、又、機体の下部には、該籾摺装置2による摺
出米を風選する風選装置9等を設けている。
(Example) In the rotation, the huller is equipped with a pair of dehulling rolls 5 and 6 at the top of the machine body, which have a difference in rotational circumferential speed, as shown in FIG.
A paddy-hulling device 2 consisting of a paddy-hulling device 2, a paddy supply funnel 7 that supplies paddy to the hulling device 2, and a rotating sorting tube that sorts the crushed rice 3 removed by the hulling device 2 into brown rice G and paddy M. sorting device 8
In addition, a wind selection device 9 for wind-selecting the rice removed by the hulling device 2 is provided at the bottom of the machine.

又、機体の一側には、籾摺制御を行う脱活率制御装置1
0を設けると共に、摺出米の一部のサンプリング粒を流
下させながら、このサンプリング粒から脱■率を検出す
る脱■率センサ1を設けている。11は摺出米揚穀機で
、籾摺装置2で摺出された摺出米や1選別装置8で選別
された戻り混合米等を受けて、この選別装置8へ揚穀す
る構成である。12は、玄米揚穀機で、該選別装置2下
の玄米風選装置13で風選された玄米を受けて取出す構
成である。14は、排塵機で、各風選装置13.9で風
選した籾殻や、塵埃等を吸引排出するものである。
Also, on one side of the machine, there is a deactivation rate control device 1 that controls the hulling.
0 is provided, and there is also provided a breaking rate sensor 1 which detects the breaking rate from some of the sampled grains of the washed rice while flowing down the sampled grains. Reference numeral 11 denotes a crushed rice grain lifting machine, which receives the crushed rice crushed by the hulling device 2 and the returned mixed rice sorted by the first sorting device 8, and sends the grain to this sorting device 8 for frying. . Reference numeral 12 denotes a brown rice frying machine, which is configured to receive and take out the brown rice that has been air-sorted by the brown rice wind-selecting device 13 below the sorting device 2. Reference numeral 14 denotes a dust extractor that sucks and discharges the rice husks, dust, etc. that have been air-selected by the wind-selecting devices 13.9.

第1図において、マイクロコンピュータCPUを有した
脱■率制御装置10は、脱■率センサ1からの入力を受
けて、脱■ロール5,6のロール間隙を調節する間隙制
御モータ15を出力制御する構成である。脱■率センサ
1は、発光素子16から受光素子17へ照射される発光
に、摺出米3のサンプリング粒を一粒毎横断通過させる
ことによって、このサンプリング粒を照射したときの受
光素子17の受ける透過光量を検出して、脱■率制御装
置10へ出力するものである。
In FIG. 1, a removal rate control device 10 having a microcomputer CPU receives input from a removal rate sensor 1 and controls output of a gap control motor 15 that adjusts the roll gap between removal rolls 5 and 6. It is configured to do this. The removal rate sensor 1 allows the light emitted from the light emitting element 16 to the light receiving element 17 to pass through each sampling grain of the polished rice 3, thereby detecting the value of the light receiving element 17 when the sampled grains are irradiated. The amount of transmitted light received is detected and outputted to the removal rate control device 10.

光量制御装置18は、脱活率制御装置10の一部として
設けられ、出力電圧を反転させて発光素子16の光量を
自動調節制御する光量調節出力の出力回路19を有し、
又、受光素子17が検出する一粒毎の透過光量を入力回
路20、及び−粒毎の信号を検出する粒信号検出回路2
1を設け、発光素子16による光量が予め設定された基
準電圧による光量調節設定範囲(適正範囲)L内に入る
ように自動的に調節制御される構成である。
The light amount control device 18 is provided as a part of the deactivation rate control device 10, and has a light amount adjustment output circuit 19 that automatically adjusts and controls the light amount of the light emitting element 16 by inverting the output voltage.
Further, an input circuit 20 receives the amount of transmitted light for each grain detected by the light receiving element 17, and a grain signal detection circuit 2 detects a signal for each grain.
1 is provided, and the amount of light emitted by the light emitting element 16 is automatically adjusted and controlled so that it falls within a light amount adjustment setting range (appropriate range) L based on a preset reference voltage.

脱■率制御装置10における脱■率の演算処理制御につ
いて、第5図は、脱■率センサ1によって検出される所
定粒数のサンプリング粒の一粒毎の透過光量の透過率を
度数分布としてグラフィック化(デイスプレィに現わす
)した透過率粒数分布曲線(以下透過光量分布と云う)
4の一般的な形態を示すものである。この脱■率制御装
置10における脱■率の算出処理は、 (1)このような透過光量分布4のグラフィック処理制
御を行う。
Regarding the arithmetic processing control of the removal rate in the removal rate control device 10, FIG. Transmittance particle number distribution curve (hereinafter referred to as transmitted light amount distribution) graphically displayed (displayed on the display)
This figure shows the general form of 4. The calculation process of the breakout rate in the breakout rate control device 10 is as follows: (1) Graphic processing control of the transmitted light amount distribution 4 is performed.

(2)この透過光量分布4から玄米平均ブロック値KG
と籾平均ブロック値KMとを算出処理制御する。
(2) From this transmitted light amount distribution 4, the brown rice average block value KG
and the paddy average block value KM are calculated and controlled.

(3)透過光量分布4における玄米Gと、籾Mとの境界
位置である境界ブロック値をしきい値にとして算出処理
制御する。
(3) The calculation process is controlled using the boundary block value, which is the boundary position between brown rice G and paddy M in the transmitted light amount distribution 4, as a threshold value.

(4)このしきい値Kを境として、玄米G側のサンプリ
ング粒数と、籾M側のサンプリング粒数とによって脱■
率を算出処理制御する。
(4) With this threshold value K as the boundary, the number of grains sampled on the brown rice G side and the number of grains sampled on the paddy M side are removed.
Calculate and control the rate.

の各行程によって行われる このしきい値算出制御を更に詳細に説明すると、透過光
量の透過率は、第5図に示すように最大から最小透過率
までの間を1からNまでの各ブロックにN区分している
。そこで−回のサンプリング粒の粒数を、例えば200
0粒、脱■率センサ1によって検出する時間を20秒、
ブロック数Nを64ブロツクとしている。又、全ブロッ
ク数N間の各平均透過光量に相当する出力電圧を一粒信
号電圧として、0〜l0V(ボルト)として出力するよ
うに設定している。
To explain this threshold value calculation control performed in each step in more detail, the transmittance of the amount of transmitted light is calculated from the maximum transmittance to the minimum transmittance in each block from 1 to N, as shown in FIG. It is classified into N. Therefore, the number of grains sampled twice is set to 200, for example.
0 grains, the detection time by the removal rate sensor 1 is 20 seconds,
The number of blocks N is 64 blocks. Further, the output voltage corresponding to each average amount of transmitted light among the total number of blocks N is set to be output as a signal voltage of 0 to 10V (volts).

玄米平均ブロック値KGは、玄米Q平均値であって、こ
の算出は、玄米粒数が第5図のピーク値のときの粒数を
基準として、この基準粒数から一定値(例えば25粒)
の範囲内にある粒数のブロック光量積算の加算値を1粒
数の加算値で割った値とする。即ち、玄米ピーク値部分
の一粒当りの平均透過光量を求める。この場合、ピーク
粒数25粒以上のブロックが例えば10ブロック未満の
ときは、上位10ブロツクとして上記と同様に計算を行
うように制御する。
The brown rice average block value KG is the brown rice Q average value, and this calculation is based on the number of grains when the number of brown rice grains is at the peak value in Figure 5, and a fixed value (for example, 25 grains) from this reference grain number.
The value obtained by dividing the sum of the block light amount integration for the number of grains within the range by the sum of the number of grains. That is, the average amount of transmitted light per grain of brown rice at its peak value is determined. In this case, when the number of blocks with a peak grain count of 25 or more is less than 10 blocks, for example, the calculation is performed in the same manner as above as the top 10 blocks.

籾平均ブロック値KMは、籾の平均値であって。The paddy average block value KM is the average value of paddy.

この算出は、総サンプリング粒数(2000粒)の籾側
から例えば5粒をカットしたブロックを最大ブロックと
し、この籾側から一定ブロック(例えば10ブロツク)
の光量積算の加算値を粒数の加算値で割った値とする。
In this calculation, the maximum block is a block obtained by cutting, for example, 5 grains from the paddy side of the total number of sampled grains (2000 grains), and a certain number of blocks (for example, 10 blocks) from this paddy side.
The value obtained by dividing the added value of the integrated light amount by the added value of the number of grains.

即ち、籾Mピーク値部分の一粒当りの平均透過光量を求
める。
That is, the average amount of transmitted light per grain in the M peak value portion of the rice grain is determined.

このようにして、玄米平均ブロック値KOと籾平均ブロ
ック値KMとが求められると、これら各平均ブロック値
KG、KMによって、境界ブロック値であるしきい値K
を次式によって算出する。
In this way, when the average block value KO of brown rice and the average block value KM of paddy are obtained, the threshold value K which is the boundary block value is determined by each average block value KG, KM.
is calculated using the following formula.

K= (KM−KO)Xk+KO k:定数 この定数kについては、籾平均ブロック値KMの算出を
行った上位10ブロツクの粒数により、次のように設定
する。
K= (KM-KO)

100  粒未満  ・・・k=0.55100〜14
9粒 ・・・k=0.47150粒以上   ・・・k
=0.40摺出米サンプリング粒の分布により、脱■率
を算出するとき、脱■率センサ1の発光の透過率に対す
る分布は、玄米Gと籾Mが完全に分かれた分布形態では
なく、両者が相重合した部分をしきい値に近くにもつ分
布となり、しきい値Kにより計算脱■率の精度が決まる
。実脱■率の高低によって、精側上位ブロックの粒数が
変ることを利用して、その粒数により境界ブロック位置
を調整することにより、実脱■率に対する計算脱■率の
精度を高めることができる。
Less than 100 grains...k=0.55100~14
9 grains ・・・k=0.47150 grains or more ・・・k
= 0.40 When calculating the removal rate based on the distribution of sampled grains of polished rice, the distribution for the transmittance of the emitted light from the removal rate sensor 1 is not a distribution form in which brown rice G and paddy M are completely separated; The distribution has a portion where both of them are phase-polymerized near the threshold value, and the accuracy of the calculated removal rate is determined by the threshold value K. By taking advantage of the fact that the number of grains in the upper block on the fine side changes depending on the actual shedding rate, and adjusting the position of the boundary block according to the number of grains, the accuracy of the calculated shedding rate relative to the actual shedding rate can be improved. I can do it.

このようにして、しきい値Kが決ると、例えば、次式の
ようにサンプリング全粒数(2,,000粒)に対する
しきい値Kから玄米側にある玄米Gの総粒数の比を求め
て脱■率とする。
Once the threshold value K is determined in this way, for example, the ratio of the total number of grains of brown rice G on the brown rice side is calculated from the threshold value K to the total number of grains sampled (2,000 grains) as shown in the following equation. Find it and use it as the exit rate.

脱■率=((サンプリング全粒数−しきい値に以上のブ
ロックにある総粒数)/サンプリング全粒数) X10
0 (%) このようにして脱■率が算出されると、この算出脱■率
が設定脱■率になるように間隙制御モータ15を出力し
て、ロール間隙を調整する。
Elimination rate = ((total number of grains sampled - total number of grains in blocks above the threshold value)/total number of grains sampled) X10
0 (%) When the removal rate is calculated in this manner, the gap control motor 15 is outputted to adjust the roll gap so that the calculated removal rate becomes the set removal rate.

第2図を参照して光量調節制御を説明する。透過光量分
布4は、脱■率センサ1の発光素子16の光量を変更す
ることによって、水平方向へ移動される。玄米Gと籾M
との判別に適する適正範囲(光量調節設定範囲)Lを予
め決めておき、透過率分布4の玄米平均ブロックのピー
ク値である玄米平均ブロック値KGが、この適正範囲り
に入ったとき、脱■率センサ1の光量調節制御を終るよ
うに制御構成する。
The light amount adjustment control will be explained with reference to FIG. The transmitted light amount distribution 4 is moved in the horizontal direction by changing the amount of light emitted from the light emitting element 16 of the exfoliation rate sensor 1. Brown rice G and paddy M
An appropriate range (light intensity adjustment setting range) L suitable for discrimination is determined in advance, and when the brown rice average block value KG, which is the peak value of the brown rice average block of transmittance distribution 4, falls within this appropriate range, the (2) The control structure is configured so that the light amount adjustment control of the rate sensor 1 is completed.

実際に通過する摺出米3のサンプリング粒の信号により
、脱■率センサ1のセンサ光量を適正光量に11節する
。サンプリング粒の信号を信号電圧(O〜l0V)とし
てN区分し、各区分のブロック毎の度数を算出して度数
分布で表し、最大度数である透過光量分布4の玄米平均
ブロック値KGの電圧を玄米の平均信号電圧とみなす。
Based on the signal from the sampling grains of the polished rice 3 that actually pass through, the sensor light amount of the removal rate sensor 1 is adjusted to the appropriate light amount. The signal of the sampling grain is divided into N divisions as a signal voltage (0 to 10V), the frequency of each block in each division is calculated and expressed as a frequency distribution, and the voltage of the brown rice average block value KG of transmitted light amount distribution 4, which is the maximum frequency, is calculated. Regarded as the average signal voltage of brown rice.

この玄米電圧を適正範囲り内に入るようにセンサ光量を
前記脱■率制御装置10内の光量制御装置18により光
量調節出力して行う。光量調節出力によって、センサ光
量を大きくして明るくする(光量ダラーではF F−)
00)と、透過光量分布4は低信号電圧側へ移動し、又
、センサ光量を小さくしで暗くする(00→FF)と高
信号電圧側へ移動する。
The amount of light from the sensor is adjusted and outputted by the light amount control device 18 in the removal rate control device 10 so that the brown rice voltage falls within an appropriate range. The light amount adjustment output increases the sensor light amount to make it brighter (F F- for light amount dollar)
00), the transmitted light amount distribution 4 moves to the low signal voltage side, and when the sensor light amount is decreased to make it darker (00→FF), it moves to the high signal voltage side.

初期設定では、光量データがクリアされているために、
最も暗い側のIOV (FF)でスタートし、その後の
分布状態を見ながらΔB移動させて、光量の適正範囲り
内に位置させる。
By default, the light amount data is cleared, so
Start at the darkest side IOV (FF) and move it by ΔB while checking the subsequent distribution state to position it within the appropriate light amount range.

脱■率センサ1の光量調節制御の開始、及び終了につい
ては、例えば、次のようにして自動運転において行う構
成としている。初期の光量電圧がクリアされている場合
は、籾供給漏斗7のシャッタの開きにより光量調節が開
始され、初期の光量調節が行われる。サンプリング粒、
2000粒のデータによる玄米ブロック値KGが適正範
囲り内に入っていない状態が連続して3回続いたとき、
光量調節制御が開始される。この2000粒データのう
ち500粒分布の玄米ブロック値KGが適正範囲りに1
回入り、このときの光量において再度500粒の分布を
とり、再度玄米ブロック値KGが適正範囲りに入ったと
き光量調節制御を終了する。
The start and end of the light amount adjustment control of the exit rate sensor 1 is configured to be performed during automatic operation, for example, as follows. When the initial light amount voltage is cleared, the light amount adjustment is started by opening the shutter of the paddy supply funnel 7, and the initial light amount adjustment is performed. sampling grains,
When the brown rice block value KG based on the data of 2000 grains is not within the appropriate range three times in a row,
Light amount adjustment control is started. Of this 2000 grain data, the brown rice block value KG of 500 grain distribution is 1 within the appropriate range.
Once again, the distribution of 500 grains is taken again at the light amount at this time, and when the brown rice block value KG falls within the appropriate range again, the light amount adjustment control is ended.

このような脱活率制御装置10において1粒信号検出回
路21による検出信号が、一定時間内に一定粒数に達し
ないとき、例えば、20秒間で2000粒、又は、5秒
間で500粒に達しないときは、第6図のように、これ
を脱■率センサ1の異常状態と判定して、−旦負荷制御
モードに切換して運転を継続し、そのうちに粒割込みが
一定粒数に復帰すれば、脱■率制御モードへ戻して、こ
の制御の最初の位置から再スタートする。
In such a deactivation rate control device 10, when the detection signal from the one grain signal detection circuit 21 does not reach a certain number of grains within a certain time, for example, it reaches 2000 grains in 20 seconds or 500 grains in 5 seconds. If not, as shown in Fig. 6, this is determined to be an abnormal state of the removal rate sensor 1, and the operation is continued by switching to the load control mode until the grain interruption returns to a constant number of grains. Then, the control mode is returned to the withdrawal rate control mode and the control is restarted from the initial position.

即ち、脱■率センサ1による一定粒数の割込み復帰によ
り、制御状態の読み出しを判定して、脱■率制御モード
に戻ると、この復帰時が脱■率制御行程の光量調節制御
の途中であれば、この光量調節制御の最初から再スター
トし、又、光量調節制御が完了しておれば、しきい値算
出処理制御の最初から再スタートされる。
That is, when the control state is determined to be read by the interrupt return of a certain number of grains by the removal rate sensor 1 and the return is made to the removal rate control mode, this return occurs in the middle of the light amount adjustment control in the removal rate control process. If so, the light amount adjustment control is restarted from the beginning, and if the light amount adjustment control has been completed, the threshold value calculation processing control is restarted from the beginning.

なお、第4図において、最低光量からスタートする光量
調節処理において、最初の粒割り込みが検出されるまで
は、光量の変更を短時間T1にて行い、割り込みが検出
されてからは、このT1よりも長い一定時間T2内に一
定粒数が検出されるまで光量の変更を行い、一定光量変
更してもこの検出ができないときは脱■率センサの異常
と判定制御するように構成すると、光量調節を短時間に
In Fig. 4, in the light intensity adjustment process starting from the lowest light intensity, the light intensity is changed at T1 for a short time until the first grain interruption is detected, and after the interruption is detected, the light intensity is changed from T1. If the control is configured such that the light intensity is changed until a certain number of grains are detected within a long fixed time T2, and if this cannot be detected even after changing the fixed light intensity, it is determined that the removal rate sensor is abnormal, the light intensity adjustment can be performed. in a short time.

かつ確実に行うことができる。And it can be done reliably.

光量調節制御装置18からの出力信号により、脱■率セ
ンサ1の発光素子16の発光量を11節して透過光量分
布4を第2図のように移動させて光量調節制御されると
き、この透過光量分布4を求めるための一定粒数が検出
できておればよいが、センサ感度のばらつきを考慮して
最低光量からスタートするときは、まず確実に一定時間
内に一定粒数が検出できる光量とする必要がある。第4
図のステップ■では、短時間T1で粒割込が検出できる
光量に1とする。ステップ■では、一定時間T2内に一
定粒数を検出できる光量に2とする。
When the output signal from the light amount adjustment control device 18 controls the amount of light emitted from the light emitting element 16 of the removal rate sensor 1 by 11 points and moves the transmitted light amount distribution 4 as shown in FIG. It is sufficient to be able to detect a certain number of grains in order to obtain the transmitted light amount distribution 4, but when starting from the lowest light amount considering variations in sensor sensitivity, first make sure that the light amount is such that a certain number of grains can be detected within a certain time. It is necessary to do so. Fourth
In step (2) in the figure, the light amount is set to 1 so that grain breakage can be detected in a short period of time T1. In step (2), the amount of light is set to 2 so that a certain number of grains can be detected within a certain time T2.

ステップ■では、適正範囲I、となる光量とする。In step (2), the amount of light is set to be within the appropriate range I.

光量調節を最低光量からスタートするとき、粒割込が検
出でき始めた光量でも、まだ光量が少なく、一定時間内
に一定粒数の検出を行うことができないおそれがあるた
めに、一定時間内に一定粒数が検出できる光量まで変更
してから、透過光量分布の分布波形検出を行うようにす
る。これによって、光量変更の途中で、摺出米が正常に
流れているとき脱■率センサの異常の誤判定を行うこと
がなく、確実な光量調節が可能である。
When starting the light intensity adjustment from the lowest light intensity, even if the light intensity has started to detect grain breakage, the light intensity is still low and there is a risk that it will not be possible to detect a certain number of grains within a certain period of time. The distribution waveform detection of the transmitted light amount distribution is performed after changing the light amount to a value that allows a certain number of particles to be detected. As a result, in the middle of changing the light amount, when the rolled rice is flowing normally, there will be no erroneous determination that the removal rate sensor is abnormal, and the light amount can be adjusted reliably.

このように、一定粒数の、入力読み込みにより、透過光
量分布4を検出しながら、光量調節によりこの透過光量
分布4の玄米ブロック値KGが、適正範囲りに入らない
とき、即ち、第3図のように光量変更の下限値(N)か
ら上限値(1)に亘るいずれに調節されても、適正範囲
りに入らないときは、脱■率センサ1が異常であるもの
として判定して、この異常表示を行わせ、又、この脱■
率センサ1による脱■率制御モードを、負荷制御モード
に切換えて、籾摺作業を行わせる。この負荷制御モード
による籾摺作業を行う途中で脱■率センサ1の異常が解
除されると、これによって脱■率算出制御が再開されて
、脱■率制御が行われる。
In this way, when the transmitted light amount distribution 4 is detected by input reading of a fixed number of grains, and the brown rice block value KG of this transmitted light amount distribution 4 does not fall within the appropriate range by adjusting the light amount, that is, as shown in FIG. If the amount of light does not fall within the appropriate range even if the light amount is adjusted from the lower limit value (N) to the upper limit value (1), it is determined that the removal rate sensor 1 is abnormal. This abnormal display is performed, and this
The dehulling rate control mode by the rate sensor 1 is switched to the load control mode, and the hulling work is performed. When the abnormality of the husking rate sensor 1 is cleared during the hulling work in this load control mode, the husking rate calculation control is restarted and the husking rate control is performed.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の一実施例を示すもので、第1図は脱■率
制御のブロック図、第2図は脱■率センサにおける透過
光量分布グラフ、第3図は脱■率センサの異常チエツク
制御のフローチャート、第4図はその一部別実施例のフ
ローチャート、第5図は透過光量分布グラフ、第6図は
脱■率センサの異常チエツク制御のフローチャート、第
7図は籾摺機の斜面図を示す。 (符号の説明) 1 脱■率センサ 2 籾摺装置 3 摺出米 4 透過光量分布 5.6 脱■ロール M籾 G 玄米 K しきい値 L 適正範囲
The figures show one embodiment of the present invention. Fig. 1 is a block diagram of the removal rate control, Fig. 2 is a transmitted light amount distribution graph in the removal rate sensor, and Fig. 3 is an abnormality check of the removal rate sensor. Flowchart of control, Fig. 4 is a flowchart of a partial example, Fig. 5 is a transmitted light amount distribution graph, Fig. 6 is a flowchart of abnormality check control of the removal rate sensor, Fig. 7 is a slope of the huller. Show the diagram. (Explanation of symbols) 1 De-hulling rate sensor 2 Hulling device 3 Dehulled rice 4 Transmitted light amount distribution 5.6 De-rolled paddy G Brown rice K Threshold L Appropriate range

Claims (1)

【特許請求の範囲】[Claims]  センサ投光域に摺出米を通しながら、このセンサ投光
による透過光量分布によって、籾と玄米との境界である
しきい値を求めて脱■率を算出する脱■率センサにおい
て、該透過光量の変更によって透過光量分布を適正範囲
内へ移動させて適正光量調節を行うと共に、該光量変更
の最大値、又は最小値において光量調節が終了しないと
きは、脱■率センサの異常として判定することを特徴と
する光量調節制御方式。
While the rice is passed through the sensor light emitting area, the shedding rate sensor calculates the shedding rate by determining the threshold value that is the boundary between paddy and brown rice based on the distribution of the amount of transmitted light from the sensor light emitting area. By changing the light amount, the transmitted light amount distribution is moved within the appropriate range to adjust the light amount appropriately, and if the light amount adjustment does not end at the maximum or minimum value of the light amount change, it is determined that the defect rate sensor is abnormal. A light amount adjustment control method characterized by:
JP14059690A 1990-05-29 1990-05-29 Light quantity adjustment control system for milling rate sensor Pending JPH0432749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14059690A JPH0432749A (en) 1990-05-29 1990-05-29 Light quantity adjustment control system for milling rate sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14059690A JPH0432749A (en) 1990-05-29 1990-05-29 Light quantity adjustment control system for milling rate sensor

Publications (1)

Publication Number Publication Date
JPH0432749A true JPH0432749A (en) 1992-02-04

Family

ID=15272377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14059690A Pending JPH0432749A (en) 1990-05-29 1990-05-29 Light quantity adjustment control system for milling rate sensor

Country Status (1)

Country Link
JP (1) JPH0432749A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524290A (en) * 1991-07-22 1996-06-04 Motorola, Inc. Adaptive graphic equalizer and radio using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524290A (en) * 1991-07-22 1996-06-04 Motorola, Inc. Adaptive graphic equalizer and radio using same

Similar Documents

Publication Publication Date Title
JPH0432749A (en) Light quantity adjustment control system for milling rate sensor
JPH0438450A (en) Light quantity control device of dehulling rate sensor
JPH03221148A (en) Dehulling control apparatus of huller
JPH0438449A (en) Light quantity control device of dehulling rate sensor
JPH0440348A (en) Hulling rate sensor
JPH03249955A (en) Adjusting and controlling system for quantity of light in husking ratio sensor
JPH0385427A (en) Controlling system of light quantity adjustment of hulling rate sensor
JPH03278845A (en) Controlling system for hulling ratio of huller and the like
JPH0432750A (en) Light quantity adjustment control system for milling rate sensor
JPH0398651A (en) Dehulling ratio control apparatus of huller
JPH0438451A (en) Dehulling rate sensor of huller
JPH03277948A (en) Method for detecting and controlling hulled ratio of rice huller and the like
JPH03258354A (en) Husking controlling system in rice husker
JPH03278846A (en) Detection control system for hulling ratio of huller and the like
JPH0398652A (en) Abnormality detection apparatus of dehulling ratio sensor
JP2000042433A (en) Automatic rice-polishing apparatus with automatic reduction in generation of broken rice
JPH0440243A (en) Controlling apparatus for husking ratio of husker
JPH03249954A (en) Adjusting and controlling system for quantity of light in husking ratio sensor
JPH03221845A (en) Light quantity adjustment control system for rice-hull removing rate sensor
JP2746085B2 (en) Control device of hulling sorter
JPH03221846A (en) Light quantity adjustment control system for rice-hull removing rate sensor
JPH0833353B2 (en) Measuring device for removal rate
JPH0440242A (en) Controlling apparatus for husking ratio of husker
JPH0776750B2 (en) Removal rate detector
JP2897422B2 (en) Roller clearance adjusting device